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OUTLINE 

• Part 1: Introduction 

– Topological Phases,  Topological entanglement entropy. 

– Model wave-functions. 

 

• Part 2: Topological Entropy of nontrivial bipartitions. 

– Ground state dependence and Minimum Entropy States.  

– Application: Kagome spin liquid in DMRG. 

 

• Part 3: Quasi particle statistics (modular S-Matrix)  
from Ground State Wave-functions. 

 
Ref: Zhang, Grover, Turner, Oshikawa, AV: arXiv:1111.2342 

 



 

 

 

 

 

 

 

 

Distinguished by spontaneous symmetry breaking. 

Can be diagnosed in the ground state wave-function by a local 
order parameter.  

• Magnets (broken spin 
symmetry) M  ψ • Superfluids 

Solid 

• Solid (broken 
translation) 

In contrast –topological phases… 

Conventional (Landau) Phases 



Topological Phases 

Integer topological phases 

• Integer Quantum Hall & 
Topological insulators 

• Haldane (AKLT) S=1 phase 

• Interacting analogs in 
D=2,3 (Kitaev, Chen-Gu-Wen, Lu&AV) 

Non-trivial surface states 

Fractional topological phases 

• Fractional Quantum Hall 

• Gapped spin liquids 

 

   Topological Order: 

1. Fractional statistics 
excitations (anyons). 

2. Topological degeneracy on 
closed manifolds.  

How to tell – given ground state wave-function(s)?   
Entanglement as topological `order parameter’. 



Topological Order – Example 1 

• Laughlin state (ν=1/2 bosons) [`Chiral spin Liquid’] 

Ψ {𝑧𝑖} = 𝑧𝑖 − 𝑧𝑗
2
𝑒−  𝑧𝑖

2
𝑖  

𝑖<𝑗

 ),,(),,( 21121 NCN rrrrrr  2



Lattice Version 

• Ground State Degeneracy (N=2g): 

N=1 N=2 

 Quasiparticle Types: {1, s}.   

 # = Torus degeneracy  

𝑖 

s is a semion 



Topological Order – Example 2 
Ising (Z2) Electrodynamics 

0 E

• Here E=0,1; B=0,π  
       (mod 2)         (E field loops do not end) 

Ψ = 

• Degeneracy on torus=4.  

• Degeneracy on cylinder=2   

      (no edge states) 



Topological Order – Example 2 
Z2 Quantum Spin Liquids 

RVB spin liquid:  (Anderson ’73). Effective Theory: Z2  Gauge Theory.   

Recently, a number of candidates in numerics with no conventional order.  

Definitive test: identify topological order. 

Kagome (Yan et al) Honeycomb Hubbard  
(Meng et al) 

Square J1_J2  
(Jiang et al, Wang et al) 

Ψ =PG(ΨBCS) 



Entanglement Entropy 

• Schmidt Decomposition: 

Ψ = 𝑝𝑖
𝑖
𝐴𝑖 ⊗ 𝐵𝑖  

 

Entanglement Entropy (von-Neumann): 

𝑆𝐴 = −   𝑝𝑖log 𝑝𝑖
𝑖

 

Note: 1) 𝑆𝐴 = 𝑆𝐵  

 

2) Strong sub-additivity (for von-Neumann entropy) 

 0 ABCABACBCCBA SSSSSSS



Topological Entanglement Entropy 

• Gapped Phase with topological order.  
– Smooth boundary, circumference LA: 

B   A 

Topological Entanglement Entropy 
(Levin-Wen;Kitaev-Preskill) 

ϒ=Log D . (D : total quantum 
dimension).  
 
Abelian phases:  

𝐷 = √{𝑇𝑜𝑟𝑢𝑠 𝐷𝑒𝑔𝑒𝑛𝑒𝑟𝑎𝑐𝑦} 

 - aL S AA 

Z2 gauge theory: ϒ=Log 2 
Constraint on boundary – no gauge charges  inside. 
Lowers Entropy by 1 bit of information. 



Entanglement Entropy of Gapped Phases 

• Trivial Gapped Phase: 

– Entanglement entropy: sum of local contributions. 

1/κ 
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Curvature Expansion (smooth boundary): 
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Z2 symmetry of Entanglement Entropy:  
SA= SB  AND κ→- κ.   So a1=0 
 
No constant in 2D for trivial phase. 

X 

Grover, Turner, AV: PRB 84, 195120 (2011) 



Extracting Topological Entanglement Entropy 

• Smooth partition 
boundary on lattice? 

B A 

OR 

• Problem: 

`topological entanglement 
entropy’ depends on 
ground state.  (Dong et al, Zhang et al) 

• General Partition 

B A 

C 

ABCABACBCCBA SSSSSSS- 

(LevinWen;Preskill Kitaev) 
 

Strong subadditivity implies: 
Identical result with Renyi entropy  
 
How does this work with generic states? 

0 



Topological Entropy of Lattice Wavefunctions 

ϒ – From MonteCarlo Evaluation of Gutzwiller Projected Lattice wave-
functions.  𝒆−𝑺𝟐 = 〈𝑺𝑾𝑨𝑷𝑨〉.         (Y. Zhang, T. Grover, AV Phys. Rev. B 2011.) 

0.42 ± 0.14 

Good agreement for chiral spin liquid. 
  
Z2 not yet in thermodynamic limit(?) 

Alternate approach to diagnosing topological order:  
Entanglement spectrum (Li and Haldane, Bernevig  et al.). 

 
Closely related to edge states  
 Does not diagnose Z2 SL 
 Cannot calculate with Monte Carlo. 



Part 2: Ground State Dependence of Topological 
Entropy 



Topological Entanglement in Nontrivial 
bipartitions 

• Nontrivial bipartition - entanglement cut is not 
contractible. Can `sense’ degenerate ground states. 

• Result from Chern-Simons field theory: (Dong 

et al.) 

• Abelian topological phase with N ground states on torus.  

 

There is a special basis of ground states for a cut, such that: 

• Ψ =  𝑐𝑛|𝜙𝑛〉
𝑁
𝑛=1       (𝑝𝑛 = 𝑐𝑛

2) 

 𝛾 = 2𝛾0 −  𝒑𝒏 𝐥𝐨𝐠
𝟏

𝒑𝒏

𝑵
𝒏=𝟏  

Topological entropy in general reduced. 0 ≤ 𝛾 ≤ 2𝛾0  
 
For the special states 𝜙𝑛 , equal to usual value (𝛾 = 2𝛾0=2log D).  
These Minimum Entropy States correspond to quasiparticles in cycle of the torus 



Eg. Z2 Spin Liquid on a Cylinder 

• The minimum entropy states (𝛾 = log 2) are `vison’ 
states – magnetic flux through the cylinder that 
entanglement surface can measure. 

• State 𝑒  has 𝛾 = 0.    Cancellation from: 

• Degenerate sectors: even and odd 
E winding around cylinder. 

Minimum Entropy States:  

 

𝑒  

𝑜  
0, 𝜋 = ( 𝑒 ± |𝑜〉)/√2  

B A 

Ψ =  
𝐴, 𝑒𝑣𝑒𝑛 𝐵, 𝑒𝑣𝑒𝑛 + 𝐴, 𝑜𝑑𝑑 𝐵, 𝑜𝑑𝑑

√2
 

0〉, |𝜋  



Application: DMRG on Kagome Antiferromagnet 

• Topological entanglement entropy found by 
extrapolation within 1% of log 2. 

• Minimum entropy state is selected by DMRG (low 
entaglement). 

• Possible reason why only one ground state seen.  

Depenbrock,McCulloch, Schollwoeck   
(arxiv:1205:4858). Log base 2 

Jiang, Wang, Balents:  
arXiv:1205.4289 

B A 



Ground State Dependence of Entanglement 
Entropy 

• Chiral spin liquid on Torus: 

– Degenerate ground states from changing boundary 
conditions on Slater det.  

),,(),,( 21121 NCN rrrrrr  2
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1C

Trivial Bipartition:  
No ground state dependence.  

1 2cos sin     



Ground State Dependence of Entanglement 
Entropy 

• Chiral spin liquid on Torus: 

– Degenerate ground states from changing boundary 
conditions on Slater det.  

1C

Non trivial Bipartition:  
Ground state dependence!  

1 2cos sin     



Ground State Dependence of Topological 
Entropy from Strong Sub-additivity 

• Strong subadditivity: 𝑆𝐴𝐵𝐶 + 𝑆𝐵 − 𝑆𝐴𝐵 − 𝑆𝐵𝐶 ≤ 0 

𝜸𝟏 𝜸𝟐 𝜸𝟎 

Obtain `uncertainty’ relation: 

𝜸𝟏 + 𝜸𝟐 ≤ 𝟐𝜸𝟎 

Naïve result, 𝛾1 = 𝛾2 = 2𝛾0 𝑐𝑎𝑛𝑛𝑛𝑜𝑡  hold from general quantum  
information requirement. 
True even without topological field theory .  



Part 3: Mutual Statistics from Entanglement 

• Relate minimum entropy states along independent 
torus cuts. (modular transformation: S matrix) 

𝑀𝐸𝑆: 𝜙1, 𝜙2  𝑀𝐸𝑆: 𝜙′1, 𝜙′2  

𝜙′1
𝜙′2
= 𝑺
𝜙1
𝜙2

 

S encodes quasiparticle braiding statisitics: 
Chiral Spin Liquid: 

𝑆 =
1

√2

1 1
1 −1

 

e 

e 

s 

s 

𝑆ab  𝑎 b 



Zhang, Grover, Turner, Oshikawa, AV (2011). 

Semion Statistics! 
1.09 0.89

0.89 1.02 9
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S 

Statistics from Entanglement – Chiral Spin Liquid 

Wavefunction `knows’ about semion exciations; 



Conclusions 

• Entanglement of non-trivial partitions can be used to 
define `quasiparticle’ like states, and extract their 
statistics. 

• Useful to distinguish two phases with same D. (eg. Z2 
and doubled chiral spin liquid, no edge states) Less 
prone to errors. 

 

• Can topological entanglement entropy constrain  
new types of topological order (eg D=3)? 

• Experimental measurement? Need nonlocal probe. 

 


