Superluminal us

A. Cohen

GGI Invisibles/Imaginaries—What is ν ?

2012-06-29 Fri

Superluminal

25

CERN hosts the report

PRESS RELEASE:

OPERA experiment reports anomaly in flight time of neutrinos from CERN to Gran Sasso

Geneva, 23 September 2011. The OPERA experiment, which observes a neutrino beam from CERN 730 km away at Italy's INFN Gran Sasso Laboratory, will present new results in a seminar at CERN this afternoon at 16:00 CEST. The seminar will be webcast at http://webcast.cern.ch. Journalists wishing to ask questions may do so via twitter using the hash tag #nuquestions, or via the usual CERN press office channels.

OPERA -

September 2011

Neutrmos travel faster than light

$$S = \frac{v^2 - 1}{v^2} \simeq 5 10^{-5}$$

THE MEDIA

THE MEDIA Einstein was wrong.

THE MEDIA Einstein was wrong. Time Travel Possible

THE MEDIA Einstein was wrong. Time Travel Possible GPS no longer works

THE MEDIA Einstein was wrong. Time Travel Possible GPS no longer works Einstein is right!

THE MEDIA Einstein was wrong. Time Travel Possible GPS no longer works

EINSTEIN 15 right,
He's so smart

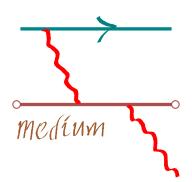
SKEPTICISM (Physicists)

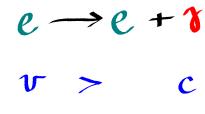
$$S = 5 \text{ No}^{-5}$$
is enormous!

SKEPTICISM (con't)

Supernova 1987a Ve and 8 t~168,000 lightyears Dt ~ 3 hours

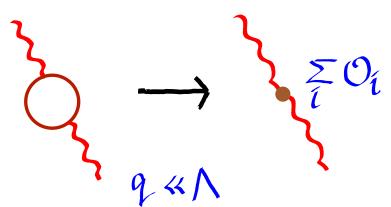
SUPERNOVA


 $\delta_{1} \lesssim 5 \cdot 10^{-9}$


MeV energies Electron-type neutrinos

CNGS BEAM

Muon seutrinos E ~ 10s of GeV OTHER LIMITS $|\mathcal{S}_e| \lesssim \begin{cases} 10^{-16} \\ 10^{-9} \end{cases}$ ECINGS trom Cerenkov-like processes


CERENKOY

CERENKOV medium

CERENKOV

CERENKOV

$$\mathcal{O} \supset \frac{\delta_{\varepsilon}}{2} \vec{E}^{2} - \delta_{B} \vec{B}^{2} + \cdots$$

CERENKOV

$$0 \supset \frac{\delta_{\varepsilon}}{2} \vec{E}^{2} - \delta_{B} \vec{B}^{2} + \cdots$$

Electric & Magnetic Permeubility $c^2 = \frac{1 + \delta_B}{1 + \delta_B}$

$$c^2 = \frac{1 + \delta_B}{1 + \delta_c}$$

S.PEED OF WHAT Rescale Kmjtjx $C_X \longrightarrow \Lambda$ Other particles have different (maximal) velocities

ASSUMPTIONS

Conserved Generators of spacetime translations

(E,F):
$$\chi \rightarrow \chi + \alpha$$

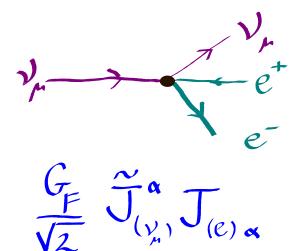
Small departures from Lorentz
 $L = L_0 + \delta L$

VACUUM CERENKOV

$$e^{-} \rightarrow e^{+} \uparrow \qquad v_{e} > \Lambda$$
 $\uparrow \rightarrow e^{+} + e^{-} \qquad v_{e} < \Lambda$

$$\frac{1}{x} \rightarrow \frac{1}{x} + \frac{1}{y}$$

$$\frac{1}{x} \rightarrow \frac{1}{x} + \frac{1}{y} + \frac{1}{y}$$


$$\frac{1}{x} \rightarrow \frac{1}{x} + e^{+} + e^{-}$$

$$\begin{array}{c} X \\ \downarrow_{x} \longrightarrow \downarrow_{x} + Y \\ \downarrow_{x} \longrightarrow \downarrow_{x} + \downarrow_{y} + \overline{y}_{y} \\ \downarrow_{x} \longrightarrow \downarrow_{x} + e^{+} + e^{-} \end{array}$$

$$\begin{array}{c} X \\ \downarrow_{x} \longrightarrow \downarrow_{x} + Y \\ X \\ \downarrow_{x} \longrightarrow \downarrow_{x} + \downarrow_{y} + \overline{\downarrow}_{y} \\ \downarrow_{x} \longrightarrow \downarrow_{x} + e^{+} + e^{-} \end{array}$$

$$\begin{array}{c} X & y_{x} \longrightarrow y_{x} + Y \\ X & y_{x} \longrightarrow y_{x} + y_{y} + \overline{y}_{y} \\ \sqrt{y_{x} \longrightarrow y_{x} + e^{+} + e^{-}} \end{array}$$

WEAK INTERACTION

WEAK INTERACTION

$$\Gamma = k \frac{G_F^2}{192\pi^3} E^5 S^3$$

$$\frac{1E}{1} = -k' \frac{G_F^2}{1} E^5 S^3$$

$$k = \frac{2}{35}$$

$$k' = \frac{5}{112}$$

OPERA IMPLICATION With $\delta \sim 510^{-5}$ neutrinos from CERN with E>13 GeV ravely reach the Gran Susso

ICARUS E NOMAD Limit & From absence of ete pairs $\delta < 2 10^{-8}$ ICARUS

ICARUS E NOMAD Limit & From absence of ete pairs

Nomad Emulsions Would be black from pairs,

THE FAT LADY SINGS

An improperly attached cable introduced timing arromaly

No significant departure from speed of light

NEW CONSTRAINTS

Absence of Cerenkov-hke energy loss constrains &

NEW CONSTRAINTS

Absence of Cerenkov-hke energy loss constrains δ

Tistant Source

NEUTRINO TELESCOPES

Observation of neutrinos of energy E at low tenth amyle

$$S < \text{few 10}^{-3} \left(\frac{\text{GeV}}{\text{E}} \right)^{\frac{3}{3}}$$

NEUTRINO TELESCOPE

8 < 10-12 from observation of few hundred TeV neutrinos

CONCLUSIONS

- No evidence for super(uminal neutinos
- Strong New constraints on neutrino Loventz Violation $\delta < 10^{-12}$