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The role of conservation laws in 1D quantum systems
• Classical system: Constants of motion {H, Qi} = 0

Integrability for phase space dimension 2N (Liouville):
N constants of motion Qi with {Qi , Qj} = 0 if i 6= j

• Quantum systems: Conserved quantities [Ĥ, Q̂i ] = 0

• Local: Q̂n =
∑

j

q̂n,j , q̂n,j acts on n adjacent sites

• Non-local: [Ĥ, |n〉〈n|] = 0 with Ĥ|n〉 = En|n〉

• Bethe ansatz integrable systems:
(Lieb-Liniger Bose gas, Heisenberg & Hubbard model)

Local, explicitly constructible, and commuting Q̂n exist

Is transport always ballistic? Thermalization in closed systems?

Jesko Sirker Transport in spin chains



Introduction Spin transport Conclusions

The role of conservation laws in 1D quantum systems
• Classical system: Constants of motion {H, Qi} = 0

Integrability for phase space dimension 2N (Liouville):
N constants of motion Qi with {Qi , Qj} = 0 if i 6= j

• Quantum systems: Conserved quantities [Ĥ, Q̂i ] = 0
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• Bethe ansatz integrable systems:

(Lieb-Liniger Bose gas, Heisenberg & Hubbard model)

Local, explicitly constructible, and commuting Q̂n exist

Is transport always ballistic? Thermalization in closed systems?

Jesko Sirker Transport in spin chains



Introduction Spin transport Conclusions

The role of conservation laws in 1D quantum systems
• Classical system: Constants of motion {H, Qi} = 0

Integrability for phase space dimension 2N (Liouville):
N constants of motion Qi with {Qi , Qj} = 0 if i 6= j

• Quantum systems: Conserved quantities [Ĥ, Q̂i ] = 0
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Current-current correlations and the Drude weight

• Conductivity and Drude weight:

σ′(q = 0, ω) = 2πDδ(ω) + σreg (ω)

• Linear response (Kubo formula), J current operator

Drude weight measures part of the current which does not decay

D(T ) = lim
t→∞

lim
L→∞

1
2LT

〈J (t)J (0)〉 ≥ lim
L→∞

1
2LT

∑
n

〈JQn〉2

〈Q2
n〉

(Mazur inequality) Zotos, Naef, Prelovsek, PRB 55, 11029 (97)

Ballistic versus diffusive based on current-current correlation:
Diffusive: D(T > 0) = 0
Ballistic: D(T > 0) 6= 0
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Local versus non-local conservation laws

D(T ) = lim
t→∞

lim
L→∞

1
2LT

〈J (t)J (0)〉 ≥ lim
L→∞

1
2LT

∑
n

〈JQn〉2

〈Q2
n〉

• Local conservation law:

• 〈JQn〉 ∼ L
• 〈QnQn〉 ∼ L
• There is a finite contribution in the thermodynamic limit

provided that 〈JQn〉 6= 0

• Non-local conservation law:

• Possibly still 〈JQn〉 ∼ L
• but 〈QnQn〉 ∼ L2 or even eL

• Contribution vanishes in the thermodynamic limit
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Phenomenological diffusion
• Consider a globally conserved quantity:

[∑
r

ρr , H
]

= 0

• Phenomenological diffusive theory is based on classical picture
at high temperatures for ρr :

• Particle performs a random walk on the lattice: What is the
probability to find the particle again at the starting position
after time t?

• Autocorrelation fct: 〈ρr (t)ρr (0)〉 ∼ t−d/2 (d dimension)

Diffusion in the autocorrelation function of the conserved quantity
does not exclude the possibility of ballistic transport

↔ different correlation functions!
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The anisotropic Heisenberg (XXZ ) chain
• Spin-1/2 Heisenberg model with additional anisotropy ∆:

H = J
∑

j

{
1
2

(
S+

j S−j+1 + S−j S+
j+1

)
+ ∆Sz

j Sz
j+1

}
Jordan−Wigner
transformation

• Equivalent to spinless fermion model:

H = J
∑

j

{
−1

2

(
c†j cj+1 + cjc

†
j+1

)
+ ∆(nj − 1/2)(nj+1 − 1/2)

}

Phase diagram:

∆1−1

FM ordered AFM ordered
gappedgapped

spin liquid

gapless excitations
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Drude weight in the anisotropic Heisenberg model

Drude weight measures part of the current which does not decay

D(T ) = lim
t→∞

lim
L→∞

1
2LT

〈J (t)J (0)〉 ≥ lim
L→∞

1
2LT

∑
n

〈JQn〉2

〈Q2
n〉

• Drude weight: σ′(q = 0, ω) = 2πDδ(ω) + σreg (ω)

• Current operator: J =
i
2

∑
l

(
S+

l S−l+1 − S+
l+1S−l

)
The XXZ model is integrable, the energy current

JE =
∑

l

jE
l with jE

l = −i[hl−1,l , hl ,l+1]

is conserved.
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Finite magnetic field (broken particle-hole symmetry)

• h 6= 0: 〈J JE 〉 6= 0 then J = J‖ + J⊥, and J‖ =
〈J JE 〉
〈J 2

E 〉
JE

cannot decay

<JQ> = 0

<JQ> = 0

<JQ> = 0 ballistic channel

diffusive channel
J

I

I

J I

In general, ballistic and diffusive channels coexist

• Ballistic channel controls long-time asymptotics of the
current-current correlation function

• Diffusive channel dominates long-time asymptotics of the
low-energy, long-wavelength contribution of 〈Sz

l+x(t)Sz
l (0)〉

Jesko Sirker Transport in spin chains
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Transfer-matrix DMRG at finite magnetic field

• TMRG: Finite temperature, infinite system size Bursill et al. (96)

• Current CF: C (t) = lim
L→∞

〈J (t)J (0)〉/L JS, Klümper (05)

0 1 2 3 4 5 6 7 8
Jt

0.03

0.04

0.05

0.06

0.07

0.08

C
(t

)/
J2

T=0.2J
T=0.4J
T=0.66J
T=1.0J
T=5.0J
T=20.0J

∆ = 0.4
<m> = 0.3

0 1 2 3 4 5 6 7 8
Jt

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

C
(t

)/
J2

T=1.0J
fit C=0.078
T=5.0J
fit C=0.053
T=10.0J
fit C=0.046
T=20.0J
fit C=0.042
extrapolated infinite T value: C=0.0385
Mazur bound , Eq. (36): 2TD

Mazur
=0.0366

∆ = 4.0
<m> = 1/4

If a local conservation law protects a substantial part of the current
then C (t) converges relatively fast towards the asymptotic value
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Linear response and bosonization
• Bosonization of the XXZ model at h = 0 leads to:

H = H0 + Hu + Hbc

H0 =
v
2

∫
dx

[
Π2 + (∂xφ)2], Hu = λ

∫
dx cos(

√
8πKφ)

Hbc = −2πvλ+

∫
dx(∂xφR)2(∂xφL)2−2πvλ−

∫
dx

[
(∂xφR)4 + (∂xφL)4]

• In linear response we have to calculate the retarded spin-spin
corr. fct. χret(q, ω), related to the boson propagator:

χret(q, ω)

Kq2/2π
= 〈φφ〉ret(q, ω) =

v
ω2 − v2q2 − Πret(q, ω)

related approach for Hubbard: [Giamarchi PRB 44, 2905 (91)]
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Linear response and bosonization (II)
• We have obtained a parameter-free result for Πret(q, ω) in

second order Umklapp, and first order in band curvature

Πret(q, ω) ≈ −2iγω − bω2 + cv2q2

• Umklapp dangerously irrelevant, leads to a finite decay rate
• Anisotropic case: 2γ ∼ λ2T 4K−3, 1 ≤ K ≤ 2 for 0 ≤ ∆ ≤ 1
• Isotropic case: 2γ ∼ T/ ln2(J/T )

Spin diffusion: 〈Sz
l (t)Sz

l (0)〉 ∼ T

√
γ(T )

t
, (t � 1/γ)

Spin-lattice relaxation:
1

T1T
∼

√
γ(T )

ωe
∼

√
T/ ln2(J/T )

ωe

Jesko Sirker Transport in spin chains
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Violations of the LL paradigm for time-like CF
• At T = 0 long-time asymptotics of G (0, t) = 〈Sz

l (t)Sz
l (0)〉 is

dominated by high-energy excitations: (band curvature)

G (0, t) ∼ e−ivt

tη
, η = (K+1)/2 Pereira et al PRL 100, 027206 (08)

• At T � |h| a low-energy term dominates: (Umklapp)

G (0, t) ∼ T
√

γ(T )/t , (t � 1/γ)
|t|

1/γ

1/γ
|x|/vliquid

Luttinger

d
iffu

siv
e Light

cone

JS, Pereira, Affleck PRL 103, 216602 (09)
JS, Pereira, Affleck PRB 83, 035115 (11)
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Conductivity and spin-lattice relaxation rate

χret(q, ω): retarded density-density (Sz − Sz) correlation function

• The conductivity

σ(q, ω) =
iω
q2 χret(q, ω), (q � 1, linear response)

• The spin-lattice relaxation rate
1

T1
=

1
2N

∑
r ,r ′

∫
dq
2π
|A(q)|2S+−(q, ωN)

∣∣
h

≈ −2T
ωe

∫
dq
2π
|A(q)|2χ′′ret(q, ωe)

∣∣
h=0 (T � ωe)

ωe = µBh, and A(q) hyperfine coupling tensor

Diffusive part directly measured by 1/T1 if A(q) picks q ∼ 0 mode
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17O nuclear magnetic resonance for Sr2CuO3

1
T1

=

∫
dq
2π

|A(q)|2︸ ︷︷ ︸
∼cos(q/2)

Szz(q,−ωe)
∣∣
h=0 picks only q ∼ 0 mode
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The conductivity and the memory matrix
• So far: purely diffusive response
• Conservation laws are not manifested in a lowest order

self-energy approach

• Consider a single local conservation law 〈JQ〉 6= 0
• Can be implemented by a memory-matrix approach [Rosch,

Andrei, PRL (00)], reduces to self-energy result if 〈JQ〉 → 0:

σ′(ω) =
Kv(1− b1)

2π(1 + y)

[
πyδ(ω) +

2(1 + y)γ

ω2 + [2(1 + y)γ]2

]

y ≡ 〈JQ〉2/(〈J 2〉〈Q2〉 − 〈JQ〉2)∼ (h/T )2 (0 < |h| � T )

Weight shifts from diffusive into ballistic part

Relaxation rate: γ → (1 + y)γ
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Drude weight in the half-filled case

h = 0: 〈JQn〉 ≡ 0 for all Qn needed to construct the BA solution
(particle-hole symmetry) Zotos, Naef, Prelovsek, PRB 55, 11029 (97)

Numerical results and BA seemed to point to D 6= 0 but were
partly contradictory:
• BA: Zotos PRL 82, 1764 (99), Benz et al JPSJ 74, 181 (05)
• ED: F. Heidrich-Meisner et al, PRB 68, 134436 (03), J.

Herbrych et al, PRB 84, 155125 (11)
• Plus many more

Is there another local conservation law not obtained from the
family of commuting transfer matrices (BA)?
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DMRG studies of the current correlation function
C (t) = 〈J (t)J (0)〉/L ∼ e−2γt ≈ 1− 2γt (t � 1/γ)

0 2 4 6 80.135
0.14

0.145
0.15

0.155

R
e[

C
(t)

/2
JT

]

0 2 4 6 8
Jt

-0.015

-0.01

-0.005

0

Im
[C

(t)
/2

JT
]

y=0

y infinite

y=0

y=2.5

y=2.5

∆ = 0.6, T/J = 0.2; JS et al PRB (11) C. Karrasch et al arXiv (11)

• Relaxation rate γ at small T agrees well with bosonization
• No clear evidence for finite Drude weight at low T
• Some numerical evidence for D > 0 at large T
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A pseudo-local conservation law
• Construction of a pseudo-local conservation law Q for open

boundary conditions: T. Prosen, PRL 106, 217206 (11)

Q =
L∑

d=1

e−d
∑

j

qd ,j

[H,Q] ∼ −Sz
1 + Sz

L

• Q has part which is odd under p-h transformations
• 〈JQ〉 ∼ L and 〈QQ〉 ∼ L for |∆| < 1
• Exponential localization and conservation up to boundary

terms are sufficient to give bound D(T > 0, |∆| < 1) > 0
• At ∆ = 1: Q becomes non-local, 〈QQ〉 ∼ L2

→ Bound vanishes at ∆ = 1
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Outlook

• Attractive Hubbard model at half filling:

H =
∑

j

[
(−c†j ,αcj+1,α + h.c.)− U(nj − 1/2)2

]

• Spin sector gapped
• Charge sector: Gaussian model with Umklapp term, γ ∼ λ2T
• Is there a finite Drude weight?

• Thermalization (GGE) in integrable models:

• One common belief: Include only local conservation laws,
non-local not important in TD limit

• What about quasi-local conservation laws?
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Conclusions
Spin conductivity in the XXZ model

• ballistic and diffusive transport channels coexist
• Memory matrix: δ-fct. peak on top of a Lorentzian with

linewidth determined by Umklapp scattering (|h| � T )
• Diffusive contribution explains NMR experiment on Sr2CuO3
• Quasi-local conservation law at h = 0 important, not part of

the usual set of conserved operators

Violations of the Luttinger liquid paradigm

• Violations of LL paradigm for time-like CF: band curvature
(non-linear LL, T = 0) and Umklapp scattering (T > 0)

Spin diffusion: 〈Sz
l (t)Sz

l (0)〉 ∼ T

√
γ(T )

t
, (1/t � λ2T 4K−3)
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