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It all begins with large mixing angles in the leptonic sector
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Do these mixing patterns have something to do
with the actual neutrino mass matrix??

1. Is is possible to reproduce this special mixing
pattern from a fundamental Lagrangian??

Yes! Using discrete symmetries

2. Is such Lagrangian believable?

Well... at least for many the answer is NO.



TBM now disfavoured
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Can we make model-independent statements
about the use of discrete symmetries in flavor??



General framework

Flavor Group
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Bottom-up approach: Identify (;, and (-, with accidental
symmetries of the mass terms. Use them to define the flavor
group G 1




Identifying the accidental symmetries
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Identifying the flavor symmetry
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Enter mixing matrix
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|dentified U(1)3 for the charged leptons and Z2xZ2 for the
neutrinos

For charged leptons, use a discrete subgroup as part
of the group of flavor
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Defining the flavor group

Symmetry group of neutrino mass matrix: Already discrete.
Choose at least one of the Sitrand 1, .

Define a relation between S;;; and 1,

Z;n — 1 SEU =1

(SwTa)? = (USUTT, )P =1



The relations
Sy =T" = (S;yT)P =1

define the von Dyck group D(n, m. p)

D(Q_.Q_.p) is the dihedral group D

p

D(2,2,3) = S; - -

Notice that if
D(2.3.3) = A,
D(2.3.4) =S, l+i+1§1

n o m p
D(2.3,5) = A

The von Dyck group is infinite




Now you know the flavor group and the symmetry
breaking pattern, go and construct a model



Constraints on the mixing matrix

Wi = SiwTo = USUTT,, WP =1

Det[l-"][fm — /\]I] — () cubic equation with /\f =1

Take one of the eigenvalues of 1V, equalto1

M2 —al—1=0 with %—9 —Tr[W,,]

This is a real number!



Constraints on the mixing matrix
Wia = STo =USUT, . WP =1

p=3 p=4 p=>

Forinstance,for p=3 —> (A —1A—w)(A—w?) =N -1 — a=10

or p=4 S A=1DA+i)A—i)=N =N +A-1— a=-1



Implies two conditions on the W, = USUT.. W? =1
mixing matrix -
r ™
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First equation is general and depends only on the choice of S;;;
and 71,

In the second equation 7) depends on the eigenvalues of 1V,
through a, on the eigenvalues of /,, and on the choice of S;;;

Two equations lead to two constraints on the mixing angles.

The problem is reduced to a case study
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T ~ 0.1 ~03 ~0.5

Hence, either 7 = 2 or @ = ¢



Recapitulating: What we assume

First and foremost

* The general framework for building a model
with discrete symmetries

Other ‘minor’ assumptions

1. Neutrinos are Majorana.
Open to

2. The flavor symmetry is a subgroup of SU(3). " discussion!!

3. The remaining symmetry in each sector is a one-generator group

4. There is one charged lepton that doesn’t transform under T

5. There is one neutrino that doesn’t transform under S

6. ST has an eigenvalue that is equal to 1



Recapitulating: What | have shown (under said
assumptions)

After a number of choices have been made

1. T-charge of one charged lepton (k value)
2. The order of T (m value)
3. The eigenvalues of ST. (a value) .

A two-dimensional surface is cut in the parameter space of
the mixing matrix.

Is is possible to fit the measured values of the PMNS matrix??



Hence, either 2 =— 2 or (v = ¢

Choose o = ¢
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| Hence, either 2 — 2 or v = ¢

Choose i =2
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A few words about TBM

If one imposes that the two Z2 symmetries of the neutrino mass
matrix should belong to the flavor group, then 4 relations appear
between the entries of the mixing matrix

If they are compatible, they will fix all parameters of the mixing
matrix.

TBM is indeed one solution for the case of S,,.

This could be an argument pro TBM.

Lam



Conclusions

* Recipe for model building: upgrade the accidental symmetries of the
mass terms by making them part of agroup.

* The minimal choice of generators (one Z, for neutrinos and one Z,
for charged leptons) leads to non-abelian discrete groups of the von
Dyck type.

* In this scheme, two relations are imposed on the leptonic mixing
matrix.

* One case with S, shows a very good agreement with the measured
values.
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Eq. (6) can be diagonalized exactly. Assuming that a,d are real and ¢ complex, we find
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It 1s interesting to note that if we neglect the corrections proportional to &, we have an exact relation
between the solar and the reactor angle:
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