Large θ_{13} : a window for CPV and the mass hierarchy

Enrique Fernández Martínez

Oscillation Parameters

What we already know (1σ)

• Solar sector
$$\begin{cases} \Delta m_{21}^2 = 7.62_{-0.19}^{+0.19} \cdot 10^{-5} \text{eV}^2 \\ \sin^2 \theta_{12} = 0.320_{-0.017}^{+0.015} \\ \text{Atm. sector} \end{cases} \begin{cases} \Delta m_{31}^2 = 2.53_{-0.10}^{+0.08} \cdot 10^{-3} / - 2.40_{-0.07}^{+0.10} \cdot 10^{-3} \text{eV}^2 \\ \sin^2 \theta_{23} = 0.49_{-0.05}^{+0.08} / 0.53_{-0.07}^{+0.05} \end{cases}$$

$$\sin^2 \theta_{13} = 0.026^{+0.003}_{-0.004} / 0.027^{+0.003}_{-0.004}$$

D. V. Forero, M. Tortola, J. Valle 1205.4018 see also G.L. Fogli, E. Lisi, A. Marrone, D. Montanino, A. Palazzo, A.M. Rotunno 1205.5254

Oscillation Parameters

• What we already know (1σ)

• Solar sector
$$\begin{cases} \Delta m_{21}^2 = 7.62_{-0.19}^{+0.19} \cdot 10^{-5} \text{eV}^2 \\ \sin^2 \theta_{12} = 0.320_{-0.017}^{+0.015} \end{cases}$$

• Atm. sector
$$\begin{cases} \Delta m_{31}^2 = 2.53_{-0.10}^{+0.08} \cdot 10^{-3} / - 2.40_{-0.07}^{+0.10} \cdot 10^{-3} \text{eV}^2 \\ \sin^2 \theta_{23} = 0.49_{-0.05}^{+0.08} / 0.53_{-0.07}^{+0.05} \end{cases}$$

•
$$\sin^2 \theta_{13} = 0.026^{+0.003}_{-0.004} / 0.027^{+0.003}_{-0.004}$$

What we still don't know

δ

• Mass hierarchy
$$s_{atm} = sign(\Delta m_{31}^2)$$

D. V. Forero, M. Tortola, J. Valle 1205.4018 see also G.L. Fogli, E. Lisi, A. Marrone, D. Montanino, A. Palazzo, A.M. Rotunno 1205.5254

The Golden channel in matter

$$P(\overline{v}_{e}^{-} \rightarrow \overline{v}_{\mu}) = s_{23}^{2} \sin^{2} 2\theta_{13} \left(\frac{\Delta_{atm}}{\widetilde{B}_{\mp}}\right)^{2} \sin\left(\frac{\widetilde{B}_{\mp}L}{2}\right)^{2} + c_{23}^{2} \sin^{2} 2\theta_{12} \left(\frac{\Delta_{sol}L}{A}\right)^{2} \sin^{2}\left(\frac{AL}{2}\right) + \widetilde{J} \frac{\Delta_{sol}}{A} \frac{\Delta_{atm}}{\widetilde{B}_{\mp}} \sin\left(\frac{AL}{2}\right) \sin\left(\frac{\widetilde{B}_{\mp}L}{2}\right) \cos\left(\pm\delta - \frac{\Delta_{atm}L}{2}\right)$$

Expanded in

$$\sin 2\theta_{13} \sim 0.3 \qquad \left(\frac{\Delta_{sol}L}{2}\right) \cong 0.05$$

where

 $\widetilde{J} = \cos \theta_{13} \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \qquad \Delta_{atm} = \frac{\Delta m_{23}^2}{2E} \qquad \Delta_{sol} = \frac{\Delta m_{12}^2}{2E}$ $A = \sqrt{2}G_F n_e \qquad \widetilde{B}_{\mp} = |A \mp \Delta_{atm}| \qquad \text{A. Cervera et al. hep-ph/0002108}$

Sensitivities with present experiments

Sensitivities with future accelerators

From EFM, T. Li, O. Mena and S. Pascoli 0911.3776

5 questions before we launch the large θ_{13} race

1. Do we need the mass hierarchy from the same machine that gives us δ?

T2HK

K. Abe *et al.* HK LoI 1109.3262

Mass hierarchy with Nova + T2K + INO

Red 100 kt INO Solid: high res INO ($\sigma_E/E = 0.10$, $\sigma_\theta = 10^\circ$) Black 50 kt INO Dashed: low res INO ($\sigma_E/E = 0.15$, $\sigma_\theta = 15^\circ$)

From M. Blennow and T. Schwetz 1203.3388

Mass hierarchy with PINGU

From E. Kh. Akhmedov, S. Razzaque and A. Yu. Smirnov 1205.7071

5 questions before we launch the large θ_{13} race

- 1. Do we need the mass hierarchy from the same machine that gives us δ ?
- 2. Downgrading: How much can we afford?

Downgrading is trendy in the large θ_{13} race!

2001 2011 2012 2012 T2HK: $4MW + 500 \text{ kt} \rightarrow 1.6MW + 500 \text{ kt} \rightarrow 0.7 \text{ MW}? + 500 \text{ kt} \rightarrow ??$

 $2010 \qquad 2012$ LBNE: 2MW + 33 kt \rightarrow 0.7MW + 17 kt? \rightarrow ??

2011 2012 2012 LBNO: 2MW + 100 kt \rightarrow 2MW + 20 kt \rightarrow 0.8MW + 20 kt \rightarrow ??

Danger!!! How much can we afford?

5 questions before we launch the large θ_{13} race

- 1. Do we need the mass hierarchy from the same machine that gives us δ?
- 2. Downgrading: How much can we afford?
- 3. Precision: New comparisons. How much?

Precision

P. Coloma, A. Donini, EFM and P. Hernandez 1203.5651

How much precision we need?

P. Coloma, P. Huber, J. Kopp and W. Winter in preparation

How much precision we need?

For quarks $J = (2.91^{+0.19}_{-0.11}) \times 10^{-5}$ For neutrinos $J = 0.29 \sin \delta$

With this value of θ_{13} we cannot below $J=10^{-2}$

P. Coloma, P. Huber, J. Kopp and W. Winter in preparation

5 questions before we launch the large θ_{13} race

- 1. Do we need the mass hierarchy from the same machine that gives us δ?
- 2. Downgrading: How much can we afford?
- 3. Precision: New comparisons. How much?
- 4. Systematics!

Systematics

In many cases comparison of performance depends on sys A precise knowledge of the sys is mandatory!!

5 questions before we launch the large θ_{13} race

- 1. Do we need the mass hierarchy from the same machine that gives us δ?
- 2. Downgrading: How much can we afford?
- 3. Precision: New comparisons. How much?
- 4. Systematics!
- 5. New strategies for large θ_{13} ?

Optimization of facilities for large θ_{13}

SPL at Frejus vs Canfranc

Lines are reducing the statistics by factors of 2, 4, 8 and 16 For high statistics Canfranc much better For very small statistics Frejus better P. Coloma and EFM 1110.4583

Conclusions

- The large value of θ₁₃ discovered by Daya Bay opens the window to the measurement of the neutrino mass hierarchy and leptonic CP violation.
- T2K and Nova will provide the first ~90% CL indications over the next 8 years.
- We still need to "digest" the large θ_{13} news before committing. Important questions to answer:
 - Will we get the mass hierarchy from atmospherics?
 - What are the achievable systematics at each facility?
 - How much precision do we need?
 - How much can we afford to downgrade?

Daya-Bay II

S.T. Petcov and M. Piai hep-ph/0112074 S.Choubey, S.T. Petcov and M. Piai hep-ph/0306017 J. Learned et al. hep-ex/0612022 L. Zhan, Y. Wang, J. Cao, L. Wen 0807.3203; 0901.2976

Precision: θ_{13}

P. Coloma, A. Donini, EFM and P. Hernandez 1203.5651

Present (and near future) v beams

Nova: L=810 Km E= 1.5-3 GeV
 3 + 3 yr run. 2013 starts data taking
 15 kt active scintillator detector

• T2K: L=295 Km, E= 0.4-1.2 GeV SK 22 kt water Cerenkov detector v_{μ} beam \rightarrow no sensitivity to δ

Sensitivities with present experiments

From P. Huber et al. 0907.1896

Final Comparison

Neutrinoless double β decay

Future with weak lensing from LSST (survey ~2020) and prospective $0_{\nu\beta\beta}$ experiments

The degeneracy problem

- Black square = input "true" value
- There is a curve of solutions
- If we add antineutrinos the two curves intersect in 2 regions: The *true* solution and an *intrinsic degeneracy*

J. Burguet-Castell *et al.* hep-ph/0103258

The degeneracy problem

- Two other unknown parameters: sign and oct
- There are 4 different sets of curves for different choices of sign and octant g
- 2 Intersections each

Eightfold degeneracy: Intrinsic sign octant mixed

H. Minakata and H. Nunokawa hep-ph/0108085G.L.Fogli and E. Lisi hep-ph/9604415V. Barger and D. Marfatia hep-ph/0112119

Super-Beams

- Intense conventional v_{μ} beams from π decay with MW proton drivers
- T2HK: Beam power x2 mass x25 (560 kt) Hyper-K Abe et al 1109.3262
- SPL: CERN Frejus L=130 km
 E= 0.1-0.5 GeV
 500 kt water Cerenkov detector
- LBNE: Wide Band Beam
 E= 1-5 GeV
 Fnal Dusel L=1300 km
 Liquid Ar detector 33.4 kt
- LAGUNA-LBNO: Wide Band Beam E= 1-8 GeV
 CERN – Pyhäsalmi L=2300 km Liquid Ar detector 100 kt

β-Beams

Pure v_e beams from the β decay of radiactive ions ${}^{6}He \rightarrow {}^{6}Li + \overline{v}_e + e^{-} {}^{18}Ne \rightarrow {}^{18}F + v_e + e^{+}$ $V_e \rightarrow V_{\mu} \quad V_e \rightarrow V_e$

P. Zucchelli 2002

Neutrino Factory

• Pure v_e and v_{μ} from the μ decay accelated to 25 GeV $\mu^+ \rightarrow e^+ v_e \overline{v}_{\mu} \qquad L = 4000 \text{km}$

Lots of channels could be observed

- golden channel: $v_e \rightarrow v_{\mu}$
- silver channel: $v_e \rightarrow v_\tau$
- $V_{\mu} \rightarrow V_{\mu}$
- $V_{\mu} \rightarrow V_{\tau}$

Needs to measure the lepton charge to identify the original flavour Magnetized iron detector for

Magnetized iron detector for $v_e \rightarrow v_{\mu}$ and ECC for $v_e \rightarrow v_{\tau}$ S. Geer hep-ex/9712290 A. de Rujula, B. Gavela and P. Hernandez hep-ex/9811390

Precision

P. Coloma, A. Donini, EFM and P. Hernandez 1203.5651