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also to set notations 

Oscillation and flavor conversion are 
consequence of  
- the lepton mixing and  
- production of mixed (flavor) states 
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Mixing parameters 

nf  =  UPMNS nmass 

UPMNS  = U23Id U13I-d U12 

flavor 

Mixing matrix: 

n1 
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ne 

nm  

nt 

= UPMNS 

Mass states can be enumerated  
by amount of electron flavor 



  

ne 

Charged current  
weak interactions   

Kinematics  
of specific  
reactions 

 b-  decays,    
energy conservation 

Beam dump,  
D - decay 

 p-  decays,     
chirality suppression 

   

nm 

nt 

What about neutral currents? 

Difference  
of the charged  
lepton masses 

Non-trivial 
interplay 
of 

Mixing in CC  mixing in produced states 

Breaking of 
coherence 



  

What is the neutrino state produced in the Z-decay  
in the presence of mixing? 

f       =          [  n1 n1       +     n 2n2       +   n3n3     ]  
1 
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  f  H  Z     2  =   3     n1 n1   H  Z     2              

Z0 
ni 

ni 
Do neutrinos from Z0- decay oscillate? 

If the flavor of one of  
the neutrino is fixed,  
another neutrino oscillates 

P = sin2 2q  sin2 [ p (L 1 +  L 2)/ ln] 

Two detectors experiment: 
 detection of both neutrinos 

L 1  
L2  

Z is flavor blind 



  

Challenging theory of neutrino oscillations 

New experimental setups 
  - LBL long tunnels 
  - Long leaved parents 

New aspects Simple and straightforward 
and still correct 
derivation 

compromize 
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``Mesonium and antimesonium’’ 

Zh. Eksp.Teor. Fiz. 33, 549 (1957) 
[Sov. Phys. JETP 6, 429 (1957)] translation  

mentioned  a  possibility of neutrino  
mixing and oscillations 

B. Pontecorvo 

  Oscillations imply non-zero masses 
  (mass squared differences)  and mixing  

Pisa, 1913 

Proposal of neutrino oscillations  was motivated  
by rumor that Davis  sees effect in Cl-Ar detector from  atomic reactor 



  

Lagrangian 

       l g 
m

 (1 - g5)nl W+
m  

  g 
2 2 Amplitudes,  

probabilities  
of processes 

Observables, 
Number of 
events, etc.. 

Starting from  
the first principles 

 - ½ mL nL
TCnL    

 - lL ml lR  + h.c. 



  

Initial conditions 

Recall, the usual set-up 

asymptotic states  
described by plane 
waves  

single interaction  
region 

Formalism should be adjusted  
to specific physics situation 

Approximations, if one does  
not want to consider whole  
history of the Universe to  
compute signal in Daya Bay 

- enormous        
  simplification 



  

production 
region 

detection 
region 

baseline L 

Two interaction regions 
in contrast to usual scattering problem 

External 
particles 

Neutrinos: propagator 

Finite space and time phenomenon 

formalism  
should be  
adjusted to  
these condition 

E. Akhmedov, A.S. 

ni 
S D 

QFT but 

not a detector 



  

production 
region 

detection 
region 

baseline L 

External 
particles 

How external particles 
Should be described? 

wave packets for  
external  particles 

detection/production areas  
are determined by localization  
of particles involved in neutrino  
production and detection 
not  source/detector volume  
(still to integrate over) 

ni 
S D 

Describe  by plane waves  
but introduce finite integration  

Finite space-time 
integration limits 



  

production 
region 

detection 
region 

baseline L 

Unique process,   
neutrinos with definite masses are described by  propagators,  
Oscillation pattern – result of interference of   
amplitudes due to exchange of different mass eigenstates   

ni 
S D 

Very quickly converge to mass shell 

Real particles – described by wave packets 



  

production 
region 

detection 
region 

baseline L 

factorization 
If oscillation effect in  
Production/detection   
regions can be neglected  

ni 
S D 

Production propagation and  
Detection can be considered  
as three independent processes  

rD , rS  << ln 



  

Wave packet formalism.    
Consistent description of oscillations 
requires consideration  of wave packets 
of neutrino mass states.  

B. Kayser, Phys. Rev D 48 (1981) 110 

31 years later, GGI lectures: 

Key point: phases of mass eigenstates should be 
compared in the same space-time point  
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Scattering 

N 
Eigenstates of   
the Hamiltonian   
in vacuum 

      Uli l g 
m

 (1 - g5) ni W+
m + h.c.   g 

2 2 

interaction 
constant 

 Lagrangian 
of interactions  

Wave packet 

compute the wave function  
of neutrino mass eigenstates  

wave functions  
of accompanying 
particles  

Without flavor states 



  

  

|na (x,t)> =   Sk  Uak* Yk(x, t)|nk>  

After formation of the wave packet (outside the production region) 

Suppose na be produced in the source centered at x = 0, t = 0  

Yk ~   dp fk(p – pk) e  
ipx – iEk(p)t  

Ek(p)=    p2  + mk
2 

fk(p – pk) - the momentum distribution function  peaked  at   

 pk - the mean momentum   

- dispersion relation I
n 

ge
ne

ra
l 

Ek(p) = Ek(pk) + (dEk/dp) (p - pk) + (dEk
2/dp2) (p - pk)2 + …  

 pk  pk 

Expanding  around  mean momentun 

- group velocity  of  nk vk= (dEk/dp)  = (p/Ek)  
 pk  pk 

describes spread of 
the wave packets 



  

  

Inserting into  

Yk ~ e                    gk(x – vkt)   

Ek(pk) =   pk
2  + mk

2 

Depends on mean 
characteristics  pk  and 
corresponding energy:   

Ek(p) = Ek(pk) + vk(p - pk)    
(neglecting spread of  
 the wave packets) 

Yk ~   dp fk(p – pk) e  
ipx – iEk(p)t  

 ipkx – iEk(pk)t    

gk(x – vkt) =   dp fk(p) e   
 ip(x – vkt)    

 Shape factor Phase factor  

ifk 
e 

fk = pk
 x – Ek

 t  
Depends on x and t only in 
combination (x – vkt)  and therefore  
Describes propagation of the wave 
packet with group velocity  vk 
without change of the shape   
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sx 

ne  =  cosq n1 + sinq n2        

nm  = - sinq n1 + cosq n2  
cosq 

sinq 

ne 

opposite phase 

n1  =  cosq ne - sinq nm      

n2 =  cosq nm + sinq ne        

  

|n (x,t)> =  cosq g1(x – v1 t)e    |n1> + sinq g2(x – v2t)e     |n2 > if2 if1 

f  = f2 - f1 Oscillation phase 

f  = 0  
Main, effective  
frequency  



  

One needs to compute the state which is produced 

the shape factors 

i.e. compute  

- Fundamental interactions 
- Kinematics 
- characteristics of parent  
and accompanying  particles 

If heavy neutrinos are present but can not be produced for 
kinematical reasons, flavor states in Lagrangian differe from the 
produced states, etc.. 

Process dependent 



  

What happens? 

Due to different 
masses (dispersion 
relations)    phase 
velocities 

Due to different 
group velocities 

Due to presence of 
waves with different 
momenta and energy in 
the packet 



 fi = - Ei t + pi x  

group velocity  

  f  =  DE/vg  (vgt - x) +         x 
Dm2 

2E 

f = DEt - Dpx 

Dp = (dp/dE) DE + (dp/dm2) Dm2   =   1/vg DE + (1/2p) Dm2  

pi =   Ei
2 – mi

2 

< sx DE0 ~ Dm2/2E  

sxDm2/2E  

usually- small 

f = f2 - f1 

standard  
oscillation  
phase 

Dispersion relation 
enters here 

Effect of averaging over  
size of the wave packet  
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ne  =  cosq n1 + sinq n2        

nm  = - sinq n1 + cosq n2  
cosq 

sinq 

ne 

opposite phase 

  

|n (x,t)> =  cosq g1(x – v1 t)|n1> + sinq g2(x – v2t)e     |n2 > if 

f  = f2 - f1 

Interference pattern depends on 
relative (oscillation) phase 

Oscillation phase 

f  = p  
Main, effective  
frequency  

nm + 
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f  = 0  

- Destructive interference 
   of the muon parts 
- Constructive interference  
  of electron parts 
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- Destructive interference 
   of the electron parts 
- Constructive interference  
  of muon parts 

f  = p  

nm + 



  

As important as production 
Should be considered symmetrically with production  

Detection effect can be included in 
the generalized shape factors 

gk(x – vkt)   Gk(L – vkt)   

x  L  - distance between central points of the 
production and detection regions 

HOMEWORK… 



  

 A(ne) = <ne|n (x,t)> = cos2q g1(x – v1 t)  + sin2q g2(x – v2t) e if 

Amplitude of  (survival) probability 

 P(ne) =    dx |<ne|n (x,t)>|2 =  
 
=  cos4q + sin4q + 2sin2q cos2q cos f   dx g1(x – v1 t) g2(x – v2t)  

Probability in the moment of time t 

depth of  
oscillations 

 4 p E 

 Dm2 

  f =              =  

If g1 = g2    

 P(ne) = 1 - 2 sin2q cos2q (1 - cos f)  =  1 - sin2 2q sin2 ½f  

Dm2  x 
   2E 

2 p x 
  ln  

ln = Oscillation length 

interference 

! 

If    dx| gk|2 = 1    ! 

+ 

- 



  

production 
region 

ni 

S 

p p 

xS, tS 

m In most of the cases precise  
form of the shape factor  and 
therefore details of its 
formation  are  not  important 

of partial 
separation of   
wave packets 

production region  
is comparable with  
oscillation length 

It is important 
in the cases of  

Solving the wave problem:  
pion moves and emits 
neutrino waves 

Integration of the neutrino 
waves  emitted from space-time 
points where pion lives 



  

 gi(x,t) e    =   dp  dxS dtS  M yp (xS, tS) ym (xS, tS) exp[ip ( x - xS) – iEi (t – tS)]  

y  p (xS, tS) = exp[ –½GtS] gp(xS, tS) exp[ -ifp(xS, tS)] 

E. Akhmedov, D. Hernandez, A.S. Pion decay: 

integration over  
production region 

ifi 

part of matrix  
element 

y  m (xS, tS) = gm(x’ - xS, t’ - tS) exp[ ifm (x’ - xS , t’ - tS)] 

gp(xS, tS) ~ d (xS - vptS) 

Pion wave function: 

plane wave  
for neuutrino 

determined by detection of muon 

Muon wave function: 

usually: 

If muon is not detected: plane wave  phase factor   
disappears from  probability 

! 



  

L lp  

x 

p n 

D. Hernandez, AS 

p 

target decay tunnel detector absorber 

E. Kh Akhmedov,  
D. Hernandez, AS  
arXiv:1110.5453 

s = lp  
The length of the  n wave packet 
emitted in the forward direction 

g = g0 exp                (x - s)  P(x, [0, s])  Shape factor 
      G 
2(v - vp) 

Doppler effect 

v – vp  
   vp 

box function 

n wave packet 

-shorten  

frequency increases 



  

P = P +                             [cos fL +  K] 
  sin22q  
2(1 + x2) 

  1   
1 – e -Glp  

K = x sin fL - e    [cos(fL - fp) - xsin (fL - fp)] 
-Glp  

L 

lp  

fL = Dm2 L/2E fp = Dm2 lp/2E 

x = Dm2/2EG   

decoherence parameter 

x 

Equivalence 

Coherent n-emission 
- long WP  

p n 

Incoherent n-emission 
- short WP  

x 

D. Hernandez, AS 

MINOS:  x ~ 1 
b-beam ? 

DEij
   ~ G   

for point-
like pion 
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detector 

pion 

target 

XD 
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n 
lp 

detector 

Coherent emission  
of neutrino by pion  
along its trajectory 

XT Slopes are determined   
by group velocities 
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detector 

If pion ``pointlike – result  
coincides with usual incoherent  
computations; otherwise –  
integration – corrections ~ sp 

XT 

integration 
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d Y 
d t   

i         =  H Y  

M M+ 
  2E 

H =             + V(t) 

         ye  

Y =   ym 

          yt  

M  is the mass matrix 

V = diag (Ve ,  0,  0) – effective potential 

M M+  = U Mdiag
2 U+  

 Mdiag
2 =  diag (m1

2,  m2
2,  m3

2)  

Mixing matrix  
in vacuum 

If loss of coherence  
and other complications  
related to WP picture 
are irrelevant – 
`` point-like’’ picture 

E ~ p +  
  m2 
  2E generalization 

with 
mater 
effects 



  
         Re ne

+ nt,  
P =    Im ne

+ nt,      
         ne

+ ne - 1/2  

B =        (sin 2qm,  0,  cos2qm)  
2p  
 lm 

     =  ( B x  P )  
d P  
dt 

Coincides with equation for the electron  
spin  precession in the magnetic field 

y =  
ne  
nt,  

Polarization vector: 

 P =  y+ s/2 y  

Evolution equation:  

i         =  H Y  
d Y 
d t   

d Y 
d t   i         =  (B s ) Y  

Differentiating  P and using equation of motion 



  

n  = P =   
(Re ne

+ nt,   Im ne
+ nt,   ne

+ ne - 1/2)  

B =        (sin 2qm,  0,  cos2qm)  
2p  
 lm 

     =  ( B x  n )  
dn  
dt 

Evolution equation 

f  = 2pt/ lm  - phase of oscillations 

P = ne
+ne = nZ + 1/2 = cos2qZ/2 probability to find   ne  

ne  

nt,  



  



  



  



  



  



  



  



  



  

source Far detector Near detector 

L - baseline 

na na disappearance 

nb appearance 

Oscillation probability – periodic function of  

- Distance L and   
- Inverse energy 1/E 



  

nm  nm    

nm  ne   

ne  ne   


