Two-dimensional Fermi gases

Michael Köhl

BEC-BCS crossover

Sa de Melo, Physics Today (2008)

A very short theory overview for 2D

- BKT transition at $T_{BKT} \approx 0.1 T_F$ in the strongly interacting regime
- T_{BKT} decays exponentially towards weak attractive interactions (as in 3D)

- L~J

Theory: Bloom, P.W. Anderson, Randeria, Shlyapnikov, Petrov, Devreese, Julienne, Duan, Zwerger, Giorgini, Sa de Melo, ...

Quasi-2D geometry

Conditions for 2D

 E_F , $k_BT \ll \hbar \omega_z$

Strong axial confinement required

 $E_F \approx h \times 8 \text{ kHz}$ $\omega_z \approx 2\pi \times 80 \text{ kHz}$ $\omega_\perp \approx 2\pi \times 130 \text{ Hz}$

Optical lattice: array of 2D quantum gases

- lattice depth 83 $\rm E_{\rm rec}$
- hopping rate 0.002 Hz
- ~ 2000 Fermions per spin state
- ~ 30 "pancakes" / layers

B. Fröhlich, M. Feld, E. Vogt, M. Koschorreck, W. Zwerger, MK, PRL 106, 105301 (2011) other 2D Fermi gases: Inguscio, Grimm, Esslinger, Turlapov, Vale, Zwierlein

Preparing strongly interacting 2D systems

Radio-frequency spectroscopy

3D: Regal et al., Nature (2003) 2D: B. Fröhlich, M. Feld, E. Vogt, M. Koschorreck, W. Zwerger, MK, PRL 106, 105301 (2011)

Momentum-resolved RF spectroscopy ("ARPES")

ARPES in 3D Experiment: Jin Theory: Georges, Strinati, Levin, Ohashi, Zwerger, Drummond, ...

Population of the spin states

Single-particle spectral function

"BCS" side

 $ln(k_Fa_{2D}) > 0$, $E_B < E_F$

no isolated dimers, attractive interactions, pairs are huge compared to inter-particle spacing

"Condensation energy" of Cooper pairs (MF theory, T=0, Randeria 1989)

$$E_{th}(k=0) = \frac{\Delta^2}{2E_F} = E_B$$

Only the case in 2D (in 3D: $E_B = 0$ on the BCS side)

Pairing pseudogap phenomenon

complex order parameter $\Delta(T, x) = |\Delta(T, x)| e^{i\vartheta(T, x)}$

Pairing pseudogap phenomenon

complex order parameter $\Delta(T, x) = |\Delta(T, x)|e^{i\vartheta(T, x)}$

In 3D weak coupling BCS: $T_c \approx T^*$ (pairs condense as they form)

Theory: Randeria, Levin, Sa De Melo, Kleinert, ...

Spectra at k=0: Determining the pseudogap

M. Feld et al., Nature 480, 75 (2011)

Temperature dependence

M. Feld et al., Nature 480, 75 (2011)

Pairing pseudogap

- In 3D: Observation of Fermion condensates below $T/T_F \approx 0.15$ [by projection onto molecules]
- In 2D: No condensation observed.

Back-bending of dispersion relation

M. Feld et al., Nature 480, 75 (2011)

Back-bending of dispersion relation

M. Feld et al., Nature 480, 75 (2011)

Strongly imbalanced Fermi gases in 2D

The "N+1" problem: one $|\downarrow\rangle$ impurity in a large $|\uparrow\rangle$ Fermi sea

$$|P\rangle = \alpha_0 c_{0\downarrow}^{\dagger} |N\rangle + \frac{1}{\Omega} \sum_{\mathbf{k},\mathbf{q}} \alpha_{\mathbf{k}\mathbf{q}} c_{\mathbf{q}-\mathbf{k}\downarrow}^{\dagger} c_{\mathbf{k}\uparrow}^{\dagger} c_{\mathbf{q}\uparrow} |N\rangle,$$

- Mobile impurity interacting with a Fermi sea of atoms
- Tunable interactions
- Polaron properties determine phase diagram of imbalanced Fermi mixtures

3D Theory: Bruun, Bulgac, Chevy, Giorgini, Lobo, Prokofiev, Stringari, Svistunov, ...

3D Expmt: Zwierlein, Salomon, Grimm

2D Theory: Bruun, Demler, Enss, Parish, Pethick, Recati, ...

Characterizing the attractive polaron

M. Koschorreck et al., Nature (2012), Advanced Online Publication 23/5/2012

Coherence of the polaron

Incoherent transfer: rate ~ amplitude

M. Koschorreck et al., Nature (2012), Advanced Online Publication 23/5/2012

Repulsive polaron

Theory: V. Ngampruetikorn et al., EPL 98 30005 (2012).

Energies comparable to: R. Schmidt, T. Enss, V. Pietilä, E. Demler, PRA 85, 021602 (2012)

Similar experiments in 3D: Ketterle & Grimm groups M. Koschorreck et al., Nature (2012), Advanced Online Publication 23/5/2012

Scale invariance and viscosity of a 2D Fermi gas

Quadrupole mode

- insensitive to EoS
- measures shear viscosity

Breathing mode

- measures compressibility
- measures bulk viscosity

Equation of state and scale invariance

- Scale invariance in a homogeneous system: H(λx)= H(x)/λ²
 → Simple equation of state P=2ε/D
- In cylindrically symmetric trap: scale invariance is replaced by a SO(2,1) Lorentz symmetry (Pitaevskii/Rosch, 1997)

Two remarkable predictions:

1. Breathing mode: $\omega_B = 2\omega_{\perp}$ (independent of interaction strength!) 2. bulk viscosity is zero

 Quantum anomaly due to log-dependence of coupling strength? (Olshanii 2010)

For bosons: Pitaevskii/Rosch, Perrin/Olshanii, Chin, Dalibard;

for fermions: Schaefer, Hofmann, Randeria/Taylor, Bruun,...

Collective modes

Quadrupole mode

E. Vogt et al, PRL 108, 070404 (2012).

Temperature dependent damping

Shear viscosity

$$\eta = \hbar n \alpha (T / T_F)$$

dimensionless function

$$\alpha(T/T_F) = \alpha_0 \times (T/T_F)^{\beta}$$

E. Vogt et al, PRL 108, 070404 (2012).

Summary

- ARPES measurements in 2D
- Pairing pseudogap
- 2D Fermi polaron
- Collective modes to determine equation of state

Thanks

Theory discussions/ collaboration:

S. Baur, C. Berthod N. Cooper E. Demler A. Georges T. Giamarchi C. Kollath J. Levinsen M. Parish W. Zwerger

Fermi gases Ion & BEC Ion trap QIP E. Vogt, M. Koschorreck, D. Pertot, L. Miller, E. Cocchi, J. BohnC. Zipkes, L. Ratschbacher, C. Sias, J. Silver, L. CarcagniH.-M. Meyer, M. Steiner

www.quantumoptics.eu

