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Outline
• motivation: Cs2CuBr4 , Cs2CuCs4   

• classical antiferromagnet in a field: entropic selection

‣ spatial anisotropy - high-T stabilization of the plateau

• Quantum model in magnetic field

‣ DMRG (3-leg ladder)

‣ Various analytical limits

- large-S analysis of interacting spin waves

- weakly coupled spin chains

- magnetization plateau(s) and selection rules

๏ Summary
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Cs2CuBr4, Cs2CuCl4

✤ S=1/2 quantum triangular antiferromagnets 
with small exchange

✤ complex evolution in field!

Cs2CuCl4 Cs2CuBr4

2

FIG. 1: (Color online) (a) Evolution of the temperature dif-
ference between the sample and thermal reservoir due to
the magnetocaloric effect at 180 mK, with arrows indicating
the field-sweep directions. (b) Derivative of magnetic torque
with respect to H at temperatures near 400 mK. To pro-
duce a torque, the magnetic field was slightly tilted away
from the c axis toward the b axis, by the angle indicated
for each curve. (c) Magnetic phase diagram deduced from
the magnetocaloric-effect data taken at various temperatures.
Circles indicate second-order phase boundaries, whereas other
symbols except the open diamonds indicate first-order bound-
aries. Open diamonds are the positions of the large features
near Hs and do not indicate a phase boundary. Lines are
guides to the eye. Data for H ≤ 18 T are from Ref. [10],
where open circles are from specific heat.

of the temperature difference, thereby revealing the
sign and magnitude of (∂M/∂T )H. Transitions be-
tween phases appear as deviations from a smoothly vary-
ing ∆T . First-order phase transitions will also reveal
the release/absorption of latent heat as the sample en-
ters/leaves a lower entropy state. At sufficiently low tem-
peratures, there will also be an additional heat release as
a metastable state gives way to the lower energy stable
state for both field-sweep directions through a first-order
transition.

M/M  =1/ 3

a b

dc

s M/M  =1/ 2s

M/M  =5/ 9s M/M  =2/ 3s

FIG. 2: (Color online) Collinear states on the triangular lat-
tice at M/Ms = 1

3
, 1

2
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9
, and 2

3
. Arrows indicate down spins

antiparallel to the magnetic field. Vertices with no arrows
indicate up spins pointing in the direction of the field, with
broken lines marking rows containing both spins and solid
lines marking rows of only up spins. The A phase may resem-
ble the M/Ms = 1

2
state, albeit not collinear.

Magnetocaloric-effect measurements can be made us-
ing swept fields [14], stepped fields [15], or modulated
fields [16]. The resolution and reproducibility of dc field
magnetocaloric measurements have traditionally been
limited by temperature fluctuations, drift, and slow ther-
mal response, all requiring high sweep rates producing
additional heating. In this experiment, we have overcome
these challenges to swept-field measurements through ac-
tively stabilizing the temperature of the thermal reservoir
(sapphire/silver platform), minimizing the heat capac-
ity of the addenda, and reducing the thermal relaxation
time to less than 1 second. The reservoir temperature
was maintained at a constant true temperature using the
algorithm outlined in Ref. [17] to correct for the magne-
toresistance of the sensor.

Magnetic phase transitions appear as anomalies in the
sample temperature as shown in Fig. 1a. The phase di-
agram deduced from our magnetocaloric-effect data is
shown in Fig. 1c, along with phase boundaries for fields
H ≤ 18T from Ref. [10]. Additional evidence for this
diagram is provided by the magnetic-torque data shown
in Fig. 1b. Even for S = 1

2
spins, theory has long as-

sumed that the field region above the uud phase contains
only one coplanar phase [4], at least for the isotropic
Heisenberg hamiltonian. We find instead a remarkable
cascade of phases in this field region. The boundaries
between these ordered phases are nearly vertical, indi-
cating that the phase diagram is primarily determined
by the zero-temperature energies, not the entropies, of
different states. We are witnessing a cascade of quantum

temperature transition the anomalies of M /B !d!M /B" /dT"
indicated by open arrows in Fig. 9 are steps !peaks" rather
than kinks !steps".

The phase diagrams for the B #b and c axis constructed
using the anomalies discussed above are shown in Fig. 10.
The new data agree with and complement earlier low-field
neutron diffraction results !open triangles".1 Apart from the
phase transition boundaries identified above we have also
marked the cross-over line between the paramagnetic and
antiferromagnetic SRO region, determined by the location of
the peak in the temperature dependence of the magnetization
such as in Fig. 1!a". The peak position Tmax decreases with
the increasing field and disappears above Bc, indicating the
suppression of antiferromagnetic correlations by the mag-
netic field. For the field along the b and c axis the phase
diagrams are much more complicated than that for B #a
which shows only one cone phase up to the saturation
field.4,12 For B #b three new phases appear above the spiral
phase. Two of these phases occupy small areas of the B−T
phase diagram. For B #c four new phases are observed in
addition to the spiral and elliptical phases.

We note that the absence of an observable anomaly in the
temperature dependence of the magnetization upon crossing
the phase transitions near certain fields !6 T along b and 5 T
along c" is consistent with Ehrenfest relation and is related to
the fact that the transition boundary Tc!B" is near flat around
those points. The relation between the shape of the phase
boundary and the anomaly in M!T" was discussed by
Tayama et al.13 and is

!$dM

dT
% = −

dTc

dB
!$C

T
% , !2"

where !!X" is the discontinuity of quantity X, C is the spe-
cific heat, and Tc is the field-dependent critical temperature
of the second order phase transition. This shows that the
discontinuity in dM /dT vanishes when dTc /dB=0, i.e., when
the phase boundary is flat in the field. This is indeed the case
for 6 T #b and at 5 T #c !see Fig. 10", and here only a kink
and no discontinuity is seen in dM /dT.

IV. CONCLUSIONS

We have studied the magnetic phase diagrams of
Cs2CuCl4 by measuring magnetization and specific heat
at low temperatures and high magnetic fields. The low-field
susceptibility in the temperature range from below the broad
maximum to the Curie-Weiss region is well des-
cribed by high-order series expansion calculations for the
partially frustrated triangular lattice with J! /J=1/3 and
J=0.385 meV. The extracted ground state energy in the zero
field obtained directly from integrating the magnetization
curve is nearly a factor of 2 lower compared to the classical
mean-field result. This indicates strong zero-point quantum
fluctuations in the ground state, captured in part by including

FIG. 9. Magnetization normalized by the applied field M /B
!thick solid lines, left axis" and its derivative d!M /B" /dT !thin solid
lines, right axis" as a function of temperature for B #c. Vertical ar-
rows indicate anomalies.

FIG. 10. B−T phase diagrams of Cs2CuCl4 for the B#b and c
axis. Data points of open circles !magnetization", squares !specific
heat", and triangles &neutrons !see Ref. 1"' connected by solid lines
indicate phase boundaries. Solid circles show the positions of the
maximum in the temperature dependence of the magnetization and
indicate a crossover from paramagnetic to SRO. “E” on the phase
diagram for the B #c axis denotes the elliptical phase !see Ref. 1".

TOKIWA et al. PHYSICAL REVIEW B 73, 134414 !2006"
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M=1/3 magnetization plateau in Cs2CuBr4

★ first observation of “up-up-down” state
 in spin-1/2 triangular lattice antiferromagnet

★ and 8 more phases (instead of 2 expected)! 

★ Observed in Cs2CuBr4  (Ono 2004, Tsuji 2007) J’/J = 0.75
          but not  Cs2CuCl4 [J’/J = 0.34]

S=1/2

J

J’

Both materials are spatially anisotropic triangular antiferromagnets
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2D  bosons on the lattice

• connections with interacting boson system
– Superfluids (XY order)
– Mott insulators
– Supersolids 

Andreev, Lifshitz 1969
Nikuni, Shiba 1995
Heidarian, Damle 2005
Wang et al 2009
Jiang et al 2009
Tay, Motrunich 2010
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Magnetization plateau in one dimensional J1-J2 chain (zig-zag ladder)

Okunishi, Tonegawa JPSJ (2003)
Hikihara et al PRB (2010)

Heirich-Meisner et al PRB (2007)

M=1/3 plateau

S=1/2

S=1,3/2

agrees with Oshikawa,  Yamanaka, Affleck 
argument (PRL 2007):

p S (1 - M) = integer

p = period, S = spin, 
M = magnetization:

M=1/3, p=3
possible for all S
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Studies in 2D

We will see many 
similarities with this study

Variational Monte Carlo on 2D triangular lattice
Tay, Motrunich (2010)
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Outline

• motivation: Cs2CuBr4 , Cs2CuCs4   

• classical antiferromagnet in a field: entropic selection

‣ spatial anisotropy - high-T stabilization of the plateau

• Quantum model in magnetic field

‣ DMRG (3-leg ladder)

‣ Various analytical limits

- large-S analysis of interacting spin waves

- weakly coupled spin chains

- magnetization plateau(s) and selection rules

๏ Summary
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Classical isotropic Δ AFM in magnetic field T=0

• Zero magnetic field: spiral (120 degree) state

• Magnetic field: accidental degeneracy

• all states with                                                form the lowest-energy manifold
– 6 angles, 3 equations => 2 continuous angles (upto global U(1) rotation 

about h)

Planar

No plateau possible

Umbrella (cone)

H = J
∑

i,j

!Si ·
!Sj −

∑

i

!h ·
!Si

H =
1

2
J

∑

!

(

∑

i∈!

!Si −

!h

3J

)2

!Si1 + !Si2 + !Si3 =
!h

3J
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Phase diagram at finite T

Head, Griset, Alicea, OS 2010

Finite T: minimize F = E - T S
Planar states have higher entropy!

Tuesday, May 29, 12
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Phase diagram of the classical model: Monte Carlo

finite size effect
L=120

Seabra, Momoi, Sindzingre, Shannon 2011

Gvozdikova, Melchy, Zhitomirsky 2010

Z3

Z3

Z3 U(1)

U(1)

para
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Effect of spatial anisotropy J’ < J: energy vs entropy

13

Low T: energetically preferred umbrella
High T: entropically preferred UUD
Y and V are less stable.

1st order transition!

J’ = 0.765 J

Umbrella state: 
favored classically,
energy gain (J-J’)2/J

similar with Pomeranchuk effect (He3): 
crystal-like UUD is stabilized at high temperature 
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Model

✤ Hamiltonian

H =
X

x,y

JS
x,y

· S
x+1,y + J 0 (S

x,y

· S
x,y+1 + S

x,y

· S
x�1,y+1)

�h
X

x,y

Sz

x,y Cs2CuCl4: J’/J = 0.34
Cs2CuBr4: J’/J = 0.5-0.7

J

J’

Periodic boundary conditions along y
in numerical studies
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Phase diagram (3 leg ladder)
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Isotropic case: quantum fluctuations select co-
planar states
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Quantum stabilization of 1/3-magnetization plateau in Cs2CuBr4

Jason Alicea,1 Andrey V. Chubukov,2 and Oleg A. Starykh3

1Department of Physics, California Institute of Technology, Pasadena, CA 91125
2Department of Physics, University of Wisconsin, Madison, WI 53706
3Department of Physics, University of Utah, Salt Lake City, UT 84112

(Dated: September 22, 2008)

We consider the phase diagram of a spatially anisotropic 2D triangular antiferromagnet in a magnetic field.
Classically, the ground state is umbrella-like for all fields, but we show that the quantum phase diagram is much
richer and contains a 1/3 magnetization plateau, two commensurate planar states, two incommensurate chiral
umbrella phases, and, possibly, a planar state separating the two chiral phases. Our analysis sheds light on
several recent experimental findings for the spin-1/2 system Cs2CuBr4.

PACS numbers:

Introduction. A defining characteristic of frustrated quan-
tum magnets is the appearance of numerous competing or-
ders. This competition dramatically enhances quantum fluc-
tuations, generating highly non-classical behavior as exem-
plified by, e.g., Cs2CuCl4 and Cs2CuBr4. These materi-
als comprise quasi-2D spin-1/2 triangular antiferromagnets
with spatially anisotropic exchange [see Fig. 1(a)] and weak
Dzyaloshinskii-Moriya (DM) coupling. Absent the latter,
both systems classically should realize a zero-field coplanar
spiral, which evolves into non-coplanar “umbrella” states in a
field as in Fig. 1(b) with smoothly increasing magnetization
up to saturation [1]. Experiments, however, reveal decidedly
different, non-classical behavior: in fields directed along the
triangular layers Cs2CuCl4 realizes commensurate coplanar
order in a wide field range with smoothly increasing magneti-
zation [2, 3], and Cs2CuBr4 exhibits collinear “up-up-down”
(UUD) order shown in Fig. 1(c) over a finite field interval,
yielding a 1/3 magnetization plateau [4, 5, 6, 7]. Neither
observation is accounted for within a classical analysis [1].
NMR [8, 9] and neutron scattering [6] additionally find planar
states adjacent to the UUD phase, with neutron and thermo-
dynamic measurements [7] indicating that the transitions are
first order. Additional experiments [6, 10] on Cs2CuBr4 also
suggest the presence of a narrow 2/3-plateau and additional
intervening collinear phases near particular fields.

While the existence of the UUD phase is well-established
for the isotropic triangular antiferromagnet, much less is

(b)

(c)

(a)

h

J’
J

FIG. 1: (a) Anisotropic triangular lattice with horizontal exchange
J and diagonal exchange J ′. (b) Umbrella and (c) planar phases
comprise competing classical ground states of the isotropic nearest-
neighbor model.

distorted
umbrella (2)

c2h

c1h

1 2 3 4 !

distorted
umbrella (1)

UUD plateau

planarh

planar

FIG. 2: Proposed phase diagram for the anisotropic nearest-
neighbor Heisenberg model near 1/3 magnetization (full field range
not shown). The horizontal axis is δ = (40/3)S(J − J ′)2/J2. Pla-
nar states shown are commensurate, though they are expected to be
incommensurate at small and large fields. The shaded area is where
the UUD and adjacent phases are metastable, the energy being mini-
mized by umbrella states of Fig. 1(b).

known about the stability of the plateau and the proximate
quantum phases in the anisotropic case. The challenge here
is illuminated by first observing that in the isotropic limit, the
UUD state appears due to an “accidental” classical degener-
acy between umbrella and planar states shown in Figs. 1(b)
and (c), which quantum fluctuations lift in favor of the latter
[11]. When J ′ != J , however, this degeneracy is lifted already
at the classical level, but in favor of umbrella states for all
fields. The planar phases can then only emerge if quantum ef-
fects overshadow those of spatial anisotropy. This in turn im-
plies that the standard spin-wave expansion is not applicable
since planar phases cease to be classical ground states. To ad-
dress the quantum phase diagram for the anisotropic system,
particularly the phases near 1/3 magnetization, we introduce a
modified approach here which is controlled by the smallness
of 1/S and spatial anisotropy, and yields results which are
non-analytic in both parameters.

Figure 2 summarizes our results. We find that the physics is
controlled by the parameter δ = (40/3)S(J − J ′)2/J2. For
δ < 1 the stability of the UUD phase is, counter-intuitively,
unaffected by anisotropy. Moreover, the spin order remains
coplanar and commensurate at fields both below and above
the UUD phase; incommensurate phases appear only at small

Interacting magnons perturbed by spatial anisotropy

UUD preserves
 U(1) symmetry.

Gapped spin waves

Tuesday, May 29, 12



Isotropic case
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Modeling quantum 
spins by classical with 
biquadratic interaction
Griset, Head, Alicea, 
Starykh (2011)

Slightly different take:
Monte Carlo on

generalized classical
model
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Plateau phase
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M/Ms=1/3 plateau:
uud state
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High field: condensation of spin 
flips
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Spin-flip bosons

✤ Magnons at k=Q and k=-Q are degeneracy by inversion symmetry, but Q 
varies smoothly with R=1-J’/J

✤ Two “Bose condensates”

✤ Free energy

✤

Classical-like Ordered States

�S+� = ⇥1e
iQx + ⇥2e

�iQx, �Sz� = M + � e2iQx + c.c.

Cone state:

h
⇥1 �= 0,⇥2 = 0,� = 0

or v.v.

Coplanar state:

⇥1 = ⇥2 �= 0,� �= 0
h

Landau free energy: 
F = �µ(|�1|2 + |�2|2) +

1

2
�1(|�1|4 + |�2|4) + �2|�1|2|�2|2

4  /3⇡⇡

Q
1st BZ

ky

kx

F� = r|⇥|2 + u|⇥|4 � �⇥(⇤1⇤
⇤
2 + c.c.)� g⇥ne2inQx + c.c.

Saturday, February 25, 12

hS+i =  1e
iQx +  2e

�iQx

F = �µ(| 1|2 + | 2|2) +
1

2
�1(| 1|4 + | 2|4) + �2| 1|2| 2|2

�1 > �2 : | 1| = | 2| �1 < �2 :  1 2 = 0
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Spin-flip bosons

✤ Quadratic parameters can be computed from single magnon spectra and 
quartic ones from exact solution of Bethe-Saltpeter equation

✤ Results:

✤ In 2d, !1>!2 for all R: incommensurate planar state near saturation for 
S=1/2 [planar-cone transition does appear for S > 1/2]

✤ For 3-leg ladder, !1 = !2 for R = 0.57: transition between cone and planar 
states (S=1/2)

Region below saturation field:
Bethe-Salpeter equation

• Magnon condensates
   Two species: +Q and -Q
• Renormalized scattering amplitudes
   with hard-core constraints
•     : both incoming momenta same
      : incoming momenta are different
•          :coplanar state is always 
preferred right below saturation field

�
k

k� k� � q

k + q

= �
k

k�
k� � p

k� � q

k + p
k + q

q � pq +

Ru Chen1, Hyejin Ju1, Hongchen Jiang2,Oleg Starykh3 and Leon Balents2

1Department of Physics, University of California, Santa Barbara, 2Kavli Intitute for Theoretical Physics, 3Department of Physics, University of Utah

Experimental and theoretical motivations

• Experimental phase diagram for Cs2CuBr4 at low to intermediate
field has been studied1. It’s suggested that higher fraction of
magnetization other than 1

3Ms exists for quasi-2D spin-1/2
triangular antiferromagnets3. A lot of incommensurate phases are
found.

• Phase diagram for 2D triangular lattice is obtained by several
methods, including variational Monte-Carlo2 and semiclassical
large-S methods3.

• DMRG result for finite triangular ladder: 1D cone state to 2D
coplanar state transition close to saturation field.

Figure 1: Experimental phase diagram1 and phase diagram obtained by VMC2 .

Model and phases

• Hamiltonian: Heisenberg model with spatial anistropy in a
magnetic field.

H = X

i,j
JijSi · Sj � h ·

X

i
Si (1)

• Di�erent phases:
a. Spin liquid? Ruled out by numerics4 in Heisenberg model.
b. ’Classical’ Ordered states:
We use order parameter to describe the system in low energy

⌥S+� = ⇧1e
iQ·R + ⇧2e

�iQ·R, ⌥Sz� = M + ⌅e2iQ·R + c.c. (2)
c. Magnetization plateaus: U(1) symmetry is preserved

• Landau free energy: the symmetry allowed terms are:
F⇧ = r1|⇧1|2 + u1|⇧1|4 + 1 ⌅ 2 + v|⇧1|2|⇧2|2 (3)
F⌅ = r|⌅1|2 + u|⌅1|4 � ⇥⌅(⇧1⇧

⇥
2 + c.c.) + ⌅ne2inQ·R + c.c. (4)

Figure 2: Triangular lattice and some ground states.

Controlled methods?
We are trying to see what can be further understood analytically
for spin-1/2 triangular antiferromagnets near saturation field.

Bethe-Salpeter Equation

• Near satuaration field,
S+(r) = a(r), Sz(r) = 1/2 � a†(r)a(r) (5)

The Hamiltonian can be mapped to dilute interacting Bose gas.

�q(k, k⇧) = Vq � 1
N

X

q⇧

Vq�q⇧

�k+q⇧ + �k⇧�q⇧
�q⇧(k, k⇧, ⇥) (6)

Vq = 2(U + J(q)) where U ⌅ ⌃ for hard-core constraint of
spin-half particle.

Solving for the ladder diagrams

Figure 3: Ladder diagram.

• The energy minima occurs at two inequivalent momenta
Q = (2 cos�1(�J ⇧/2J), 0). We assume the boson can condense at
momentum ±Q.

• Want to compare the renormalized interaction between same and
di�erent species of bosons, �1 = �0(Q, Q) and
�2 = �0(Q, �Q) + ��2Q(Q, �Q).

• The weak interaction is Relevent in 1d and 2d.
⌅ singular behavior of �! Introduce a cuto� ⇥ ⇤ H � Hsat and
take ⇥ ⌅ 0.

Results and phase diagram

•

F⇧ = (�Q � µ)(|⇧1|2 + |⇧2|2) + 1
2�1(|⇧1|4 + |⇧2|4) + �2|⇧1|2|⇧2|2 (7)

• Asymptotic behavior:

�1 ⇤ a

ln ⇥ + b1
ln2 ⇥, �2 ⇤ a

ln ⇥ + b2
ln2 ⇥ (8)

• Agree with RG equation! �1 > �2: There is no coplanar-cone state
transition for all J’/J!

• ⌅ne2iQxnx ⌅ Commensurate-incommensurate transition?

Figure 4: Phase diagram for Heisenberg and XXZ model.
• What can drive a coplanar-cone state transition? Add XXZ

coupling to J’.
• When J ⇧

xy/J ⌅ 0
( J ⇧

z

J ⇧
xy

)c = 3⇤ ln 2
24 � 16 ln 2 (9)

Work under process

• N-leg ladder
• Add DM interaction

1 N.Fortune et al Phys.Rev.Lett 102,257201, (2009)
2 T.Tay et al Phys.Rev.B 81,165116 ,(2010)
3 C.Griset et al ArXiv 1107.0772
4 G. Misguich Phys.Rev.B 60,1064-1074 (1999)

Cone state

Coplanar state

�1 > �2

�1

�2

Saturday, February 25, 12
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High field: spin flip bosons
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High field: spin flip bosons
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High field: spin flip bosons
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Weakly coupled chains
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S=1/2 AFM Chain in a Field

1

1/2 0
h/hsat

1

M
1/2

• XY AF correlations grow with h and remain commensurate
• Ising “SDW” correlations decrease with h and shift from π 

Affleck and Oshikawa, 1999

• Field-split Fermi momenta:

 Uniform magnetization

 Half-filled condition

• Sz component (ΔS=0) peaked at
  scaling dimension
  increases  

• Sx,y components (ΔS=1) remain at  π 
  scaling dimension
  decreases

• Derived for free electrons but correct always - Luttinger Theorem

10 h/hsat

hsat=2J

π - 2δ

π+2δ

2kF spin density fluctuations
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• Two important couplings for h>0

• Quantum phase transition between SDW and Cone states

dim 1+2πR2: 2 -> 3/2
spiral “cone” state

dim 1/2πR2: 1 -> 2

      “collinear” SDW

• “Critical point”: 1+2πR2 = 1/2πR2   gives
    at M = 0.3

Magnetic field relieves frustration!

kF↓ − kF↑ = 2δ = 2πM

1

1/2

h/hsat

Tc

M

sdw

cone

0.0 0.1 0.2 0.3 0.4

0.1

0.2

0.3

0.4

Ideal J-J’ model in magnetic field

also: Kolezhuk, Vekua 2005

OS, Balents 2007

J 0~S
x,y

· (~S
x,y+1 + ~S

x+1,y+1)
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“SDW” and “cone” states

✤ In 1d, there is no long-range SDW or cone order

✤ Both these states are Luttinger liquids, with one gapless mode (c=1)

✤ But SDW has very distinct correlations 

✤ Gap for S=1, 2

✤ Multipolar correlations

✤ Slow SDW correlations

hS+
x,y

S�
x

0
,y

0i ⇠ Ae
� |x�x

0|
⇠sdw

hSz

x,y

S

z

x

0
,y

0i ⇠
cosQ(x� x

0
+ y � y

0
)

|x� x

0|⌘

h
3Y

y=1

(S

+
x,y

S

�
x

0
,y

)i ⇠ cos q(x� x

0
)

|x� x

0|1/⌘

⌘ = 1/6⇡R2  2/3
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SDW
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Saturday, February 25, 12

SDW seems 
remarkably 

robust

L=120
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SDW in LiCuVO4: J1=-18K, J2=49 K, Ja=-4.3K
Buttgen et al, PRB 81, 052403 (2010);
Svistov et al, arxiv 1005.5668 (2010) 

Tuesday, May 29, 12



• “Collinear” SDW state locks to the lattice
-“irrelevant” (1d) umklapp terms become relevant once SDW order is present (when 
commensurate): multiparticle umklapp scattering

-strongest locking is at M=1/3 Msat

h/hsat
10.9

“collinear” SDW

polarized

“cone”

T

uud

n 3 4 5 5 6

m 1 1 1 2 1

2M 1/3 1/2 3/5 1/5 2/3

(

Ψ†
R
ΨL

)n

→ (π − 2δ)n = 2πm → 2M = 1 − 2m/n

1/3 2/3

Cs2CuBr4 Fortune et al 2009

naively
thinking

Plateau from SDW

� = ⇡M
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Plateau more carefully

• Umklapp must respect triangular lattice symmetries
– translation along chain direction
– translation along diagonal
– spatial inversion

• n-th plateau width (in field)

 

• Ladder: Kosterlitz-Thouless transition to the plateau state @ R=0.7±0.1 (J’/J = 0.3)

M(n,m) =
1
2

⇣
1� 2m

n

⌘

f
y

(x)! f
y

(x+1)�R(p�2d)
f

y

(x)! f
y+1(x+1/2)�R(p�2d)/2

f
y

(x)! pR�f
y

(�x)

H(n)
umk = Â

y

Z
dx tn cos[

n
R

fy] n = m (mod 2)and

width ⇠
⇣

J0/J
⌘n2/(4(4pR2�1))

n 3 8 5 10 12

m 1 2 1 4 2

2M 1/3 1/2 3/5 1/5 2/3

large n leads to exponential 
suppression

OS, Katsura, Balents PRB 2010

same parity

 condition
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Plateau endpoint (ladder)
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Zero field
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Zero field

✤ Numerics shows dimerization for 0<J’<J (and larger!)

✤ Theory: persists for J’ << J

✤ Possible physical picture: effective spin-orbital model for any odd Ly
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c.f. Fouet et al, 2005

He↵ / (J 0)3
X

x,y

~S
y

· ~S
y+2 ! g0

X

x

s
x

· s
x+1[1 + ⌧+

x

⌧�
x+1 + h.c.]

eff.Hamiltonian in 4-dim. ground state manifoldRG flow to strong coupling
eff. spin 1/2 chirality

Schulz 1996, Kawano and Takahashi 1997 

non-collinear short range
spin correlations 

induced by periodic boundary conditions
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Zero field

✤ Numerics shows dimerization for 0<J’<J (and larger!)

✤ Theory: persists for J’ << J

✤ Cartoon
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Sz =1/2 solitons Sz =3/2 solitons

gapless “soliton pair” 
excitations carry 

Sz=0,±1,±2,...

gapless “soliton pair” 
excitations carry 

Sz=0,±3,±6,...

hS+
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S�
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0
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0|
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x,y

S
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0|⌘

Q = 6⇡M/Ms Q = 2⇡M/Ms

Soliton liquids above dimerized state

Tuesday, May 29, 12



Sz =1/2 solitons Sz =3/2 solitons

gapless “soliton pair” 
excitations carry 

Sz=0,±1,±2,...

gapless “soliton pair” 
excitations carry 

Sz=0,±3,±6,...
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SDW phase!

Q = 6⇡M/Ms Q = 2⇡M/Ms

Soliton liquids above dimerized state
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Summary
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ladder 2d DMRG

• plateau and co-planar phases are surprisingly stable 
✓ 7 out of 8 phases are of quantum origin
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Bird’s eye view
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UUD plateau

planarh

planar

incomm. 
planar
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cone = umbrella (for S>1/2)

longitudinal sdw

CAF

inter-layer 
exchange J’’/J

Cs2CuBr4
plateau - yes

Cs2CuCl4
no plateau

large J’’/J favors classical cone order !
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