Current Status of LSND and Reactor Anomalies and Future Prospects for Sterile Neutrino Searches

Steve Brice, Fermilab 25 June 2012

Current Indications of Tension in the Standard 3 Neutrino Mixing Scheme

- Gallium: 2.7 σ evidence for v_e disappearance
- LSND: 3.8σ evidence for anti- v_e appearance
- MiniBooNE: 3.8 σ evidence for v_e and anti-v_e appearance
- Reactor: 3.0σ evidence for anti- v_e disappearance
- Can be interpreted as a 4th neutrino state at eV scale mass
- Only 3 light, Weakly interacting neutrinos (LEP Z width)
- Oscillations with Δm^2_{solar} and Δm^2_{atm} are well established
- Therefore a 4th light state must be sterile
- Many thanks to K.Heeger, T. Lasserre, L.Huillier, C.Polly, M.Shaevitz for material

June 25 2012

Steve Brice Fermilab

Gallium Anomaly

⁵¹Cr (27.7 days)

SAGE-Ar

3

51 V

- Calibration of the Gallium Solar v Detectors
- e-capture sources $- {}^{51}Cr (750 \text{ keV}) \& {}^{37}Ar (810 \text{ keV})$ $+ {}^{427 \text{ keV v (9.0\%)}}_{432 \text{ keV v (0.9\%)}}$ $+ {}^{747 \text{ keV v (81.6\%)}}_{752 \text{ keV v (8.5\%)}}$
- The goal was to calibrate the production and extraction efficiency of the SAGE and GALLEX experiments
- 1.1 Deficit observed 1.05 $R_{obs/pred} = 0.86 \pm 0.05 (\sigma_{Bahcall})$ 0.95 0.9 $R_{obs/pred} = 0.76 \pm 0.085 (\sigma_{Haxton})$ 0.85 0.8 0.75 0.7 0 65 GALLEX1 GALLEX2 SAGE-Cr

Steve Brice Fermilab

June 25 2012

Gallium Anomaly

 No-oscillation hypothesis disfavored at 2.7σ (PRC 83 065504,2011)

• Was not treated as evidence for new physics until the other anomalies appeared

LSND

- Used 800 MeV protons from LAMPF at Los Alamos in the 1990's
- Searched for anti-v_e appearance in neutrino beam from pion decay at rest.

- Found an excess of anti-v_e over background prediction
 - $87.9 \pm 22.4 \pm 6.0$ (3.8 σ)

MiniBooNE

MiniBooNE Update

- 6.6 x 10²⁰ POT in neutrino mode
 - No neutrino mode data added
- 11.3 x 10²⁰ POT in anti-neutrino mode
 - Results updated in Kyoto with double the POT previously published
- Modest Improvements to the (anti-)nue analysis
 - In situ measurement of WS contamination in anti-v beam Phys.Rev.D84,072005 (2011)
 - New SciBooNE constraint on intrinsic v_e from K+
 - Added error matrix for intrinsic v_e from K-
 - Improved smoothing algorithm used to assess systematics due to discriminator thresholds and PMT response
 - CCπ+ events (bkg for v_{μ} CCQE when π+ is absorbed) Q² reweighting applied based on internal MB measurement Phys.Rev.D83,052007 (2011)

June 25 2012

Steve Brice Fermilab

Full Anti-neutrino dataset

anti- v_e CCQE signal candidates with 11.3e20 POT

Higher stat anti-neutrino data is now much more consistent with what was observed in the data taken with a neutrino beam

* Systematic error after all other data constraints applied, e.g. v_{μ} CCQE, NC π^0 , dirt events, SciBooNE K⁺

	$E_{v}(QE)$ range	Data	$Bkg \pm stat \pm syst*$	Excess
	200-475 MeV	257	$199.1 \pm 14.1 \pm 16.3$	57.9 ± 21.6 (2.7σ)
	475-1250 MeV	221	$201.1 \pm 14.2 \pm 17.9$	19.9 ± 22.8 (0.9σ)
	200-1250 MeV	478	$400.2 \pm 20.0 \pm 23.4$	77.8 ± 30.8 (2.5σ)
h	ine 25 2012		Steve Brice Fermilab	

SIEVE DITLE I EITIIIAL

Fitting anti-neutrino data to 2v model

Comparing neutrino to anti-neutrino mode

11.3e20 POT anti-neutrino mode

June 25 2012

Steve Brice Fermilab

MiniBooNE Conclusions

- MiniBooNE observes an excess of v_e candidates in the 200-1250 MeV energy range in neutrino mode (3.0 σ) and in anti-neutrino mode (2.5 σ). The combined excess is 240.3 ± 34.5 ± 52.6 events (3.8 σ)
- The event excess is concentrated in the 200-475 MeV region where NC π^0 and other processes leading to a single γ dominate
- Higher statistics anti-υ data is now similar to the neutrino mode data
- It is not yet known whether the MiniBooNE excesses are due to oscillations, some unrecognized NC γ background, or something else

Reactor Neutrino Anomaly

v emission:

- Improved reactor neutrino spectra produces +3.5%
- Accounting for long-lived isotopes accumulating in reactors produces +1%
- PRC83, 054615 (2011)
- PRC84, 024617 (2011)

v detection:

- Reevaluation of σ_{IBD} Improved neutron life time measurements produces +1%

Observed/predicted averaged event ratio: $R=0.927\pm0.023$ (3.0 σ)

June 25 2012

Steve Brice Fermilab

Interpreted as Oscillation with 4th State

June 25 2012

Steve Brice Fermilab

Interpreted as Oscillation with 4th State

Counter Evidence for 4th State

There are a number of results that are sensitive, but see no evidence for a 4^{th} neutrino state with ~eV mass:-

- CDHS and MiniBooNE searches for v_{μ} disappearance
- MiniBooNE search for \overline{v}_{μ} disappearance
- MINOS search for $v_{\mu} \rightarrow v_s$
- Karmen search for $\bar{v}_{\mu} \rightarrow \bar{v}_{e}$

It is hard (impossible?) to fit all data with a single oscillation hypothesis

Future Tests

- Need a definitive test(s) of the 4th neutrino hypothesis hinted at by the current anomalies
- Many tests proposed. They fall into three types:-
 - 1) Detector <15 m from compact nuclear reactor
 - 2) Accelerator based short baseline
 - 3) Intense sources close to or in detector
- For definitive test would like oscillation evidence in E and L and redundant cross-checks
- See Sterile Neutrino White Paper
 - arXiv:1204.5379
- Upcoming report from Fermilab Short Baseline Working Group

June 25 2012

Steve Brice Fermilab

Reactor Searches for 4th State

Proposed Reactor Short Baseline Experiments

Proposal	Reactor	Fuel (#fissions)	Core Size (m)	<l> (m)</l>	Depth (mwe)	Status	Comment
Nucifer Saclay	Osiris 70 MW	²³⁵ U ON-OFF cycle	<1	7	5	Data Taking	Non proliferation 1 m ³ Gd-LS Mostly Rate + Shape?
Stereo Genoble	ILL 50 MW	²³⁵ U ON-OFF cycle	<1	10	10	Proposal	2 m ³ Gd-LS Rate + Mostly shape
SCRAMM (Ca)	San-Onofre 3 GW PWR	^{235,238} U ^{239,241} Pu	3x3.8	24	30	Proposal	2 m³ Gd-LS Mostly Rate + Shape
SCRAMM (Idaho)	ATR 150 MW	²³⁵ U ON-OFF cycle	<1	12	15	Proposal	2 m ³ Gd-LS Rate + Mostly shape
DANSS (Russia)	KNPP 3 GW PWR	^{235,238} U ^{239,241} Pu	few	14	70	Being Built	Segmented detector 1 m ³ Rate + Shape?
NIST (US)	NCNR 20 MW	²³⁵ U ON-OFF cycle	≈1	4-11	0	Proposal	Rate + Mostly shape
Nu4 (Russia)	SM-3 100 MW	²³⁵ U ON-OFF cycle	0.35x0.42 x0.42	6-12	10	Being Built	14 m ³ Gd-LS Rate + shape

Table from T.Lasserre

Accelerator Based Short Baseline Search

- Wish (Requirements) list:-
 - Need significance at $>5\sigma$ level
 - Would like to see effect in L and E
 - Would like to have redundant crosschecks within an experiment
 - Would like to see a consistent picture with appearance and disappearance
- Four experiment types:-
 - Accelerator isotope production with large detector close by
 - Pion/Kaon decay at rest (C.F. LSND, Karmen)
 - Pion decay in flight (C.F. MiniBooNE)
 - Low energy neutrino factory

Accelerator Short Baseline Experiments

Isotope Source	Disapp	$\overline{v}_{e} \rightarrow \overline{v}_{e}$	IsoDAR
Pion / Kaon Decay- at-Rest Source	Appearance & Disapp	$ \begin{array}{c} \overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e} \\ \nu_{e} \rightarrow \nu_{e} \end{array} $	OscSNS, CLEAR, DAEδALUS, KDAR
Accelerator $\stackrel{(-)}{v}$ using Pion Decay-in-Flight	Appearance & Disapp	$ \begin{array}{c} \nu_{\mu} \rightarrow \nu_{e} \text{ , } \overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e} \\ \nu_{\mu} \rightarrow \nu_{\mu} \text{ , } \nu_{e} \rightarrow \nu_{e} \end{array} $	MINOS+, MicroBooNE, LAr1kton+MicroBooNE, CERN SPS
Low-Energy v-Factory	Appearance & Disapp	$ \begin{array}{c} \nu_{e} \rightarrow \nu_{\mu} \text{ , } \overline{\nu}_{e} \rightarrow \overline{\nu}_{\mu} \\ \nu_{\mu} \rightarrow \nu_{\mu} \text{ , } \nu_{e} \rightarrow \nu_{e} \end{array} $	vSTORM at Fermilab

Table from M.Shaevitz

Intense Radioactive Sources

- Test 4th state hypothesis with ~MeV (anti-)neutrino sources placed a few meters from large low background detector
 - Similar to the $^{51}\mbox{Cr}$ calibrations of the SAGE and GALLEX solar ν detectors
 - Can use existing reactor/solar neutrino detectors
 - Can place source inside or just outside detector
- Can search for effect on energy spectrum and rate as a function of distance from source. $\frac{285 \text{ d}}{144 \text{ co}}$
- Typically need compact MCi source
 - Technically non-trivial
 - e.g. ¹⁴⁴Ce

June 25 2012

Proposals with Intense Radioactive Sources

CEN

Type	channel	Background	Source	Production	Activity (Mci)		Proposal
	$\nu_e e \rightarrow \nu_e e$ radioactivity (managable)		⁵¹ Cr	n _{th} innediation	in	>3	Sage LENS
1/	Compton edge	Solar ν (irreducible)	0.75 MeV t _{1/2} =26d	in Reactor	out	5-10	SOX SNO+
v e			³⁷ Ar	n _{fast} irradiation in Reactor (breeder)	in	>1	-
	5% E _{res} 15cm R _{res}	(out ok but in ?)	0.8 MeV † _{1/2} =35d		out	5	Ricochet (NC)
	v¯ _e p→e⁺ n	reactor 1/ &	¹⁴⁴ Ce E<3MeV t _{1/2} =285d		in	0.005-0.05	CelAND SOX
	E _{th} =1.8 MeV	ν -Source		spent nuclear fuel	out	0.5	Daya-Bay
$\overline{\nu}_{e}$	(e⁺,n) Coincidence	→ Background	⁹⁰ Sr ¹⁰⁶ Rh	reprocessing	-	-	-
	5% E _{res} free! 15cm R _{res}	⁴² Ar	?	-	-	-	

Table from T.Lasserre

June 25 2012

Steve Brice Fermilab

Conclusions

- A number of intriguing hints at oscillations involving a 4th ν state
- No single hint is compelling
- Much experimental evidence is in tension with such a 4th state
- Nonetheless the situation cannot be ignored
- Definitive experiments are needed in more than one experimental domain
- Many proposals are on the table and some would be definitive

Backup slides

MiniBooNE Detector

541 meters downstream of target
3 meter overburden of dirt
12 meter diameter sphere
Filled with 800 t of pure mineral oil
 (CH₂--density 0.86, n=1.47)
Fiducial volume: 450 t
1280 inner 8" phototubes 10% coverage,
240 veto phototubes

June 25 2012

²⁸

June 25 2012

Signal selection in MiniBooNE

- Neutrino and anti-neutrino analyses are identical
- Start with pre-cuts
 - -No late time activity, removes Michel electrons, cuts ~80% of v_{μ} CCQE events
 - -Veto hits < 6, contained & not a cosmic
 - Tank hits > 200 & visible E >140 MeV, removes NC elastic bkgs
 - -Radius < 500 cm, far enough from PMTs to avoid area where light modeling becomes less certain
 - -R-to-wall backward cut, removes bkgs (mainly γ 's) from beam ν that interact in dirt outside the detector

June 25 2012

KS test 17.8% (29.5% if exclude absorber down period)

		1st half			2nd half	
	data	mc	excess	data	mc	excess
200-475	119	100.5±14.3	18.5 (1.3s)	138	100.0±14.1	38 (2.7s)
475-1250	120	99.1±14.0	20.9 (1.5s)	101	103.1±14.4	-2.2 (-0.2s)

OLEVE DITE I CITIIIAD

June 25 2012

Steve Brice Fermilab

Maximum likelihood fit:

$$-2\ln(L) = (x_1 - \mu_1, \dots, x_n - \mu_n)M^{-1}(x_1 - \mu_1, \dots, x_n - \mu_n)^T + \ln(|M|)$$

$$M = M_{om} + M_{xsec} + M_{flux} + M_{\pi^0} + M_{dirt} + M_{K^0} + \dots$$

Simultaneously fit (FC-corrected) $= v_e$ CCQE signal + high E v_e sample =High statistics v_μ CCQE sample

• v_{μ} CCQE sample acts like a near detector, i.e. same flux as oscillation v_{e} by definition, lepton universality + muon mass corrections fix relative cross-section

v_u flux through detector (v mode)

- In situ measurement of WS contamination in anti-v beam Phys.Rev.D84,072005 (2011)
 - \mathcal{W}_{μ} CCQE angular fit, and new constraint from CC π + rate...good agreement with expectation

- New SciBooNE constraint on intrinsic v_e from K+
 - Found K+ production to be 0.85 ± 0.12 relative to prediction, consistent with prior MiniBooNE assessment of 1.00 ± 0.30
 - -Combined with world K+ production data, reduces error on K+ flux to 9% in MB Ev range
 - Leading error on K+ bkgs becomes ~20% error from Junecrossigection Steve Brice

Events

Few other minor updates...

- -Added error matrix for intrinsic v_e from K-
- Improved smoothing algorithm that was being used to assess systematics due to discriminator thresholds and PMT response
- --CCπ+ events (bkg for v_{μ} CCQE when π+ is absorbed) Q² reweighting applied based on internal MB measurement...Phys.Rev.D83,052007 (2011)

Something to consider...

Something to consider...

Comparison between models including np-nh

10²

Relevant for oscillation analysis?

- Means a fraction of oscillated v_e could be misreconstructed (similar to CC π + case)
- Could feed down help relax tension between low and mid range energies?
- Possible, but MiniBooNE corrects sig/bkg
 predictions based on the measured v_µ
 spectrum
 - Studies where we double the π + absorption rate, and then retune sig/bkg predictions to match to CCQE...negligible impact Steve Brice Fermilab 42

Account for neutrino low-E events

- Fits on prior page assume only anti-neutrinos are oscillating, but we know there is a low E excess in nu mode data
- Simplest scaling is to assume that there should be an excess in the low energy region proportional to the WS content (21 events)

Reanalysis of Reactor Experiments

result	Det. type	τ_n (s)	²³⁵ U	²³⁹ Pu	²³⁸ U	$^{241}\mathrm{Pu}$	old	new	err(%)	corr(%)	L(m)
Bugey-4	³ He+H ₂ O	888.7	0.538	0.328	0.078	0.056	0.987	0.926	3.0	3.0	15
ROVNO91	³ He+H ₂ O	888.6	0.614	0.274	0.074	0.038	0.985	0.924	3.9	3.0	18
Bugey-3-I	⁶ Li-LS	889	0.538	0.328	0.078	0.056	0.988	0.930	4.8	4.8	15
Bugey-3-II	⁶ Li-LS	889	0.538	0.328	0.078	0.056	0.994	0.936	4.9	4.8	40
Bugey-3-III	⁶ Li-LS	889	0.538	0.328	0.078	0.056	0.915	0.861	14.1	4.8	95
Goesgen-I	³ He+LS	897	0.620	0.274	0.074	0.042	1.018	0.949	6.5	6.0	38
Goesgen-II	³ He+LS	897	0.584	0.298	0.068	0.050	1.045	0.975	6.5	6.0	45
Goesgen-II	³ He+LS	897	0.543	0.329	0.070	0.058	0.975	0.909	7.6	6.0	65
ILL	³ He+LS	889	$\simeq 1$	—	_	_	0.832	0.7882	9.5	6.0	9
Krasn. I	³ He+PE	899	≃ 1	_	_	_	1.013	0.920	5.8	4.9	33
Krasn. II	³ He+PE	899	≃ 1	—	_	_	1.031	0.937	20.3	4.9	92
Krasn. III	³ He+PE	899	≃ 1	_		_	0.989	0.931	4.9	4.9	57
SRP I	Gd-LS	887	≃ 1	_	_	_	0.987	0.936	3.7	3.7	18
SRP II	Gd-LS	887	$\simeq 1$	_		_	1.055	1.001	3.8	3.7	24
ROVNO88-11	³ He+PE	898.8	0.607	0.277	0.074	0.042	0.969	0.901	6.9	6.9	18
ROVNO88-2I	³ He+PE	898.8	0.603	0.276	0.076	0.045	1.001	0.932	6.9	6.9	18
ROVNO88-1S	Gd-LS	898.8	0.606	0.277	0.074	0.043	1.026	0.955	7.8	7.2	18
ROVNO88-2S	Gd-LS	898.8	0.557	0.313	0.076	0.054	1.013	0.943	7.8	7.2	25
ROVNO88-3S	Gd-LS	898.8	0.606	0.274	0.074	0.046	0.990	0.922	7.2	7.2	18

June 25 2012

PRD83, 073006 (2011) Steve Brice Fermilab