# NEUTRINOS FROM THE FERMI BUBBLES

Cecilia Lunardini Arizona State University RIKEN BNL Research Center

C.L. & Soebur Razzaque, arXiv:1112.4799, accepted in Physical Review Letters

- Gamma rays from the Fermi Bubbles: hadronic origin?
- High energy neutrino counterpart
- Detectability at Km<sup>3</sup> detectors
- Implications

The Fermi Bubbles

# Basic facts: a new galactic structure

- 2 spheroids, R ≈ 4 kpc
- Fermi-LAT discovery Su, Slatyer & Finkbeiner, ApJ. 724, 1044 (2010)
- Emit gamma rays
  - Detected up to ~ 100 GeV



Artist's concept, NASA/GSFC

- Spatially correlated with:
  - microwave haze (WMAP)
  - Thermal X-rays (ROSAT)



Finkbeiner, ApJ. 614, 186 (2004) Snowden et al., ApJ. 485, 125 (1997).





Puzzling!

Su, Slatyer & Finkbeiner, ApJ. 724, 1044 (2010)







# Origin of the gamma rays in the FB?

- Compton scattering of accelerated electrons
- Collisions of accelerated protons
- Stars capture on central black hole
- Faint millisecond pulsars
- Dark matter annihilation

Dobler, et al., ApJ. 717, 825 (2010) Su, Slatyer & Finkbeiner, ApJ. 724, 1044 (2010) Malyshev, Cholis & Gelfand, ApJ. 722, 1939 (2010) Crocker and F. Aharonian, PRL 106, 101102 (2011) P. Mertsch and S. Sarkar, PRL 107, 091101 (2011) Guo & Mathews, arxiv:1103.0055 Cheng et al., arXiv:1103.1002

# **Electrons or protons?**

#### <u>High energy electrons</u>

Su, Slatyer & Finkbeiner, ApJ. 724, 2010 Mertsch & Sarkar, PRL 107, 2011

- From central black hole activity (shocks)
- $e^- + \gamma \rightarrow e^- \gamma$
- Requires ~ 10<sup>6</sup> years activity
- unnatural acceleration and diffusion
- explains WMAP haze

#### <u>High energy protons</u>

Crocker and Aharonian, PRL 106, 2011

- From supernova remnants
- $p + p \rightarrow \pi^0 + any$  ,  $\pi^0 \rightarrow \gamma \gamma$
- Requires ~ 10<sup>9</sup> 10<sup>10</sup> years activity (star formation)
- Large timescale, distinct from WMAP haze?
- Explains GeV bump, natural energetics

### The hadronic scenario

- Steady state regime ("saturation")
  - Explains k~ 2.1 spectrum
- GeV downturn due to π<sup>0</sup> production threshold



Crocker and Aharonian, PRL 106, 2011

#### Unique signature: neutrino counterpart!

- Hadronic shower:
  - same as atmospheric neutrinos, neutrino beams

$$p + p \rightarrow \pi^{\pm} + X$$

$$\pi^{+} \rightarrow \mu^{+} \nu_{\mu}$$

$$\mu^{+} \rightarrow e^{+} \nu_{e} \bar{\nu}_{\mu}$$

$$\pi^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu}$$

$$\mu^{-} \rightarrow e^{-} \bar{\nu}_{e} \nu_{\mu}$$

- Trace gamma rays in spectrum and spatial distribution
- New signal for Km-scale detectors → potential to probe physics and origin of the Fermi Bubbles!

Crocker and Aharonian, PRL 106, 2011

# High energy neutrinos from the Fermi Bubbles

C.L. & S. Razzaque, arXiv:1112.4799, Phys. Rev. Lett., in press

### Flux calculation: ingredients

- Parent proton spectrum: , k~ 2.1- 2.3, E<sub>0</sub> ~ 1-10 PeV  $N_p(E) = N_0 E^{-k} \exp(E/E_0)$
- Avg. gas density:  $\langle n_H \rangle \sim 10^{-2} \ {\rm cm}^{-3}$
- Analytics + SIBYLL code:

$$\Phi_{\gamma}(E_{\gamma}) = \frac{\varphi \langle n_H \rangle}{4\pi D^2 K_{\pi}} \int_{E_{\pi, \text{th}}}^{\infty} dE_{\pi} \, \frac{\sigma_{pp}(E_c)}{\sqrt{E_{\pi}^2 - m_{\pi}^2}} N_p(E_c)$$

Kelner, Aharonian and Bugayov, PRD 74, 034018 (2006)

$$K_{\pi} \approx 0.17$$
$$E_{c} = E_{\pi}/K_{\pi} + m_{p}$$
$$E_{\pi,\text{th}} = E_{\gamma} + m_{\pi}^{2}/4E_{\gamma}$$

- Exceeds atmospheric background
  - Detectable above ~ 20 TeV, for  $E_0$ >3 PeV

M. Honda et al., Phys.Rev. D75 (2007) 043006

k=2.1  $10^{-6}$ Atmospheric *Fermi* Bubble γ-ray data  $v_{\mu} (\theta_z = 90^{\circ})$  $E^2 dN/dE$  (GeV cm<sup>-2</sup> s<sup>-1</sup> sr<sup>-1</sup>  $\times \frac{1}{2}$  after flavor  $10^{-7}$  $\gamma (E_0 = 1 \text{ PeV})$ oscillations -.  $v_{\mu} (E_0 = 1 \text{ PeV})$  $\cdots \gamma (E_0 = 3 \text{ PeV})$ E.g., Costantini & Vissani,  $v_{\mu} (E_0 = 3 \text{ PeV})$ Astropart.Phys. Atmospheric  $\gamma (E_0 = 10 \text{ PeV})$ 23 (2005) 477  $v_{\mu} (\theta_z = 180^\circ)$  $- - v_{\mu} (E_0 = 10 \text{ PeV})$ 10<sup>-8</sup> ' 1 1 1 1 1 1 1  $10^{0}$  $10^{2}$  $10^{-1}$  $10^{3}$  $10^{4}$  $10^{5}$  $10^{6}$  $10^{1}$ E(GeV)

# Main numbers

- Total number of protons in bubbles: ~  $10^{57}$
- Total energy in protons: ~  $10^{55} 10^{56}$  ergs
- Energy of gamma rays from bubbles: ~  $10^{54}$  ergs
  - Over few 10<sup>9</sup> years lifetime
  - Few % efficiency, typical of hadronic models

Detectability at Km<sup>3</sup> detectors

## Number of events



Zenith bins: <u>sub-horizon only</u> (w/r to detector)

•  $\cos\theta_z = -1, -0.66$ ; -0.66, -0.33; -0.33, 0

# Solid angle: geometry

In equatorial coordinates:



- Total solid angle, subtended by both bubbles:  $\Omega_{\rm b}$  = 0.808 sr
- IceCube (running):
  - Antarctica,  $\theta_{lat}$  = -90 deg. , only 2.5% sub-horizon!
- Km3NET (proposed):
  - Mediterranean,  $\theta_{lat}$  = +43 deg. , 70% sub-horizon!
  - Best for deepest zenith bin (lower background)



#### Effective area/exposure

- Cross section and detector response, v<sub>u</sub> dominates
- Use 20 IceCube years:  $t_{exp} \langle A_{\nu}(E) \rangle_{\theta} = 20 \text{ yr} \times A_{\text{IC40}}$ 
  - Realistic for expanded IceCube (IC80) and KM3NeT



# Signal and background at KM3NeT



- Statistical significance :  $\Delta = N_{sig}/\sqrt{N_{sig} + N_{bkg}}$ 
  - Maximum for E<sub>th</sub> = 20-30 TeV ; for *deepest bin* (lower background) and total sub-horizon (higher statistics)

- signal exceeds 3  $\sigma$  for E<sub>0</sub>>3 PeV
- Detailed data fit will increase significance
  - correlation with bubble shape and position



# IceCube potential

- Excess not significant, *but* :
  - Could constrain proton spectrum (large E<sub>0</sub>, allowed by Fermi-LAT)
  - Potential/motivation to increase sensitivity above horizon, reduce background, …

|                       | $E > 10^4 { m GeV}$ | $E > 10^5 { m GeV}$ |
|-----------------------|---------------------|---------------------|
| events, 1 PeV cutoff  | 2.8                 | 0.3                 |
| events, 3 PeV cutoff  | 5.1                 | 1.1                 |
| events, 10 PeV cutoff | 8.0                 | 2.4                 |
| background            | 59                  | 1.7                 |

# **Final remarks**

- Fermi bubbles: a potential new source of high energy neutrinos
  - galactic, extended
- Observable at a Km-scale detector
  - Northern hemisphere optimal (motivation!)
  - south pole worst, requires upgrade, interesting constraints possible
- A test of the hadronic model of gamma ray emission
  - Origin of the bubbles
  - Physics of high energy galactic phenomena: time scales, energetics

#### backup



