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Messages

- Waves on the Edge of FQH are essentially non-linear;

- Emergence of quantization in non-linear dynamics;

- FQH - hydrodynamics "Hall-viscosity" in the bulk propels to the boundary
(a universal corrections to Chern-Simon "theory")

- Relation between FQHE and CFT - revised

Only Laughlin’s states (for now).
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FQHE -LAUGHLIN’S STATE(S)

Particles on a plane in a quantized magnetic field (with a strong Coulomb
Interaction)

Ψ0(z1, . . . , zN) =
�

∆(z1, . . . , zN)
�β e−

∑

i |zi|2/4`2
B

- ∆=
∏

i 6=j(zi − zj)- VanDerMonde determinant

- `B -magnetic length;

- ν = 1/β - is a filling fraction;

- β = 1 - IQHE; β = 3- FQHE.

Important features:

- Wave-function is holomorphic;

- Degree of zero at zi→ zj is larger than 1;
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SPECTRUM IN THE BULK:

- The ground state is β = ν−1 - degenerate;

- All excitations are gapped: ∆1/3 ∼ 10− 30K, kT�∆1/3� ħhωc

- Coherent States: deformation of Laughlin’s state by a holomorphic function

Ψ0(z1, . . . , zN) =
�

∆(z1, . . . , zN)
�β e−

1
2

∑

i |zi|2/2`2
B

ΨV(z1, . . . , zN) = Ψ0e
∑

i V(zi),

- Singularities of V are vortices (or "quasi-holes")

σ =−
1

4π
∆V = Real
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EDGE STATES: FQHE IN A CONFINING POTENTIAL

- Potential well lifts a degeneracy:

H0→ H = H0 +
∑

i

U(|ri|)

- Low energy states emerge. They are localized on an edge→ Edge States;

- Smooth potential: Curvature of the potential is small compared to the gap
but a slope is larger than electric field

`2
B∇

2
yU�∆ν , `2

B∇yU� e2

FIGURE: Boundary waves: the boundary layer is highlighted

y(x)
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LINEAR EDGE STATES THEORY (WEN, 1991)

- Density is a chiral field:

ρ(x) =
∑

k

eikxρk, ρk = ρ
†
−k,

[ρk,ρl] = νkδk+l,

(∂t − c0∇x)ρ = 0,

- c0 = ħh
−1`2

B|∇yU| is a slope of the potential well (non-universal);

- factor ν proliferates to the exponent in edge tunneling

- Common believe ( I disagree with):

c= 1 - CFT of free bosons with a compactification radius ν = β−1.
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Propagation of a wave-packet

The linear theory does not answer a question:
how does a smooth non-equilibrium state (a wave packet) propagate?

ρ̇− c0∇ρ = 0, wave equation,

ρ(x, t) = ρ(x− c0t, t= 0)

The shape does not change !?

A new scale must be included in the theory;

New scale: ∆1/3� ħhωc - energy of a hole or a vortex (non-universal scale);

Most phenomena do not depend on the scale and are universal;
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NON-LINEAR THEORY OF EDGE STATES

- Linearized version (fails in 10ps): (∂t − c0∇x)ρ = 0

- Universal description of non-linear chiral boson at FQHE edge

(∂t − c0∇x)ρ−κ∇
�

1
2
ρ2 − 1−ν

4π
∇ρH

�

= 0

[ρ(x), ρ(x′)] = ν∇δ(x− x′),

fH(x) =
1

π
P.V.

∫

f(x′)
x− x′

dx′

- New scale: κ∼∆ν`2
B/ħh - energy of a quasi-hole less cyclotron energy

(non-universal scale) but the form of equation is universal;

- The universal coefficient (important!)
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OVERSHOOT: DIPOLE MOMENT OF FQHE DROPLET

Ψ0 =





∏

i>j

(zi − zj)





β

e−
1
2

∑

i |zi|2/4`2
B ,

d=

∫ R

0

(r− R)ρ(r)dr=
1− 2ν

8π

Dipole moment of a spherical droplet

〈ρ〉= lim
N→∞

∫

|z− zi|2β |∆|2βe−
∑

i |zi|2/2`2
B

∏

i

d2zi
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No overshoot at β = 1
ν
≤ 1.
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Benjamin-Ono Equation: Properties

(∂t − c0∇)ρ−κ∇
�

1
2
ρ2 − 1−ν

4π
∇ρH

�

= 0

- Classical Benjamin-Ono equation describes surface waves of interface of
stratified fluids;

- Integrable (despite being non-local);
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BENJAMIN-ONO EQUATION: FRACTIONALLY QUANTIZED

SOLITONS
(∂t − c0∇)ρ−κ∇

�

1
2
ρ2 − 1−ν

4π
∇ρH

�

= 0

- Two branches of solitons:
- subsonic: holes propagating to the left;

Charge ν = 1/β:
∫

ρhdx = integer× ν

- ultrasonic: particles propagating to the right:

Charge 1:
∫

ρpdx = integer

ρ =
q

π

A

(x− Vqt)2 + A2 q= 1, −ν , Vq = qκA

- Classical Benjamin-Ono equation has only one branch - particles

Benjamin-Ono is the only integrable equation with a quantized charge of solitons
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Two branches of excitations: Separation between
holes (moving right) and particles (moving left)

ii
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QUANTIZATION THROUGH EVOLUTION

- Separation between holes (moving right) and particles (moving left)
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Input: Quantum Hydrodynamics

- Laughlin’s coherent states:

(i) Analyticity, (ii) Degree of zeros β = 3

ΨV =
∏

i<j

(zi − zj)
βe−

∑

i |zi|4/2`2
B+
∑

i V(zi)

- Galilean Invariance

H =
m

2
v†ρv, ∆1/3 ∼

ħh
m`2

B

- Velocity v= vx − ivy
v |Ψ0〉= 0,

i

2ħh
mνvi = ∂zi

−
e

2c
A(zi)−

∑

j 6=i

β

zi − zj
, β =

1

ν
.
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Incompressible Chiral Quantum Fluid

- Laughlin’s coherent states:

ΨV =
∏

i<j

(zi − zj)
βe−

∑

i |zi|2/2`2
B+
∑

i V(zi)

- Velocity
i

2ħh
mνvi = ∂zi

−
e

2c
A(zi)−

∑

j 6=i

β

zi − zj
, β =

1

ν
.

- Velocity matrix elements

mv |ΨV〉=−2i∂zV|ΨV〉

- Incompressibility
∇ · v= 0, v=∇×Ψ

- Edge states dynamics - irrotational flow (no vortices)

∇× v= 0, ∆Ψ= 0
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Subtleties and main steps
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Chiral Constraint (Property of Laughlin’s states)

Relation between velocity and density

ν(∇× v) = ρ−ρI +
1− ν
4π
∆ logρ

(Wiegmann, Zabrodin, 2006)
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Potential flow and the Boundary Waves

∆v= 0, imv=

∫

ρν −ρI

z− z′
d2z′

2πν
+

1− ν
4πν

∂ logρ

Boundary value of velocities

m(vx − c0) =−ν−1ρ̄y(x), mvy =
1− ν
4πν

yH
xx

Kinematic Boundary Condition

ẏ+ vx∇xy+ vy = 0

leads to Quantum Benjamin Ono Equation.
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QUANTUM HYDRODYNAMICS IN THE BULK

- Laughlin’s state reformulated as a hydrodynamics if the bulk:

[v(r),ρ(r′)] =−i∇δ(r− r′); canonical hydro-variables,

ρ̇+∇(ρv) = 0, continuity equations

∇ · v= 0; incompressibility,

[v(r)× v(r′)] = 4πν−1iδ(r− r′), Heisenberg algebra

ν(∇× v) = ρ−ρI +
1− ν
4π
∆ logρ Chiral constraint
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SUBTLETIES

- Short-distance anomaly or OPE

〈ρv〉= 〈ρ〉〈v〉 −
1

4ν
∇∗〈ρ〉

- Dipole moment and singularity on the boundary

d=

∫ R

0

(r− R)ρ(r)dr=
1− 2ν

8π
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Subtleties: Stress energy tensor

- Input: Gallilean invariance E = mρv2

2

- Outcome: Stress energy tensor - "Hall-viscositiy"

Txx =mρvxvx +
ħh

4ν
ρ
�

∇xvy +∇yvx

�
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BENJAMIN-ONO EQUATION AS A DEFORMED BOUNDARY CFT

- Boundary CFT exterior of the droplet;

- Boundary stress energy tensor component

Tnn =
1

2
(∇nϕ)

2 +
ν − 1

4ν
∇n∇sϕ, −∇ϕ = ρ

- Benjamin-Ono Equation is a deformation of CFT:

ρ̇ =∇Tnn

- Deformation of a boundary is generated by the normal components of the
stress-energy tensor.
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CFT AND FQHE

- FQHE Edge hydrodynamics is a deformation of Boundary CFT with

c= 1− 6
�p
ν − 1/

p
ν
�2
< 1

- CFT lives outside of a droplet;

Contrary to a common believe that FQHE c= 1 bulk CFT.

25 / 1



SUMMARY

- Boundary waves in FQHE are essentially nonlinear;

- Two branches of solitons with charges 1 and -ν;

- Deformation of the boundary are generated by a stress energy tensor of CFT
situated outside of the dropletwith

c= 1− 6ν−1(ν − 1)2 < 1

- An origin of shifting the central charge is a dipole moment located on the
boundary of the droplet
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