Direct Dark Matter Searches

Marc Schumann Physik Institut, Universität Zürich What is v? Invisibles12, GGI Florence, June 27th 2012

marc.schumann@physik.uzh.ch
www.physik.uzh.ch/groups/groupbaudis/xenon/

Dark Matter: (indirect) Evidence

Particle Dark Matter Candidates:

- WIMP → "WIMP miracle"
- Axion
- SuperWIMPs
- sterile neutrinos
- WIMPless dark matter
- Gravitino

150

Elastic Scattering of WIMPs off target nuclei

Elastic Scattering of WIMPs off target nuclei

Elastic Scattering of WIMPs off target nuclei

 \rightarrow electronic recoil

Recoil Energy:
$$E_r = \frac{|\vec{q}|^2}{2m_N} = \frac{\mu^2 v^2}{m_N} (1 - \cos \theta) \sim \mathcal{O}(10 \text{ keV})$$
Event Rate: $R \propto N \frac{\rho_{\chi}}{m_{\chi}} \langle \sigma_{\chi-N} \rangle$ N
 ρ_{χ}/m_{χ} number of target nuclei
local WIMP density
velocity-averaged scatt. X-sectionDetectorLocal DM
DensityPhysics
Physics

Dark Matter around us?

Kinematical and chemical vertical structure of the Galactic thick disk II. A lack of dark matter in the solar neighborhood

C. Moni Bidin, G. Carraro, R. A. Mendez, R. Smith

We estimated the dynamical surface mass density Sigma at the solar position between Z=1.5 and 4 kpc from the Galactic plane, as inferred from the kinematics of thick disk stars.

We extrapolate a dark matter (DM) density in the solar neighborhood of 0+-1 mM_sun pc^-3,

In particular, our results may indicate

that any direct DM detection experiment is doomed to fail, if the local density of the target particles is negligible.

Kinematical and chemical vertical structure of the Galactic thick disk II. A lack of dark matter in the solar neighborhood

C. Moni Bidin, G. Carraro, R. A. Mendez, R. Smith

We estimated the dynamical surface mass density Sigma at the solar position between Z=1.5 and 4 kpc from the Galactic plane, as inferred from the kinematics of thick disk stars.

We extrapolate a dark matter (DM) density in the solar neighborhood of 0+-1 mM_sun pc^-3,

In particular, our results may indicate

that any direct DM detection experiment is doomed to fail if the local density of the target particles is negligible.

arXiv.org > astro-ph > arXiv:1205.4033

Astrophysics > Galaxy Astrophysics

On the local dark matter density

Jo Bovy, Scott Tremaine (IAS)

An analysis of the kinematics of 412 stars at 1-4 kpc from the Galactic mid-plane by Moni Bidin et al. (2012) has claimed to derive a local density of dark matter that is an order of magnitude below standard expectations. We show that this result is incorrect and that it arises from the invalid assumption that the mean azimuthal velocity of the stellar tracers is independent of Galactocentric radius at all heights; the correct assumption---that is, the one supported by data---is that the circular speed is independent of radius in the mid-plane.

we find that the

data imply a local dark-matter density of 0.3 +/- 0.1 Gev/cm^3

arXiv.org > astro-ph > arXiv:1206.0015

Perseus Arm

Astrophysics > Galaxy Astrophysics

A new determination of the local dark matter density from the kinematics of K dwarfs

Silvia Garbari, Chao Liu, Justin I. Read, George Lake

We apply a new method to determine the local disc matter and dark halo matter density to kinematic and position data for \sim2000 K dwarf stars taken from the literature.

We perform a series of tests to demonstrate that our results are insensitive to plausible systematic errors in our distance calibration, and we show that our method recovers the correct answer from a dynamically evolved N-body simulation of the Milky Way. We find a local dark matter density of (0.95+0.53-0.49 GeV cm^-3) at 90% confidence assuming no correction for the non-flatness of the local rotation curve, and (0.85+0.57-0.50 GeV cm^-3) if the correction is included.

Summary: Tiny Rates R < 0.01 evt/kg/day $E_R < 100 \text{ keV}$

How to build a WIMP detector?

- large total mass, high A
- low energy threshold
- ultra low background
- good background discrimination

Backgrounds

- γ and β decays (electronic recoil)
- alphas can pose a problem (technology dependent)
- neutrons from (α,n) and sf in rocks and detector parts
- neutrons from cosmic ray muons

KENON100

Acorator Nazionali del Gran Sasso Vigs

World-wide Efforts

Direct WIMP Detection

Background Suppression

A Avoid Backgrounds Use of radiopure materials

Shielding

deep underground location large shield (Pb, water, poly) active veto (μ , γ coincidence) self shielding \rightarrow fiducialization

B Use knowledge about expected WIMP signal

2 Observables for Discrimination

The WIMP Landscape today

 \rightarrow this talk: focus only on spin-idependent, elastic interactions

some results are missing!

Light and heavy WIMPs

XENON100 threshold

For higher *E*_{rec}, sensitivity to low mass WIMPs is higher for light targets

- \rightarrow need low threshold
- → lower sensitivity can be (to some extent) compensated by target mass (CoGeNT: 0.33 kg, XENON100: 48.0 kg → factor ~150)

The WIMP Landscape today

some results are missing!

Annual Modulation: DAMA/Libra

- PMTs coupled to Nal(Tl) Scintillators @ LNGS
 → extremely clean background necessary
- looks for annual modulation (~3% effect)
- large mass and exposure: 1.17 ton years

- DAMA finds annual modulation @ 8.8 σ C.L.
- BUT: no ER/NR discrimination!

Annual Modulation: DAMA/Libra

CDMS-II

The WIMP Landscape today

some results are missing!

CoGeNT

PRL 106, 131301 (2011)

Am gammas on n+ contact surface events $_{10-90}(\mu s)$ bulk events electronic pulser 0. rise time 90% signal acceptance for bulk events ۰. میل 0.110 12 2 ionization energy (keVee)

p-type point contact Ge-detector, ultra low noise, very low threshold: 0.4 keVee underground @ Soudan no ER/NR discrimination, reduce surface events by risetime cut excess at lowest energies

M. Schumann (U Zürich) – Direct Dark Matter Searches

12

10

CoGeNT

PRL 106, 131301 (2011)

CoGeNT

PRL 106, 131301 (2011)

p-type point contact **Ge-detector**, ultra low noise, very low threshold: 0.4 keVee underground @ Soudan no ER/NR discrimination, reduce surface events by risetime cut excess at lowest energies

M. Schumann (U Zürich) – Direct Dark Matter Searches

Recent CoGeNT news:

Kopp, Schwetz, Zupan, arXiv:1110.2721 Kelso, Hooper, Buckley, arXiv:1110.5338

CoGeNT annual modulation PRL 107, 141301 (2011)

Rate vs Time::

Stability:

clear modulation in 15 months data modulation up to 3 keVee (~10 keVr)

CoGeNT stability not yet demonstated with DAMA standards

CoGeNT annual modulation PRL 107, 141301 (2011)

e.g. Fox et al, arXiv:1107.0717, also others...

there is a modulation

there is a significant component >1.5 keV

modulation not well explained by standard Maxwellian DM halo

XENON100 should have seen 10-30 events

CDMS-II should see O(1) modulation

arXiv:1107.0717

CDMS Annual Modulation arXiv:1203.1309

annual modulation analysis on NR data (with discrimination!)

No modulation is found: <0.06 evt/keVnr kg day in 5-11.9 keVnr at 99% CL

Inconsistent with CoGeNT in 1.2-3.2 keVee range at 98% CL

M. Schumann (U Zürich) – Direct Dark Matter Searches

A recent re-assessment of the low *E* quenching factor of Ge suggests that the whole CoGeNT region is covered by CDMS-II.

Barker, Mei: arXiv: 1203.4620

The WIMP Landscape today

some results are missing!

CRESST-II

Eur.Phys.J. C72 (2012) 1971

scintillating CaW04 crystals

detect light (silicon on sapphire+TES) and phonons (TES)

multi-target approach

excellent n- γ discrimination

730 kg \times d exposure published in 2011

 \rightarrow rather large background

 \rightarrow new run in 2012 to reduce bg

	M1	M2
e/γ -events	8.00 ± 0.05	8.00 ± 0.05
α -events	$11.5^{+2.6}_{-2.3}$	$11.2^{+2.5}_{-2.3}$
neutron events	$7.5 {+6.3 \atop -5.5}$	$9.7 {}^{+6.1}_{-5.1}$
Pb recoils	$15.0^{+5.2}_{-5.1}$	$18.7 \substack{+4.9 \\ -4.7}$
signal events	$29.4^{+8.6}_{-7.7}$	$24.2^{+8.1}_{-7.2}$
$m_{\chi} \; [\text{GeV}]$	25.3	11.6
$\sigma_{\rm WN}$ [pb]	$1.6\cdot 10^{-6}$	$3.7\cdot 10^{-5}$

The WIMP Landscape today

some results are missing!

Liquid Noble Gases: Detector Concepts

ZEPLIN III

PLB 709, 14 (2012)

- LXe dual phase detector
- was operated at Boulby mine (UK)
- science run 2011: 1344 kg x days raw exposure 8 events observed in the ROI (7-29 keVr)
 → compatible with background expectation
- ZEPLIN program has come to an end

XENON100 PRL 107, 131302 (2011)

Quick Facts

- 62 kg LXe target
- Dual phase TPC
- active LXe veto
- 242 PMTs
- running @ LNGS (IT)

Last science run:

- 4800 kg x d raw exposure 1471 kg x d acpt. corrected (100 GeV/c²)
- 3 events observed
- \rightarrow fully compatible with background
- \rightarrow best WIMP limit over large mass range

XENON100 PRL 107, 131302 (2011)

Last science run:

CRESST

XENON10

XENON100

- 4800 kg x d raw exposure 1471 kg x d acpt. corrected (100 GeV/c²)
- 3 events observed
- \rightarrow fully compatible with background
- \rightarrow best WIMP limit over large mass range

Nuclear Recoil Energy Scale

- WIMPs interact with target nucleus
 → nuclear recoil (*nr*) scintillation
 (β and γ's produce electronic recoils)
- absolute measurement is difficult
 → measure relative to ⁵⁷ Co (122keV)
- relative scintillation efficiency *L*_{eff}:

 $\mathcal{L}_{\text{eff}}(E_{\text{nr}}) = \frac{\text{LY}(E_{\text{nr}})}{\text{LY}(E_{\text{ee}} = 122 \text{ keV})}$

measurement principle:

Most precise measurement with Values down to 3 keVr by CU: *PRC 84, 045805 (2011)*

XENON100:

- take average of all existing measurements
- take into account uncertainty in PL analysis
 - \rightarrow get real 90% CL contour (stat AND syst)

XENON100

Current Science Run

- decreased background
- lower threshold
- more than 2x of 2010 dark matter data
- much more calibration data
- \rightarrow data analysis is almost done \rightarrow expect new results very soon

XMASS

- single phase LXe detector
- 800kg total, 100kg fiducial mass
- 60% of surface covered with 642 hexagonal PMTs
- very high LY (~7x higher than Xe100)

- located in Kamioka (JP)
- running since end of 2010; ultra low Kr85 background

XMASS announced background problems (surface events on Cu and from Al ring on PMTs) in March 2012

 \rightarrow needs more investigation

M. Schumann (U Zürich) – Direct Dark Matter Searches

- dual phase LXe TPC
- 2.4t LXe ("1m³ detector") 1t fiducial mass
- 100x lower background than Xe100 (self shielding, low radioactivity components)
- Timeline: 2010 2015
- start construction at LNGS this year

The Future...

M. Schumann (U Zürich) – Direct Dark Matter Searches

experiments using noble liquids 50

Summary

Backup

XENON10 "S2 only" Analysis PRL 107, 051301 (2011)

trade z-position+discrimination for lower threshold

XENON10 "S2 only" Analysis PRL 107, 051301 (2011)

•	12.5d	data	from	2006
---	-------	------	------	------

- trigger threshold at single electron level; data not used before
- require S2>5 e⁻ (~1.4 keV)
- radial cut r<3 cm, basically no z-cut \rightarrow 1.2 kg
- choosing Qy 40% higher (lower) would yield a 2x stronger (weaker) limit @ 7 GeV/c²

M. Schumann (U Zürich) – Direct Dark Matter Searches

Models:

Sorensen/Dahl,

Bezrukov et al., --

PRD83, 063501 (2011)

Criticism or Confusion?

Criticism or Confusion?

Conclusion: only if Qy is incompatible with data and theoretical understanding one can avoid the XENON10 contraints.