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Recent Interest
Primordial non-Gaussianity has attracted a lot of interest over the past
few years.

• Precision Cosmology: Non-Linearities may be observable

• Gravity is non-linear. Some non-Gaussianity will always be
present

• Potentially useful for further testing inflation
• Consistency check - Identification of new physics beyond

inflation (which may produce stronger NG signals)
• Discriminant among models

One more handle on the physics of Inflation. Primordial NG has been
approached via various angles in an effort to compute it and relate it to
observables.
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Observations
• Various detections of non-Gaussian signals have been reported in

the CMB. However, none has been linked to a primordial source.

• Extracting any primordial NG from LSS will probably be very
difficult since it will be masked by later non-linear evolution.
However, it has been suggested that finding early objects forming
at high redshifts is probably a good strategy since they will be
tracing the tail of the distribution (you just have to find one).

• Thus observations focus on the CMB measuring fNL ∼ 〈TTT 〉
〈TT 〉2 or

even τNL ∼ 〈TTTT 〉
〈TT 〉2 . Current limits set −54 < fNL < 114

(95%CL, WMAP). Planck is expected to reach fNL < 5 at best,
while an ideal experiment is limited to fNL < 3.

However, ...
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... a recent paper (astro-ph/0610257) has claimed that even fNL < 0.01

is accessible via observations of the 21 cm radio background. If this
analysis goes through it will set the whole discussion on inflationary
NG under a totally different light.
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Calculating non-Gaussianity

Focusing on Inflation, there are four regimes relevant for NG
generation and evolution

• Effects before or during horizon crossing.
Calculating non-linear corrections from the inflationary
mechanism for the generation of perturbations.

• Long wavelength evolution during inflation.
The subject of this talk...

• Long wavelength evolution after inflation.
E.g. Reheating, Preheating & The Curvaton scenario.

• The relation of this primordial NG to the observed CMB sky.
Solving the full system of Boltzman equations at second order.
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Calculational Approaches
• Straightforward second-order perturbation theory:

Follow the route of linear theory by extending the perturbative
analysis of the Einstein equations to second order. This seems
essential for studying scales smaller or close to the horizon →

proliferation of terms in the equations.

• Long wavelength approximations:
First focus on long wavelengths, particularly relevant during
inflation, where the dynamics simplifies. This is the approach of
the δN formalism as well as the one taken in this talk.
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Long wavelength approximation

ds2 = −N2(t,x)dt2 + e2α(t,x)hij(x)dxidxj

On long wavelengths (∆x > (aH)−1, ∇2 dropped):

• d
Ndt

H = −1
2K̄ijK̄ij −

1
2M2

p
(E + S/3)

• d
Ndt

K̄i
j = −3HK̄i

j ⇒ K̄i
j = Ci

j(x)e−3α

• D
Ndt

ΠA + 3HΠA + ∂AV = 0

• H2 = 1
3M2

p
E+1

6K̄ijK̄ij , ∂iH = − 1
2M2

p
ΠA∂iφ

A−1
2∇jK̄

j
i

{

H = d
Ndt

α, ΠA = d
Ndt

φA, K̄ij = −e2α d
2Ndt

hij

}

‘Separate universe’ evolution ⇒ ∆N formalism.
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Long Wavelength Coordinate Transformations

Consider coordinate transformations which preserves g0i = 0:
ds2 = −Ñ2(T,X)dT 2 + e2α̃(T,X)h̃ij(T,X)dX idXj

T = T (t, xl), X i = X i(t, xl)

Then, up to O(∇2) the transformation matrix is:

• Λµ
T ≡ ∂xµ

∂T
= N ∂µT

(∂tT )2

• Λi
j̃ ≡

∂xi

∂Xj = δi
j̃ + O

[

(∂i)
2
]

• Λ0
j̃ ≡

∂t
∂Xj = −δi

j̃
∂iT
∂tT

+ O
[

(∂i)
2
]

x=const

X=const

T=const

Using these we learn: xi = X i +
∫

dT N∂iT
(∂tT )2

• ds2 = −Ñ2(T,x)dT 2 + e2α̃(T,x)hij(x)dxidxj

• 1
N

∂
∂t

= 1
Ñ

∂
∂T

+ O(∇2) , ∂
∂xi = ∂

∂Xi + ∂iT
∂

∂T
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Inhomogeneity

Separate inhomogeneous evolution from the homogeneous
background:

• Given a spacetime scalars A(t,x) = A(t) + ∆A(t,x) one can
always set ∆A = 0 by a suitable choice of time slicing - no
coordinate invariant meaning for ∆A

• However, given two scalars A(t,x) and B(t,x) one can construct
a fully non-linear variable which encodes the inhomogeneity and
is a scalar (invariant) under long wavelength transformations:

Ci(t,x) ≡ ∂iA − ∂tA
∂tB

∂iB = C̃i(T,x)

For example:

ζi = ∂iα − H
ρ̇
∂iρ ⇒ d

Ndt
ζi = − H

ρ+P

(

∂iP − Ṗ
ρ̇
∂iρ
)

This is a fully non-linear statement formally similar to that of linear
theory.
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For Inflation...
Consider a set of scalar fields during inflation
Tµν = GAB∂µφA∂νφB − gµν

(

1
2∂λφA∂λφA + V (φ)

)

The following spatial vectors are scalar invariants:

QA
i = eα

(

∂iφ
A − ∂tφ

A

NH
∂iα
)

,
(

H ≡ ∂tα
Nα

)

ζA
i = − κ√

2ε̃
∂iφ

A + ΠA

Π ∂iα,
(

ΠA ≡ ∂tφ
A

N
, ε̃ ≡ κ2

2
Π2

H2 , κ2 ≡ M−2
p

)

Note that: QA
i = ∂iq

A + . . . and ζA
i = ∂iζ

A + . . . where qA

and ζA well known linear gauge-invariant variables.

Define isocurvature and adiabatic
directions ê1

A = ΠA
Π , ê2

A , . . .

with ê2
Aê1A = 0, . . .

phi_1

phi_2

e_1

e_2
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... For more fields an iterative procedure will produce an orthonormal
basis adapted to the trajectory with N-1 isocurvature directions.

η̃A
(n) =

( 1
N
Dt)

n−1
ΠA

Hn−1Π
êA
n ≡

η̃A
(n)

−

� n−1
B=1 η̃B

(n)
êA
B

η̃n
(n)

where

η̃n
(n) ≡ −εA1···An êA1

1 . . . êAn−1
n−1 η̃An

(n)

which gives the basis a definite handedness.
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Non-linear Isocurvature and Adiabatic Variables
• ζi ≡ ê1

AζA
i = ∂i ln a − κ√

2ε̃
ê1A∂iφ

A = ∂i ln a − H
ρ̇
∂iρ

• σi ≡ ê2
AζA

i = − κ√
2ε̃

ê2A∂iφ
A

Define Slow Roll parameters:

ε̃ ≡ κ2

2
Π2

H2 , η̃A ≡ −3HΠA+∂AV
HΠ , ξ̃A ≡ 3ε̃ ê1A − 3η̃A −

ê1BV A
B

H2

Project isocurvature and adiabatic parts:
η̃‖ ≡ ê1

Aη̃A, η̃⊥ ≡ ê2
Aη̃A, ξ̃‖ ≡ ê1

Aξ̃A, ξ̃⊥ ≡ ê2
Aξ̃A

The non-linear equations of motion are formally the same as those of
linear perturbation theory with

δ → ∂i

f(t) → f(t,x)
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Long wavelength equations of motion

Choose a gauge with NH = 1 (∂iα = 0 - homogeneous expansion)
to simplify expressions

d
dt

(

ζi
σi
σ̇i

)

+

(

0 −2η̃⊥ 0
0 0 −1
0 κ̃ λ̃

)

(

ζi
σi
σ̇i

)

= 0

where
κ̃(t,x) = 3

(

V22
3H2 + ε̃ + η̃‖

)

+ 2ε̃2 + 4ε̃η̃‖ + 4(η̃⊥)2 + ξ̃‖,

λ̃(t,x) = 3 + ε̃ + 2η̃‖

All local quantities are given by:

• ∂i ln H = ε̃ ζi, em A∂iφ
A = −

√
2ε̃
κ

ζm
i

• eA
1 ∂iΠA = −H

√
2ε̃

κ

(

η̃‖ζi + η̃⊥σi

)

• eA
2 ∂iΠA = −H

√
2ε̃

κ

(

σ̇i + η̃⊥ζi +
(

η̃‖ + ε̃
)

σi

)
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“Initial Conditions”
Assuming that non-linearities are not important on short scales, one
can include in a straightforward manner perturbations from shorter
wavelengths. This amounts to adding “sources" on the rhs:

d
dt

(

ζi
σi
σ̇i

)

+

(

0 −2η̃⊥ 0
0 0 −1
0 κ̃ λ̃

)

(

ζi
σi
σ̇i

)

= ∂i

∫

d3k
(2π)3/2

(

ζl(k) α̂k

σl(k) β̂k

σ̇l(k) β̂k

)

Ẇ(k)eikx

where

α̂k = a†(k) + a(−k) , β̂k = b†(k) + b(−k)

with
[

a(k), a†(−k
′)
]

= (2π)3δ(k − k
′) , e.t.c.

ζl(k) = − κ√
2k3

H√
2ε̃

σl(k) = − κ√
2k3

H√
2ε̃

σl(k) = κ√
2k3

H√
2ε̃

χ

W(k) cuts off short wavelength modes. Simplest
choice: W(k) = Θ(caH − k). Final results are
independent of the form of W(k).

When linearized, these equations are exact and valid to all scales,
simply being linear perturbation theory.
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Perturbation Theory

We can now perturb the e.o.m. to directly obtain solutions at second
order

• Perturbing A(t,x) =

(

0 −2η̃⊥ 0
0 0 −1
0 κ̃ λ̃

)

represents non-linearities in

the long wavelength evolution

• Perturbing H√
ε̃

represents “initial” non-linearities of the modes at
horizon crossing

Write (∆A)ab = Āabc vc , with v =
(

ζ
σ
σ̇

)

.

• Evolution terms:

Ā12c = 2

(

(ε̃−2η̃‖)η̃⊥+ξ̃⊥

−3χ−(ε̃+η̃‖)η̃‖−(η̃⊥)2

−3−η̃‖

)

, Ā33c =

(

−2ε̃2+(2ε̃−η̃‖)η̃‖+(η̃⊥)2+ξ̃‖

2ε̃η̃⊥+ξ̃⊥

η̃⊥

)
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Ā32c = 2×




(−6ε̃−10ε̃2−2ε̃η̃‖)η̃‖−(6+6ε̃−8η̃‖)(η̃⊥)2−ε̃(3χ+4ε̃2+3ξ‖)−6η̃⊥ξ⊥+ 3
√

ε̃√
2κ

V111−V221
3H2

(−12ε̃−6η̃‖+12χ−6ε̃2)η̃⊥+4(η̃‖)2η̃⊥+4(η̃⊥)3−4ε̃ξ⊥−2η̃‖ξ⊥+ 3
√

ε̃√
2κ

V211−V222
3H2

6η̃⊥−2ε̃η̃⊥+4η̃‖η̃⊥−2ξ̃⊥



 .

• “Initial Condition Terms”: ∆( H√
ε̃
) = (2ε̃ + η̃) H√

ε̃
ζ

We solve d
dt

v
(2)
ai + A(t)v

(2)
ai = Āabc(t

′) v
(1)
bi v

(1)
c + ∆ bai ⇒

v
(2)
ai =

t
∫

−∞
Gab(t, t

′)
(

Ābcd v
(1)
ci v

(1)
d + ∆ bbi

)

dt′

d
dt

Gab(t?, t) − Gac(t?, t)Acb(t) = 0, Gab(t?, t?) = δab
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The Bispectrum

~va is a spatial vector but its curl depends on the time-slicing:

∇× ~ζ(t,x) = ∇×
~̃
ζ(T,x) + ∇T × ∂

∂T
~̃
ζ(T,x)

so focus on the scalar part va: ~va = ∇va + ∇× ~wa.
Focus on the adiabatic perturbation v1 = ζ and define
v1m(k, t) = κ

2
H(tk)

k3/2

∫ t

−∞ dt′G1b(t, t
′)Xbm(t′)Ẇ(k, t′)

Xbm =
( 1 0

0 1
0 χ(t′)

)

. Then:

〈ζζ〉(k, t) = v1m(k, t)v1m(k, t)

〈ζζζ〉(ki, t) = (2π)3δ(
∑

ki) [f(k1, k2) + f(k1, k3) + f(k2, k3)]

f(k, k′) ≡ −1
2v1m(k, t)v1n(k′, t)×

∫ t

−∞ dt′ G1a(t, t
′)Ā(0)

abc(t
′)v(1)

bm(k, t′)v(1)
cn (k′, t′) + k ↔ k′

Note: No non-local terms
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Non-Gaussianity

Parameterize non-Gaussianity by fNL ≡ 〈ζζζ〉(k,k,k,t)
〈ζζ〉(k,t)

Two potentials:

• V (φ1, φ2) = 1
2m2

1φ
2
1 + 1

2m2
2φ

2
2

• V (φ1, φ2) = λ1
4! φ

4
1 + λ2

4! φ
4
2

45 46 47 48
t

-2

-1

1

2

Quadratic potential, mass ratio 12

f_NLH4 termsLf_NLH1 termLf_NLHexactLΗpar

Ηperp

46.5 47 47.5 48 48.5 49
t

-4

-3

-2

-1

1

2

3

Quartic potential, Λ ratio 200000

f_NLH4 termsLf_NLH1 termLf_NLHexactLΗpar

Ηperp

fNL rises sharply when slow-roll breaks down and the fields make a
turn. However, it reduces to a small value if inflation continues after
the turn.
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Large non-Gaussianity?

Simple inflationary models give fNL ∼ O(0.01) = O(ε̃, η̃) for both
single and multi field inflation.

• Less symmetric potentials?

• Non-separable potentials?

• Hybrid inflation

• Reheating, preheating

• Later dominance of another field (Curvaton)

We can expect however that if η⊥ is large at the end of inflation, the
next phase of evolution will be endowed with large NG. Of course this
primordial input must be connected to the observable CMB sky and
this connection adds one more NG component which may be dominant.
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Conclusions
• Non-Gaussianity has been the focus of many studies over the past

few years.

• It provides another observable that links the present to the early
universe.

• Simple inflationary models, both single and multi field, predict it
to be very small, fNL ∼ O(ε̃, η̃)

• However, later processes and/or more complicated models may
yield larger primordial non-Gaussianity.

• An interesting observable for the future.
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