A Brief Introduction to Asymmetric Dark Matter

Mattias Blennow
Mattias.Blennow@mpi-hd.mpg.de

Max–Planck–Institut für Kernphysik

June 27, 2012 @ GGI, Florence, Italy
1 Asymmetric Dark Matter
1. Asymmetric Dark Matter

2. Type I: Sharing
1. Asymmetric Dark Matter

2. Type I: Sharing

3. Type II: Cogenesis
1. Asymmetric Dark Matter

2. Type I: Sharing

3. Type II: Cogenesis

4. Summary and conclusions
1 Asymmetric Dark Matter

2 Type I: Sharing

3 Type II: Cogenesis

4 Summary and conclusions
Beyond the Standard Model

Hints for physics beyond the Standard Model:
- Dark Matter
- Dark Energy
- Neutrino oscillations
Beyond the Standard Model

- Hints for physics beyond the Standard Model:
 - Dark Matter
 - Dark Energy
 - Neutrino oscillations

- Open questions
 - What is the nature of DM?
 - How is DM created?
 - Why is $\Omega_{DM} \sim \Omega_b$?
Comparing Baryonic and Dark Matter

<table>
<thead>
<tr>
<th>Baryons</th>
<th>Dark Matter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass:</td>
<td>Mass:</td>
</tr>
<tr>
<td>$m_N \simeq 1$ GeV</td>
<td></td>
</tr>
<tr>
<td>Abundance:</td>
<td>Abundance:</td>
</tr>
<tr>
<td>$n_b/n_\gamma = (6.19 \pm 0.15) \cdot 10^{-10}$</td>
<td></td>
</tr>
<tr>
<td>Density:</td>
<td>Density:</td>
</tr>
<tr>
<td>$\Omega_b \simeq 0.046$</td>
<td></td>
</tr>
</tbody>
</table>
Comparing Baryonic and Dark Matter

Baryons

- **Mass:** \(m_N \simeq 1 \text{ GeV} \)
- **Abundance:** \(n_b/n_\gamma = (6.19 \pm 0.15) \cdot 10^{-10} \)
- **Density:** \(\Omega_b \approx 0.046 \)

Dark Matter

- **Mass:** \(m_{DM} = ? \)
- **Abundance:**
- **Density:**
Motivation

Comparing Baryonic and Dark Matter

<table>
<thead>
<tr>
<th>Baryons</th>
<th>Dark Matter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass:</td>
<td>Mass:</td>
</tr>
<tr>
<td>(m_N \simeq 1 \text{ GeV})</td>
<td>(m_{DM} = ?)</td>
</tr>
<tr>
<td>Abundance:</td>
<td>Abundance:</td>
</tr>
<tr>
<td>(n_b/n_\gamma = (6.19 \pm 0.15) \cdot 10^{-10})</td>
<td>(n_{DM} = ?)</td>
</tr>
<tr>
<td>Density:</td>
<td>Density:</td>
</tr>
<tr>
<td>(\Omega_b \simeq 0.046)</td>
<td></td>
</tr>
</tbody>
</table>
Comparing Baryonic and Dark Matter

<table>
<thead>
<tr>
<th>Baryons</th>
<th>Dark Matter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass:</td>
<td>Mass:</td>
</tr>
<tr>
<td>$m_N \approx 1$ GeV</td>
<td>$m_{DM} = ?$</td>
</tr>
<tr>
<td>Abundance:</td>
<td>Abundance:</td>
</tr>
<tr>
<td>$n_b/n_\gamma = (6.19 \pm 0.15) \cdot 10^{-10}$</td>
<td>$n_{DM} = ?$</td>
</tr>
<tr>
<td>Density:</td>
<td>Density:</td>
</tr>
<tr>
<td>$\Omega_b \approx 0.046$</td>
<td>$\Omega_{DM} \approx 0.23$</td>
</tr>
</tbody>
</table>
Comparing Baryonic and Dark Matter

Baryons

Mass:
\[m_N \approx 1 \text{ GeV} \]

Abundance:
\[\frac{n_b}{n_\gamma} = (6.19 \pm 0.15) \cdot 10^{-10} \]

Density:
\[\Omega_b \approx 0.046 \]

Dark Matter

Mass:
\[m_{DM} = ? \]

Abundance:
\[n_{DM} = ? \]

Density:
\[\Omega_{DM} \approx 0.23 \]

\[\frac{\Omega_{DM}}{\Omega_b} \approx 5 \]
WIMP Dark Matter

- Theorists have a (unhealthy) predisposition to expect new physics at the TeV scale
WIMP Dark Matter

- Theorists have a (unhealthy) predisposition to expect new physics at the TeV scale.
- Assume dark matter at the TeV scale, $m_{DM} \simeq 0.1 - 1$ TeV.
WIMP Dark Matter

- Theorists have a (unhealthy) predisposition to expect new physics at the TeV scale
- Assume dark matter at the TeV scale, $m_{DM} \simeq 0.1 - 1 \text{ TeV}$
- Assume dark matter is produced thermally in the early Universe
WIMP Dark Matter

- Theorists have a (unhealthy) predisposition to expect new physics at the TeV scale
- Assume dark matter at the TeV scale, $m_{DM} \simeq 0.1 - 1$ TeV
- Assume dark matter is produced thermally in the early Universe

→ Cross section of weak strength
WIMP Dark Matter

- Theorists have a (unhealthy) predisposition to expect new physics at the TeV scale
- Assume dark matter at the TeV scale, $m_{DM} \approx 0.1 - 1$ TeV
- Assume dark matter is produced thermally in the early Universe
 \implies Cross section of weak strength
- Weakly Interacting Massive Particles (WIMPs)
WIMP Dark Matter

- Theorists have a (unhealthy) predisposition to expect new physics at the TeV scale
- Assume dark matter at the TeV scale, $m_{DM} \approx 0.1 - 1$ TeV
- Assume dark matter is produced thermally in the early Universe
 → Cross section of weak strength
- Weakly Interacting Massive Particles (WIMPs)
- Great! Or is it?
The WIMP miracle

<table>
<thead>
<tr>
<th>Baryons</th>
<th>WIMP Dark Matter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass:</td>
<td>Mass:</td>
</tr>
<tr>
<td>$m_N \simeq 1 , \text{GeV}$</td>
<td>$m_{DM} \simeq 1 , \text{TeV}$</td>
</tr>
<tr>
<td>Abundance:</td>
<td>Abundance:</td>
</tr>
<tr>
<td>$n_b/n_\gamma = (6.19 \pm 0.15) \cdot 10^{-10}$</td>
<td>$n_{DM} \simeq 10^{-3} n_b$</td>
</tr>
<tr>
<td>Density:</td>
<td>Density:</td>
</tr>
<tr>
<td>$\Omega_b \simeq 0.046$</td>
<td>$\Omega_{DM} \simeq 0.23$</td>
</tr>
</tbody>
</table>

$$\frac{\Omega_{DM}}{\Omega_b} \simeq 5$$

The WIMP miracle!
The WIMP miracle

Baryons

Mass:
\[m_N \simeq 1 \text{ GeV} \]

Abundance:
\[\frac{n_b}{n_\gamma} = (6.19 \pm 0.15) \cdot 10^{-10} \]
NOT thermal production!

Density:
\[\Omega_b \simeq 0.046 \]

WIMP Dark Matter

Mass:
\[m_{DM} \simeq 1 \text{ TeV} \]

Abundance:
\[n_{DM} \simeq 10^{-3} n_b \]

Density:
\[\Omega_{DM} \simeq 0.23 \]

\[\frac{\Omega_{DM}}{\Omega_b} \simeq 5 \]

The WIMP miracle!
Facing the WIMP miracle

If you like WIMPS:
“Just assuming new physics at TeV scale, we derived that DM interacts with a weak scale cross section to the SM. This fits my expectations of how and where new physics should be found.”

If you do not like WIMPS:
“I dont believe that just by coincidence you would get the same DM and baryon abundances when they have so different masses and production mechanisms. I want DM and baryons to be more similar.”
Facing the WIMP miracle

If you like WIMPS:
“Just assuming new physics at TeV scale, we derived that DM interacts with a weak scale cross section to the SM. This fits my expectations of how and where new physics should be found.”

If you do not like WIMPS:
“I dont believe that just by coincidence you would get the same DM and baryon abundances when they have so different masses and production mechanisms. I want DM and baryons to be more similar.”

Let us try to see if we can achieve this: Asymmetric Dark Matter (ADM)
How to make DM similar to baryons

- Baryons are Dirac fermions
- Baryon abundance is tied to baryon number \(B \)
- Baryons asymmetry seeded in early Universe

These assumptions makes DM similar to baryons and have similar number density, thus

\[
\frac{m_{DM}}{m_b} \simeq \frac{\Omega_{DM}}{\Omega_b} \simeq 5
\]
1. Asymmetric Dark Matter

2. Type I: Sharing

3. Type II: Cogenesis

4. Summary and conclusions
Sharing and Cogenesis

There are two main mechanisms behind ADM production:

Sharing:
Baryons and Dark Matter shares a primordial asymmetry produced in an arbitrary sector.

Cogenesis
The Baryon and Dark Matter asymmetries are produced by the same processes.

Conditions for Sharing

A few ingredients necessary for generating ADM in sharing models

\[B \quad \bar{B} \]
\[\chi \quad \bar{\chi} \]
Conditions for Sharing

A few ingredients necessary for generating ADM in sharing models

1. Asymmetry generation in arbitrary sector
Conditions for Sharing

A few ingredients necessary for generating ADM in sharing models

1. Asymmetry generation in arbitrary sector
2. Asymmetry transfer
Conditions for Sharing

A few ingredients necessary for generating ADM in sharing models

1. Asymmetry generation in arbitrary sector
2. Asymmetry transfer
3. Annihilation of symmetric (thermal) component
Asymmetry generation

- **Baryon number** B
 - Baryogenesis Sakharov 1967

- **Lepton number** L
 - Leptogenesis Fukugita, Yanagida 1986

- **Dark matter number** X
 - Xogenesis Buckley, Randal, arXiv:1009.0270

...
Asymmetry transfer

The transferring processes need to be:
- Fast and active in the early Universe
- Inactive at lower energies
Asymmetry transfer

The transferring processes need to be:
- Fast and active in the early Universe
- Inactive at lower energies

Effective operators

O^6
Asymmetric transfer

The transferring processes need to be:
- Fast and active in the early Universe
- Inactive at lower energies

Effective operators

Sphaleron processes

Mattias Blennow
A Brief Introduction to Asymmetric Dark Matter
Thermal component annihilation

- ADM has a mass in the few GeV region
- WIMPs get the correct relic abundance with a weak scale cross section
- Annihilation of lighter species require larger cross sections
 \[\Rightarrow \text{Larger annihilation cross section than weak} \]

ADM mass is higher, but abundance is Boltzmann suppressed compared to \(B \)

Thermal component does not annihilate directly into SM particles
Cosmological phenomenology

ADM generally has different cosmology than WIMP DM

- Only consisting of particles (no anti-particles) ⇒ no indirect detection
- Accumulates in stellar bodies – what is the effect on stellar evolution?
- Short range self-interacting ADM could alter halo evolution (to the better)
 Spergel, Steinhard, astro-ph/9909366
How asymmetric is ADM?

- Cross section close to what is required
- Annihilation is not complete
- Residual component of anti-ADM
- Phenomenological consequences?

Graesser, Shoemaker, Vecchi, JHEP 1110 (2011) 110
An example of sharing

Standard leptogenesis

Generation of lepton number asymmetry by CP violating decays of heavy Majorana fermion singlets N_R (typically type-I seesaw)

- Seeds a lepton number asymmetry L
- Transfers to baryon sector through $SU(2)_L$ sphalerons conserving $B - L$
Asymmetry transfer from L

- The asymmetry in L could transfer to both B and X
Asymmetric Dark Matter

Type I: Sharing

Type II: Cogenesis

Summary and conclusions

An example of sharing

Asymmetry transfer from L

- The asymmetry in L could transfer to both B and X

- Couple X to $SU(2)_L$ like baryons and leptons

Asymmetric transfer from \(L \)

- The asymmetry in \(L \) could transfer to both \(B \) and \(X \)

- Couple \(X \) to \(SU(2)_L \) like baryons and leptons

- Implies weakly interacting light \(X \), excluded by LEP
Aidnogenesis via Leptogenesis

- The basic idea: New gauge group to provide new sphalerons

- Extend the gauge sector of the SM
- Additional sphaleron processes
- Is this possible to achieve?

1. Asymmetric Dark Matter

2. Type I: Sharing

3. Type II: Cogenesis

4. Summary and conclusions
Cogenesis

Necessary ingredients for generating ADM in cogenesis models:
Cogenesis

Necessary ingredients for generating ADM in cogenesis models:

1. DM-SM interactions violating both B and \bar{B}

\[B \quad \bar{B} \]
\[X \quad \bar{X} \]
Cogenesis

Necessary ingredients for generating ADM in cogenesis models:

1. DM-SM interactions violating both
2. Out of thermal equilibrium

[Diagram showing four regions: B, B, X, X]
Necessary ingredients for generating ADM in cogenesis models:

1. DM-SM interactions violating both
2. Out of thermal equilibrium
3. Annihilation of symmetric (thermal) component
Asymmetric production in Cogenesis

- Consider a heavy field H with a CP violating decay

$$\Gamma(H \rightarrow BX) \neq \Gamma(H \rightarrow \bar{B}\bar{X})$$

- If the decays are out of thermal equilibrium (cf. Leptogenesis), asymmetries can result in both B and X

- Typically, it will be possible to assign X such that $X = -B$

- Dark Matter can be viewed as being anti-baryonic and carry the missing baryon number with $B_{SM} + B_{DM} = 0$
Cogenesis versus Sharing

There are pros and cons with both Cogenesis and Sharing:

- Cogenesis typically relates B and X through some fundamental interaction
- Typically B-X relation at a relatively low energy scale
- Problems consolidating with current bounds
- Difficulty of model building

- Sharing does not imply strong B-X interactions, just communication between the sectors
- Asymmetry production not related to B-X relation
- Asymmetry production can be put at very high scales
- More possibility of separating the physics of the two sectors
An example of Cogenesis

Hyloegenesis

- **Use the following ingredients:** Davoudiasl, et al, arXiv:1008.2399
 - Two heavy Dirac fermions X_1, X_2 ($M_{X_a} \gtrsim \text{TeV}$)
 - A GeV scale Dirac fermion Y
 - A GeV scale scalar Φ

- With proper assignment of Baryon numbers,
 $B_{X_a} = 1 = -(B_Y + B_{\Phi})$:

 $$-\mathcal{L} \supset \frac{\lambda_a}{M^2} \bar{X}_a P_R d \bar{u} c P_R d + \zeta_a \bar{X}_a Y^c \Phi^* + \text{h.c.}$$

![Diagram of interactions]

Mattias Blennow
Max–Planck–Institut für Kernphysik

A Brief Introduction to Asymmetric Dark Matter
1. Asymmetric Dark Matter

2. Type I: Sharing

3. Type II: Cogenesis

4. Summary and conclusions
We have . . .

- discussed the general principles of ADM
- discussed how different ADM models can be constructed
- discussed the two dominant ways of generating ADM
- seen selected examples
Incomplete set of references

Nussinov, 1985
Barr, et al, 1990
Kaplan, 1992
Kitano, Low, hep-ph/0411133
Agashe, Servant, hep-ph/0411254
Kaplan, arXiv:0901.4117
An, et al., arXiv:0911.4463
Frandsen, Sarkar, arXiv:1003.4505
Davoudiasl, et al, arXiv:1008.2399
Buckley, Randal, arXiv:1009.0270
MB, et al., arXiv:1009.3159
Hall, March-Russel, West, arXiv:1010.0245
Dutta, Kumar, arXiv:1012.1341
Falkowski, Ruderman, Volansky, arXiv:1101.4936
Cirelli, Panci, Servant, Zaharijas, arXiv:1110.3809
Petraki, Trodden, Volkas, arXiv:1111.4786
Kamada, Yamaguchi, arXiv:1201.2636
Haba, Matsumoto, Sato, arXiv:1101.5679
Heckman, Rey, arXiv:1102.5346
Graesser, Shoemaker, Vecchi, arXiv:1103.2771
Frandsen, Sarkar, Schmidt-Hoberg, arXiv:1103.4350
McDermott, Yu, Zurek, arXiv:1103.5472
Buckley, arXiv:1104.1429
Iminniyaz, Drees, Chen, arXiv:1104.5548
Batell, Pradler, Spannowsky, arXiv:1105.1781
Bell, et al., arXiv:1105.3730
Cheung, Zurek, arXiv:1105.4612
Davoudiasl, et al., arXiv:1106.4320
March-Russel, McCullough, arXiv:1106.4319
Cui, Randall, Shuve, arXiv:1106.4834
Arina, Sahu, arXiv:1108.3967
Buckley, Profumo, arXiv:1109.2164
Barr, arXiv:1109.2562
Lin, Yu, Zurek, arXiv:1111.0293
von Harling, Petraki, Volkas, arXiv:1201.2200
Iocco, Taoso, Leclercq, Meynet, arXiv:1201.5387
5 Asymmetric Dark Matter via Leptogenesis

6 A model of Asymmetric Dark Matter
Standard leptogenesis

Generation of lepton number asymmetry by CP violating decays of heavy Majorana fermion singlets N_R (typically type-I seesaw)

- Seeds a lepton number asymmetry L
- Transfers to baryon sector through $SU(2)_L$ sphalerons conserving $B - L$
Direct production

One way of producing ADM is to let the two sectors be seeded at the same time, i.e.,

- In addition to $N_R \rightarrow L\Phi$, we have $N_R \rightarrow X\phi$
- X can belong to a mirror world (An, et al., arXiv:0911.4463) or be the ADM itself (Falkowski, et al., arXiv:1101.4936)
- The mirror world has problems with extra radiation and neutrinos mixing between worlds
- The pure ADM model needs extra symmetries to prevent DM-neutrino mixing
- It is also a Majorana fermion \rightarrow small or no window (Buckley, Profumo, arXiv:1109.2164)
Asymmetry transfer from L

- The asymmetry in L could transfer to both B and X
Asymmetric transfer from L

- The asymmetry in L could transfer to both B and X

- Couple X to $SU(2)_L$ like baryons and leptons

Asymmetry transfer from L

- The asymmetry in L could transfer to both B and X

- Couple X to $SU(2)_L$ like baryons and leptons

- Implies weakly interacting light X, excluded by LEP
Aidnogenesis via Leptogenesis

- The basic idea: New gauge group to provide new sphalerons
- Extend the gauge sector of the SM
- Additional sphaleron processes
- Is this possible to achieve?

5 Asymmetric Dark Matter via Leptogenesis

6 A model of Asymmetric Dark Matter
Extending the SM gauge group

- We want to introduce new spalerons \Rightarrow extend the gauge group
Extending the SM gauge group

- We want to introduce new spalerons \(\Rightarrow\) extend the gauge group
- We want (part of) the extended group to couple to both SM and DM
Extending the SM gauge group

- We want to introduce new spalerons \(\Rightarrow \) extend the gauge group
- We want (part of) the extended group to couple to both SM and DM
- We want to prevent mixing between neutrinos and DM
Extending the SM gauge group

- We want to introduce new spalerons \Rightarrow extend the gauge group
- We want (part of) the extended group to couple to both SM and DM
- We want to prevent mixing between neutrinos and DM

\[G_{ADM} = G_{SM} \times SU(2)_H \]

- Horizontal chiral symmetry providing new spalerons
Extending the SM gauge group

- We want to introduce new spalerons ⇒ extend the gauge group.
- We want (part of) the extended group to couple to both SM and DM.
- We want to prevent mixing between neutrinos and DM.

\[G_{ADM} = G_{SM} \times SU(2)_H \times SU(3)_{dc} \]

- Horizontal chiral symmetry providing new spalerons.
- Charge DM under additional “dark color” group to prevent mixing with singlets.
Introduction of new fermion fields

For each SM generation, we also introduce:

■ A right handed fermion singlet N_R (type-I seesaw) \Rightarrow leptogenesis, neutrino masses

■ A dark sector of fermions x_R, x_L, which will form a Dirac fermion \Rightarrow ADM

■ Put different flavors of right handed fields in doublets of $SU(2)_H$:

$$
\begin{pmatrix}
e \\
\mu \\
u \\
c
\end{pmatrix}_R,
\begin{pmatrix}
u \\
c
\end{pmatrix}_R,
\begin{pmatrix}
d \\
s
\end{pmatrix}_R,
\begin{pmatrix}
x_1 \\
x_2
\end{pmatrix}_R
$$

■ Make x_R and x_L triplets under $SU(3)_{dc} \Rightarrow x_L$ does not mix with N_R (and some interesting phenomenology)
Complete fermion content

<table>
<thead>
<tr>
<th>Field</th>
<th>Y</th>
<th>L</th>
<th>H</th>
<th>C</th>
<th>dc</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_{L\alpha} (\nu_{\alpha L}, \ell_{\alpha L})$</td>
<td>$-1/2$</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$L_H (e_R, \mu_R)$</td>
<td>-1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>τ_R</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$\nu_{\alpha R}$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$Q_{\alpha L} (u_{\alpha L}, d_{\alpha L})$</td>
<td>$1/6$</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>$Q^u_H (u_R, c_R)$</td>
<td>$2/3$</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>$Q^d_H (d_R, s_R)$</td>
<td>$-1/3$</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>t_R</td>
<td>$2/3$</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>b_R</td>
<td>$-1/3$</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>$X_H (x_{1R}^1, x_{2R}^2)$</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>x_{3R}, x_{L}^{α}</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>
Removing the thermal component

\[\bar{X} \]
Removing the thermal component

\[\bar{X} \]

\[SU(3)_{dc} \]

\[\bar{XX} \]
Removing the thermal component
Removing the thermal component

\[\bar{X} \]

\[SU(3)_{dc} \]

\[SU(2)_H \]

\[SM \]
Dark matter properties

- The $SU(2)_H$ sphalerons satisfy $\Delta B = 2\Delta L = 2\Delta X$
- Along with SM sphalerons, $B - L - X$ remains non-anomalous and conserved
- After sphaleron freezout

$$X = -\frac{11}{14}B \Rightarrow m_{DM} = 5.94 \pm 0.42 \text{ GeV}$$

- $SU(3)_{dc}$ is confining \Rightarrow DM consists of dark baryons
- We expect a thermal abundance of both DM and anti-DM in the early Universe
- Below the $SU(3)_{dc}$ phase transition, the thermal component goes into dark mesons
- Dark mesons decay to SM via $SU(2)_H$
In the early Universe

- We want the dark mesons to decay before BBN \Rightarrow lower bound on G_F^H
- The $SU(2)_H$ is going to induce FCNC, from $K^0 \rightarrow e\mu$:
 $$G_F^H < 3.6 \cdot 10^{-12} \text{ GeV}^2$$
- Too low for dark mesons to decay fast enough
- Could couple to second and third generation where bounds are weaker
Breaking $SU(2)_H$ in stages

- Another possibility: $SU(2)_H$ is broken to a flavor conserving $U(1)$
- Break $SU(2)_H$ by a scalar triplet vev in the flavor conserving direction

For $\tau < 10^{-2} \text{ s}$

\[G_F^H > \]

\[5 \cdot 10^{-11} \text{ GeV}^2 \]
\[10^{-10} \text{ GeV}^2 \]
\[5 \cdot 10^{-10} \text{ GeV}^2 \]
\[10^{-9} \text{ GeV}^2 \]
With τ in the doublet
Our model has the following “nice” features:

- Anomaly free extension of the SM gauge group
- Dark matter and baryon abundances similar
- Dark matter and baryon masses similar and given by similar processes
- Dark matter is stable without any additional parity
- Allows for some interesting phenomenology at low energies, such as flavor violation or possible direct detection

In fairness, also some “ugly” features must be mentioned:

- Why a horizontal $SU(2)$?
- The assignment of flavors to $SU(2)_H$ doublets is artificial
- Difficult to extend to, e.g., $SU(3)$ flavor symmetry