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Messages

- Waves on the Edge of FQH are essentially non-linear;

- Emergence of quantization in non-linear dynamics;

- FQH - hydrodynamics "Hall-viscosity" in the bulk propels to the boundary
(a universal corrections to Chern-Simon "theory")

Relation between FQHE and CFT - revised

Only Laughlin’s states (for now).



FQHE -LAUGHLIN’S STATE(S)

Particles on a plane in a quantized magnetic field (with a strong Coulomb
Interaction)

— 12 2
Wo(zr,...,2n) = [Alzy,...,zy)]° e 2l /4G
- A= l_[i7éj(zi — 2;)- VanDerMonde determinant
- {3 -magnetic length;

- v =1/ - is a filling fraction;
- B=1-IQHE; J=3-FQHE.

Important features:

- Wave-function is holomorphic;

- Degree of zero at z; — z; is larger than 1;



SPECTRUM IN THE BULK:

1

- The ground state is 3 = v~ - degenerate;

- All excitations are gapped: A3 ~ 10— 30K, kT < A3 <hw,
- Coherent States: deformation of Laughlin’s state by a holomorphic function
13 |ap2/002
Uo(21,.--528) = [AZq, .-, 2x) ] P ez ilail*/2t;

‘llv(zl, N ,ZN) = \I"Oezi V(Zi),

- Singularities of V are vortices (or "quasi-holes")
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EDGE STATES: FQHE IN A CONFINING POTENTIAL

- Potential well lifts a degeneracy:
Hy—H=Hy+ Y U(r;])
i
- Low energy states emerge. They are localized on an edge — Edge States;

- Smooth potential: Curvature of the potential is small compared to the gap
but a slope is larger than electric field

GVIU<A,, GV,U>e

Ficure: Boundary waves: the boundary layer is highlighted
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LINEAR EDGE STATES THEORY (WEN, 1991)

- Density is a chiral field:

p() =Y ™o, pr=pl,,
k

low Pl = vkSiy,
(at - Cva)p = 0:
- ¢ = h‘1£§|va| is a slope of the potential well (non-universal);

- factor v proliferates to the exponent in edge tunneling

Common believe (I disagree with):

c =1 - CFT of free bosons with a compactification radius v = L.



Propagation of a wave-packet

all gradients << Fermi scale

p()

= — T

The linear theory does not answer a question:
how does a smooth non-equilibrium state (a wave packet) propagate?

p —c¢oVp =0, wave equation,
p(x’t) :P(x_cot’t: O)

The shape does not change !?

A new scale must be included in the theory;

New scale: A, /3 < fiw, - energy of a hole or a vortex (non-universal scale);

Most phenomena do not depend on the scale and are universal;



NON-LINEAR THEORY OF EDGE STATES

- Linearized version (fails in 10ps): (3, —¢,V,)p =0

- Universal description of non-linear chiral boson at FQHE edge

(8, — coV:)p — KV (%pz - f—n”VpH) =0

[p(x), p()]=vV&(x—x),

f(X’)/ &
x—Xx

1
fH(X) = EP.V. J

- New scale: k ~ AVZ?’, /h - energy of a quasi-hole less cyclotron energy
(non-universal scale) but the form of equation is universal,

- The universal coefficient (important!)



OVERSHOOT: DIPOLE MOMENT OF FQHE DROPLET

B
Vo = |:l_[(zi - zj):| e_%Zi |Zi|2/4e’23,

i>j
1—-2v
8m

R
d= J (r—R)p(r)dr=
0

Dipole moment of a spherical droplet
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No overshoot at § = % <1
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Benjamin-Ono Equation: Properties

(@ —co¥p V(102 = 2 Vpy ) =0

- Classical Benjamin-Ono equation describes surface waves of interface of
stratified fluids;

- Integrable (despite being non-local);



BENJAMIN-ONO EQUATION: FRACTIONALLY QUANTIZED
SOLITONS

(3. = coV)p — KV sz - lj—nVVpH) =0

- Two branches of solitons:
- subsonic: holes propagating to the left;

Charge v =1/8: fphdx = integer X v
- ultrasonic: particles propagating to the right:

Charge 1: f ppdx = integer

q A

= =1, —v, V,=¢qKrA
p 7T (x =V, t)? + A2 q e=1

- Classical Benjamin-Ono equation has only one branch - particles

Benjamin-Ono is the only integrable equation with a quantized charge of solitons
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Two branches of excitations: Separation between
holes (moving right) and particles (moving left)
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QUANTIZATION THROUGH EVOLUTION
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Input: Quantum Hydrodynamics

- Laughlin’s coherent states:
(i) Analyticity, (ii) Degree of zeros § =3

T, = l_[(zi — 7)o Tilal' 26+ 5,V

i<j

- Galilean Invariance
H= Ty A i
= —vVv'pv, ~—
oV P 3 ml2

- Velocity v =v, —ivy

i e B
—m,v; =0, — —A(z;) — , B=
o2 VA 2 ;zi—zj




Incompressible Chiral Quantum Fluid

- Laughlin’s coherent states:
2 2
\I}V — l_[(zi — zj)ﬁefzi [2;] /253+21V(Zi)
i<j

- Velocity

i e B 1
—m,Vv; =0, — —A(z;) — S =—.

Vi =0, = o-A(z) ;zi_zj p=-

- Velocity matrix elements

Incompressibility
V-v=0, v=V XU

Edge states dynamics - irrotational flow (no vortices)

Vxv=0, AU=0



Subtleties and main steps



Chiral Constraint (Property of Laughlin’s states)

Relation between velocity and density

1—v
v(Vxv)=p—p;+——Alogp
4n

(Wiegmann, Zabrodin, 2006)



Potential flow and the Boundary Waves

—p;d?d 1—w
Av=0, imv= P F/)I + dlogp
z—2 2mv 4y

Boundary value of velocities

m(v, = ¢) = —v 7 py(), mv, = ——y%,

Kinematic Boundary Condition

y+vwVy+v,=0

leads to Quantum Benjamin Ono Equation.
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QUANTUM HYDRODYNAMICS IN THE BULK

- Laughlin’s state reformulated as a hydrodynamics if the bulk:

[V(r), p(r)] = —iVo(r—1');
p+V(pv)=0,
V-.-v=0;

[v(r) x v(r)] = 4nvtis(r— 1),

1—vw
v(Vxv)=p—p,+——Alogp
4r

canonical hydro-variables,

continuity equations

incompressibility,

Heisenberg algebra

Chiral constraint



SUBTLETIES

- Short-distance anomaly or OPE

1

(pv) = (p)(v) — 4—VV*<p)

- Dipole moment and singularity on the boundary

1—2v

R
d= J (r—R)p(r)dr=
0 87




Subtleties: Stress energy tensor

mpv?

- Input: Gallilean invariance E = 5

- Outcome: Stress energy tensor - "Hall-viscositiy"

h
T =mpv,v, + 4—Vp (vay + Vyvx)



BENJAMIN-ONO EQUATION AS A DEFORMED BOUNDARY CFT

- Boundary CFT exterior of the droplet;
- Boundary stress energy tensor component

v—1

1 2
Tnnzi(vn(p) + 4y

V.V, —Vp=p

- Benjamin-Ono Equation is a deformation of CFT:

p=VT,,

Deformation of a boundary is generated by the normal components of the
stress-energy tensor.



CFT anp FQHE

- FQHE Edge hydrodynamics is a deformation of Boundary CFT with

c=1-6(yv-1/y¥)*<1

- CFT lives outside of a droplet;
Contrary to a common believe that FQHE ¢ =1 bulk CFT.



SUMMARY

- Boundary waves in FQHE are essentially nonlinear;

- Two branches of solitons with charges 1 and -v;

Deformation of the boundary are generated by a stress energy tensor of CFT
situated outside of the dropletwith

c=1-6viv-1)2<1

- An origin of shifting the central charge is a dipole moment located on the
boundary of the droplet



