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* Dark matter is a cornerstone of modern cosmology... But we don’t
know what it's made of!

* |f DM is a WIMP, indirect detection is a promising possibility to learn
about its nature and properties:

Antimatter
X searches

In regions of high DM density in the Universe, DM \\ o

can annihilate emitting photons, positrons, F+v . @ y
antiprotons or neutrinos.
/ \\
A THIS TALK!

* |[f DM is a WIMP (cold relic), standard structure formation tells you that
you should expect DM to clump on all scales down to the free-

streaming scale.

* Clumping means enhanced annihilation rates for indirect detection!

mm) \\hat are the implications on the limits? Theoretical uncertainty?
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* Here we analyze in detail the galactic signal, which is subject to less
uncertainty than the extragalactic one.

* To derive limits, we use the isotropic diffuse
component in the sky measured by Fermi-LAT:
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component :
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[Abdo, et al., 1002.3603]
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* Gamma-ray emission from DM annihilations
o Which direction in the sky?

* Transport of final state electrons and positrons
o Effect of diffusion on the gamma-ray emission

* Galactic substructure: Minimal halo mass and mass function index

* Results: fluxes towards the galactic anticenter, and the galactic poles
o Flux enhancement due to substructure (Boost factor)

* Constraints on DM annihilation cross-sections

* Conclusions
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* Dark matter annihilation can emit photons in many ways:

1. PROMPT EMISSION

AT
X

2. INVERSE-COMPTON COMPONENT

TCMB “Yenergetic

The interstellar radiation field
(IRF) is composed of:

v’ Starlight

v Infrared radiation
v CNVIB

X
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* Dark matter annihilation can take place in our galaxy or outside. Here
we concentrate on the galactic contribution only.

* The differential gamma-ray flux from DM annihilation within our galaxy
IS given by

Direct output from Pythia

l
2 2
d® _ 1 (ov), . Pp dN, ds [ p(r)
PROMPT dEfy - 47T 2 TG M% dE',y fdQ LOS (80 PO

Components of the IRF
v
S MX
IC ddE(D,y = 7o [dQ d—@ [, X dE Ne(r, E) 32, Pi(Ey, E,7)

/V
Electron density, calculated Differential photon power
from the transport equation emitted from IC scattering

Where we use an NFW density Ps

r) =
profile for our MW: () r/rs(1+r/rs)?
rs = 20.2 kpc, pe = 0.395 GeV/cm?, ro = 8.29 kpc
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* When constraining DM annihilation cross-sections with the IGRB, it is
customary to calculate the gamma-ray flux in the direction where it is
minimal.

— galactic anticenter (b=0°, [=180°) when the DM halo is
smooth.

* Here we argue that the direction of the galactic pole (6=90°, [=0°) can
also be used :

The galactic diffuse component is dominated in
this direction by proton-gas emission and 7 -ray
sources, which are subject to little uncertainty!

mm) Residual flux at the level of the IGRB! | GAC

(also: the presence of substructure makes the
signal more isotropic...)
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* The diffusion-loss equation for electrons in steady state is given by

K(BE)AN(Z,E) — 4 {b(Z E)N(Z,E)} + Q(Z,E) =0

Diffusion coefficient Energy losses Source term

K(E) = KoE° IC, synchrotron (s, E) = (o) pgg div.
* The diffusion-loss equation can be solved analytically in the absence
of boundary conditions, and if energy losses are independent of
position (true for the CMBY!).

N( - b(E) fES_E df fd3 (£S7E8 _>£7 E) Q(f&Es)
with the Green'’s function . 7oz
given by Ge(Ts, Bs = T, B) = (g 77 ©XP ( IKo7 )

* The assumption of no-diffusion corresponds to the limit

Go(Zs, By — 7, E) — 63(%s — 7)
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* When computing the IC emission, it is not correct to assume a
vanishing electron density at the boundary of the diffusion cylinder. (it
is ok for the local electron flux from astrophysical sources)

* |t is also not accurate to use a diffusion coefficient that is constant
throughout the DM halo. Magnetic inhomogeneities are mainly present

in the disk. Here we assume:

R = 20 kpc

<€ >

2z =8 kpCI K(E) = KoB°

K(E) — o
contribute!
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Only electrons with undegraded energy F = F,
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* |t is expected on theoretical grounds and confirmed in N-body
simulations that DM forms clumps on a wide range of scales.

ptot.('r) — psm(r) + psub(r)
P t-ot('r) r

__ Prot(T) i r) = —
Psm (7") = T4/ psub(T ) 1+ ‘7’/'7’() re
Bias radius Anti-biased distribution of subhalos

* Knowing the distribution of clumps in our MW is of crucial importance
to estimate the flux from DM annihilations. We use the formalism of

probability functions: Ryir dPy (1)
Jo av_dV =1

dNeci(r,Mc1) __ dPnrr (M) dPy (1) M
vat, = N Ta, - av g Eu ) gpg) = 1

*Minimal subhalo mass

Mass function index!

Mass distribution function: 1 Spatial distribution function:
L dPV (T) Psub (T)
dPas (M. Mgy \ o™ —3v = Tpptot
3D (M) = Ko (252 av MoF

Anti-biased!
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* The mass function index and the minimal halo mass are the two most
crucial parameters.

* The minimal halo mass depends on the precise interactions of the DM
particle with the SM, as it follows from the kinetic decoupling
temperature. Here we consider jf . ¢ (10~ My, 1074 M)

* The mass function index can be accessed in N-body simulations (VLII,
Aquarius), but their resolution is still very far from M_ ... The latest
simulations find o, = 1.9 whereas the Press-Schechter theory (and
extended versions) on the smallest scales predict o, = 2.

mm) Here we choose tovary ¢y, € (1,97 2)

O | Mmin =107UMg | My = 1074 M,

ol = 0.699 tol = 0.467
2 | Nt =266 x 102! | Nt =266 x 10
rp = 35.08 kpc ry = 117.63 kpc
tol —0.187 tol —0.181

1.9 N:&‘; = 3.06 x 1019 N:S}t) = 1.54 x 1013
ry = 557.11 kpe rp = 582.30 kpc
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* The gamma-ray flux on Earth from DM annihilations in our Galaxy can
be calculated to be:

Mpin € (1071 Mg, 1074 M)
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1. Effects of diffusion moderate
With ., = 1.9, almost no
) ) m

2. Substructure important, dependence on M, . !
especially for prompt rad.!
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* The boost factor gives the flux enhancement due to the presence of
substructure in our Galaxy.

ch)sub/dEv’y —I—d(I)S’mOOth/dE,y
dq)nosub/dEfy

Boost =

T T T T ™ TTTTTT T T T TTTT T T T TTTT T ™ TTTTTT

Boost
Boost
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* One can then extract exclusion limits by requiring that the flux does

not exceed the IGRB.
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* \We can compare our bounds to the most recent ones by the Fermi
collaboration: 20 |
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* The most likely origin for the IGRB is from blazars. Assuming that they
make most of it, we obtain more stringent constraints:
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Fermi-LAT gamma-ray measurements offers great probes of the
WIMP DM paradigm.

Transport of final state electrons/positrons can play a role, especially
at low energies and for the GP direction. It also affects substructure
enhancement.

We have taken into account DM galactic substructure, in agreement
with recent N-body simulations. The two most relevant parameters are
the mass function index, and the minimal subhalo mass.

We found that substructure can boost the signal by up to a factor of
20. With the most pessimistic assumptions, the boost is as low as
20%.

We extracted exclusion limits for DM annihilation cross-sections, and
found our limits for optimistic choices of the mass function index to be
competitive with the most stringent to date.
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Back-up
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Blanchet & Lavalle (2012)
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* The gamma-ray flux from annihilations in galactic substructure can

then be calculated with

mass distribution

l

d® __ ov Po dN, ds dP max dPr (M)
B, ﬁ< >T@M®2 dE, I ro T (r mem dMer E(Me1, 7) =50,
. T (Mo, %) = [, dV <pC1(MCI’fS))2
Spatial distribution ’ Vel PO

annihilation volume

dNZC X Pi(E,E,r X
am, (1) = f db Zz b((E ) s dEs 3¢
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