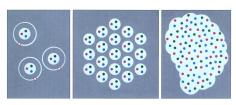
Conformality in many-flavor strongly coupled lattice QCD

arXiv:1208.2148

Philippe de Forcrand (ETH & CERN) with Seyong Kim (Sejong Univ.) and Wolfgang Unger (ETH)

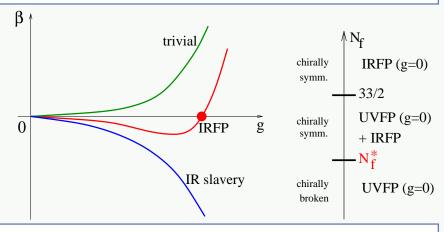
GGI Florence Aug. 15, 2012



Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Question: What happens to QCD when N_f increases?

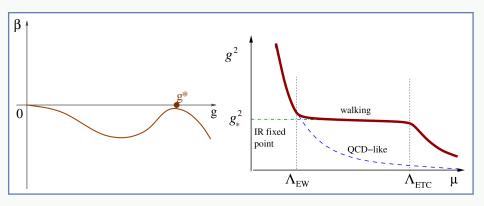
Classification of QCD-like SU(3) theories with N_f fundamental quarks



"Conformal window": $N_f \in [N_f^*, \frac{33}{2}[\rightarrow \text{non-trivial IRFP}]$

• Upper edge $N_f \lesssim \frac{33}{2} \to \mathsf{IRFP}\ g^* \ll 1 \to \mathsf{pert.th.}\ (\mathsf{Banks}\ \&\ \mathsf{Zaks})$ • Lower edge?

"Walking": $N_f = N_f^* - \varepsilon$, just below the conformal window



- $\varepsilon \to 0$, ie. $N_f \to N_f^*$: double zero of β -fct \to Miransky scaling etc..
- scalar Techni-meson: possibility for light composite Higgs!
- ullet pheno OK (FCNCs): walking \to push up the scale of new (ETC) physics

Must distinguish between walking and conformal \rightarrow triple difficulty:

- probe extreme infrared
- take continuum limit
- keep quarks massless

Must distinguish between walking and conformal \rightarrow triple difficulty:

- probe extreme infrared
- take continuum limit

keep quarks massless

Models studied

Red: conformal Blue: χ SB Black: unclear

- SU(3) + $N_f = 8-16$ fundamental rep:
 - N_f = 8: Appelguist et al; Deuzeman et al; Fodor et al; Jin et al
 - $ightharpoonup N_f = 9$: Fodor et al
 - N_f = 10: Hayakawa et al; Appelguist et al
 - N_f = 12: Hasenfratz; Appelquist et al; Deuzeman et al; Xin and Mawhinney; Fodor et al
 - N_f = 16: Damgaard et al: Heller: Hasenfratz: Fodor et al.
- SU(2) + fundamental rep fermions:
 - N_f = 4: Karavirta et al
 - N_f = 6: Del Debbio et al: Karavirta et al: Appelguist et al (unclear)
 - ► N_f = 8: Iwasaki et al
 - N_f = 10: Karavirta et al
- ullet SU(2) + $N_f=2$ adjoint rep: Catterall et al; Bursa et al; Hietanen et al; De Grand et al
- SU(3) + $N_f = 2$ 2-index symmetric rep: DeGrand et al; Sinclair and Kogut; Fodor et al
- SU(4) + N_f = 2 2-index symmetric rep: DeGrand et al

Must distinguish between walking and conformal \rightarrow triple difficulty:

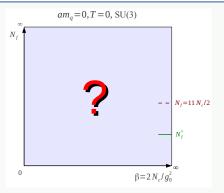
- probe extreme infrared
- take continuum limit
- keep quarks massless

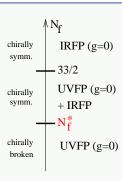
- "time-invariance" violated :-) DeGrand, Shamir & Svetitsky, sextet QCD: IRFP \rightarrow no IRFP \rightarrow inconcl. 0803.1707 0812.1427 1110.6845
- need to probe infrared → extremely coarse lattices → discretization errors?
 small discretization error can mask physical running behaviour → improved actions?

Must distinguish between walking and conformal \rightarrow triple difficulty:

- probe extreme infrared
- take continuum limit
- keep quarks massless

Here: no continuum limit





Strong coupling limit: $\beta = 0$

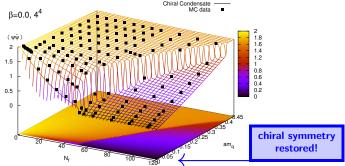
Mean Field: chiral symmetry is always broken in the strong-coupling limit of staggered fermions at T=0 for all values of $N_{\rm f}$ and $N_{\rm c}$

- chiral condensate well known to be independent of $N_{\rm f}$ and $N_{\rm c}$, i.e. in d spatial dimensions: [Kluberg-Stern et~al.,~1983] $\left<\bar{\psi}\psi\right> (T=0) = \frac{\left((1+d^2)^{1/2}-1)/2\right)^{1/2}}{d}$
- we also found, following [Damgaard *et al.*, 1985]: chiral restoration temperature is $T_c = \frac{d}{4} + \frac{d}{8} \frac{N_c}{N_f} + \mathcal{O}(\frac{1}{N_c^2})$
- mean field expected to work well for large number of d.o.f. per site, e.g. exact results in the Gross-Neveu model for $N_{\rm f} \to \infty$

Conventional wisdom: [Poul Damgaard et al., hep-lat/9701008]: "we see no reasons or numerical indications whatsoever for sensitivity to N_f on the extreme strong-coupling side"

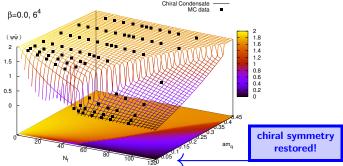
$$S_{\mathrm{eff}} = -N_f \mathrm{Tr} \log (m_q - D) = N_f \sum_k rac{1}{k m_q^k} \mathrm{Tr} D^k + \mathrm{const.}$$

 Answer from Monte Carlo: Surprise! strong first order N_f-driven bulk transition for strong-coupling limit of staggered fermions found



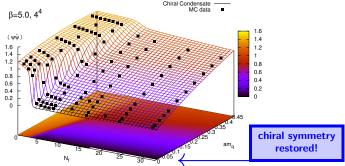
• $N_{\rm f}^c \simeq 52$ continuum flavors for $m_q = 0$, $N_{\rm f}^c$ increases with m_q (heavy fermions \rightarrow less ordering)

• Answer from Monte Carlo: Surprise! strong first order N_f -driven bulk transition for strong-coupling limit of staggered fermions found



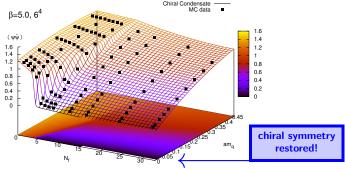
• $N_{\rm f}^c \simeq 52$ continuum flavors for $m_q = 0$, $N_{\rm f}^c$ increases with m_q (heavy fermions \rightarrow less ordering), almost no finite size effects

• Answer from Monte Carlo: Surprise! strong first order N_f -driven bulk transition for strong-coupling limit of staggered fermions found



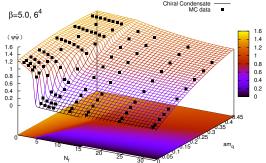
• $\beta = 5$ similar but $N_{\rm f}^c$ smaller

• Answer from Monte Carlo: Surprise! strong first order N_f -driven bulk transition for strong-coupling limit of staggered fermions found



• $\beta = 5$ similar but $N_{\rm f}^c$ smaller, stronger finite size effects

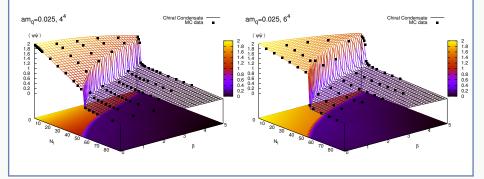
• Answer from Monte Carlo: Surprise! strong first order N_f -driven bulk transition for strong-coupling limit of staggered fermions found



• Explanation for failure of mean field: terms of $\mathcal{O}(\frac{N_f}{N_c}, \frac{N_f}{d^2})$ are neglected (hopping of two mesons, baryon loops)

The Chirally Restored Phase for large β

- ullet smooth variation with $eta
 ightarrow {\it N}_{
 m f}$ -driven transition extends to weak coupling
- $N_{\rm f}^c \simeq \mathcal{O}(10)$ at weaker coupling
- connection with N_f-driven transition to conformal window?



Characterizing the chirally restored phase

Chirally symmetric yet "confining" $(\beta = 0)$

Conformal or not ? If conformal, trivial (IRFP $g^* = 0$) or not?

Characterizing the chirally restored phase

Chirally symmetric yet "confining" $(\beta = 0)$

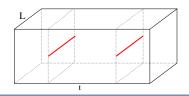
Conformal or not ? If conformal, trivial (IRFP $g^* = 0$) or not?

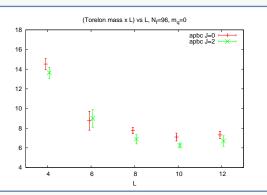
- Numerical simulations: $N_f=56~\&~96,~\beta=0,~m_q=0,~{\rm max.}~12^3\times 24$ ordinary HMC
- ullet $\langle {
 m Plaq}
 angle pprox 0.35$ & 0.52, similar to weak-coupling; eta = 0 not special
- Observables: torelon mass (gluon flux tube)
 - Dirac eigenvalue spectrum
 - meson masses

Characterizing the chirally restored phase: I. Torelon masses

Energy of spatially-wrapping loop $E(L) \propto \sigma L$ in confining theory Here:

- *E*(*L*) decreases as *L* increases
- $E(L) \sim 1/L$

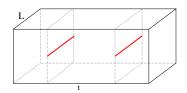


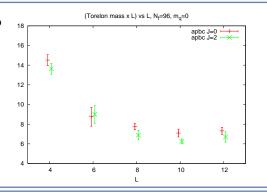


Characterizing the chirally restored phase: I. Torelon masses

Energy of spatially-wrapping loop $E(L) \propto \sigma L$ in confining theory Here:

- *E*(*L*) decreases as *L* increases
- $E(L) \sim 1/L$



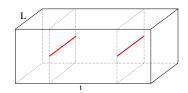


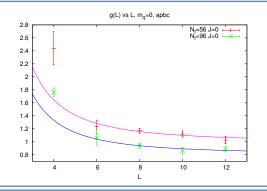
Explanation: no string tension, no flux tube Torelon is simply glueball with mass $\sim 1/L \rightarrow \text{IR conformal}$

Characterizing the chirally restored phase: I. Torelon masses

Energy of spatially-wrapping loop $E(L) \propto \sigma L$ in confining theory Here:

- *E*(*L*) decreases as *L* increases
- $E(L) \sim 1/L$





Explanation: no string tension, no flux tube Torelon is simply glueball with mass $\sim 1/L \rightarrow \text{IR conformal}$

Torelon mass is Debye mass m_D after relabeling axes

Remember $m_D = 2gT\sqrt{\frac{N_c}{3} + \frac{N_f}{6}}$ \rightarrow Define running coupling $g(L) = m_D(L)L/2\sqrt{\frac{N_c}{3} + \frac{N_f}{6}}$ In that scheme, $g(L) = \text{const.} + \mathcal{O}(1/L^2) \Longrightarrow$ non-trivial IRFP! $(g^* \searrow \text{as } N_f \nearrow)$

Dirac eigenvalue spectrum, measured at zero quark mass, $\beta=0$:

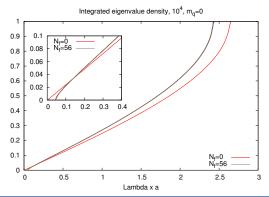
- integrated eigenvalue density: $\int_0^\lambda \rho(\bar{\lambda}) d\bar{\lambda} = \frac{\mathrm{rank}(\lambda)}{\mathrm{rank}(\mathrm{Dirac\ matrix})} \in [0,1]$
- \bullet measures the fraction of eigenvalues smaller than λ
- derivative gives $\rho(\lambda)$

Dirac eigenvalue spectrum, measured at zero quark mass, $\beta = 0$:

• integrated eigenvalue density: $\int_0^\lambda \rho(\bar{\lambda}) d\bar{\lambda} = \frac{\operatorname{rank}(\lambda)}{\operatorname{rank}(\operatorname{Dirac matrix})} \in [0,1]$

Compare $N_f = 0$ (quenched configurations) and $N_f = 56$ (chirally symmetric phase)

- similar for large eigenvalues (UV)
- the $N_{\rm f}=56$ curve shows a gap for small eigenvalues (IR), consistent with chiral symmetry restoration: $\rho(0)=0$

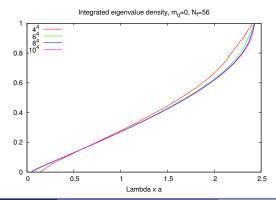


Dirac eigenvalue spectrum, measured at zero quark mass, $\beta = 0$:

• integrated eigenvalue density: $\int_0^\lambda \rho(\bar{\lambda}) d\bar{\lambda} = \frac{\operatorname{rank}(\lambda)}{\operatorname{rank}(\operatorname{Dirac\ matrix})} \in [0,1]$

Compare different volumes for $N_{\rm f}=56$:

- large eigenvalues (UV) are L-independent,
- the IR spectral gap shrinks as L increases

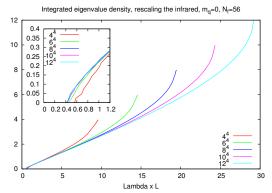


Dirac eigenvalue spectrum, measured at zero quark mass, $\beta = 0$:

• integrated eigenvalue density: $\int_0^\lambda \rho(\bar{\lambda}) d\bar{\lambda} = \frac{\mathrm{rank}(\lambda)}{\mathrm{rank}(\mathrm{Dirac\ matrix})} \in [0,1]$

Compare different volumes for $N_{\rm f}=56$:

- IR spectrum invariant after rescaling by L: spectral gap $\propto 1/L$
- IR physics only depends on L, while the UV physics depends on a
- no other scale in the system \Rightarrow Dirac spectrum consistent with IR-conformal theory!

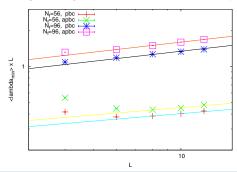


Dirac eigenvalue spectrum, measured at zero quark mass, $\beta = 0$:

• integrated eigenvalue density: $\int_0^\lambda \rho(\bar{\lambda}) d\bar{\lambda} = \frac{\mathrm{rank}(\lambda)}{\mathrm{rank}(\mathrm{Dirac\ matrix})} \in [0,1]$

Compare different volumes for $N_{\rm f}=56$:

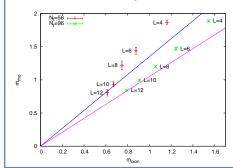
- IR spectrum invariant after rescaling by L: spectral gap $\propto 1/L$
- IR physics only depends on L, while the UV physics depends on a
- ullet no other scale in the system \Rightarrow Dirac spectrum consistent with IR-conformal theory!
- Tiny deviations from 1/L scaling \rightarrow anomalous mass dimension γ^* (\sim 0.26 and 0.38)



Characterizing the chirally restored phase: III. hadron masses

Hadron spectrum obtained from simulations with $N_{\rm f}=56$ and $N_{\rm f}=96$ at zero quark mass

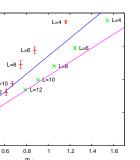
- hadron masses measured for $m_q = 0$ are non-zero
- but masses decrease (a lot) as the lattice size L is increased
- parity partners degenerate (c.f. chiral symmetry restoration)
- mass ratios \sim independent of L ?:



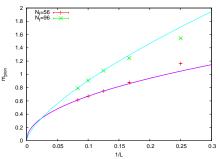
Characterizing the chirally restored phase: III. hadron masses

Hadron spectrum obtained from simulations with $N_{\rm f}=56$ and $N_{\rm f}=96$ at zero quark mass

- hadron masses measured for $m_q = 0$ are non-zero
- but masses decrease (a lot) as the lattice size L is increased
- parity partners degenerate (c.f. chiral symmetry restoration)
- mass ratios \sim independent of L ?:



$$M_H \propto (1/L)^{\frac{1}{1+\gamma^*}} \quad (\gamma^* \sim 1.0 \& 0.4)$$



0.2

1.5

0.5

Conjecture: $\beta=0$ IR-conformal phase is analytically connected with the weak-coupling, continuum IR-conformal phase

Study of continuum limit is much more difficult:

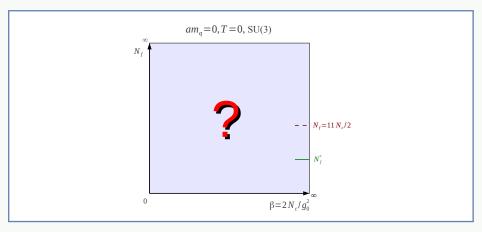
- for a given lattice size L^4 , the scales are ordered as $a \ll 1/\Lambda \ll L$
- at strong-coupling the hierarchy is $a \simeq 1/\Lambda \ll L$
- range of conformal invariance ($L\Lambda$) maximized at $\beta=0$ for given lattice size L/a weak coupling: strong coupling:

Conjecture: $\beta=0$ IR-conformal phase is analytically connected with the weak-coupling, continuum IR-conformal phase

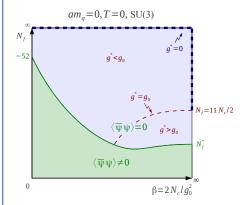
Study of continuum limit is much more difficult:

- for a given lattice size L^4 , the scales are ordered as $a \ll 1/\Lambda \ll L$
- at strong-coupling the hierarchy is $a \simeq 1/\Lambda \ll L$
- range of conformal invariance ($L\Lambda$) maximized at $\beta=0$ for given lattice size L/a weak coupling: strong coupling:

strong-coupling limit is the laboratory of choice to study a 4d IR-conformal gauge theory

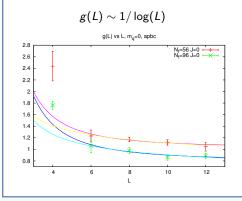


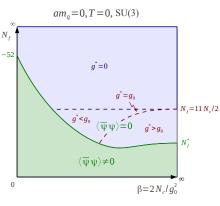
• IF $\beta = 0$ chirally symmetric phase is non-trivial

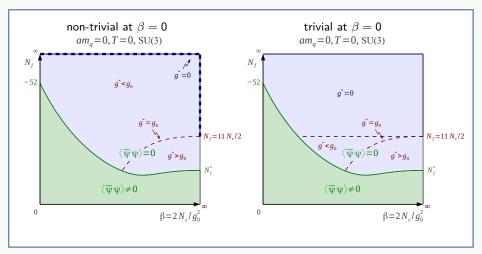


Dashed line $g^* = g_0$ is NOT a phase transition (scheme-dependent)

• Or IF $\beta = 0$ chirally symmetric phase is trivial







Either way, single phase transition (chiral symmetry): if all first-order \rightarrow "jumping" dynamics (Sannino) no walking!

Conclusions

Shown: for $\beta = 0$, a strong first order bulk transition exists which is N_f -driven to a chirally symmetric phase

- ullet in the chiral limit: $N_{
 m f}^c=52(4)$ continuum flavors
- finding in contrast to meanfield prediction (go back to meanfield ?)
- chirally restored phase extends towards weak coupling

Argued: for $\beta \! = \! 0$, "large- $N_{\rm f}$ QCD" is IR-conformal with [perhaps] non-trivial IRFP

- strong-coupling limit allows economical study of a 4d IR-conformal gauge theory
- large $N_{\rm f}, m_{\rm q} = 0$ simulations can be performed without too much computer effort \rightarrow single IR scale L

Conjectured: strong coupling chirally symmetric, IR-conformal phase is analytically connected with the **continuum IR-conformal phase**

Conclusions

Shown: for $\beta = 0$, a strong first order bulk transition exists which is N_f -driven to a chirally symmetric phase

- ullet in the chiral limit: $N_{
 m f}^c=52(4)$ continuum flavors
- finding in contrast to meanfield prediction (go back to meanfield ?)
- chirally restored phase extends towards weak coupling

Argued: for $\beta = 0$, "large- $N_{\rm f}$ QCD" is IR-conformal with [perhaps] non-trivial IRFP

- strong-coupling limit allows economical study of a 4d IR-conformal gauge theory
- large $N_{\rm f}, m_{\rm q} = 0$ simulations can be performed without too much computer effort \rightarrow single IR scale L

Conjectured: strong coupling chirally symmetric, IR-conformal phase is analytically connected with the **continuum IR-conformal phase**

Questions:

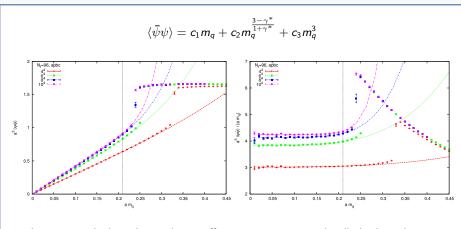
- larger L at $\beta = 0 \rightarrow \text{trivial or non-trivial}$?
- ullet follow transition line to weak coupling ullet first-order ?
- other ETC theories (esp. adjoint fermions) ?
- non-zero m_a , non-zero T ?

Earlier references

Our findings are consistent with the literature:

- ullet Kogut, Sinclair, Nucl. Phys. B295 (1985) bulk transition for $N_{
 m f}=12$
- Damgaard, et al., Phys. Lett. B400 (1997): bulk transition for $N_{\rm f}=16$
- Deuzeman et al., PRD 82 (2010) bulk transition for $N_f = 12$
- ullet Jin, Mawhinney, PoS Lattice2011: bulk transition for $N_{
 m f}=12$ with improved action
- ullet A. Hasenfratz, hep-lat/1111.2317 (2012): bulk transition for $N_{
 m f}=8,12$
-

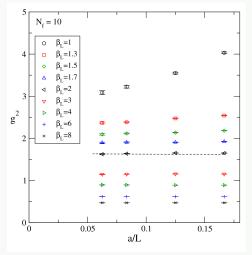
Mass deformation: can one determine γ^* ?



- ullet heavier quarks have less ordering effect o transition to chirally broken phase
- \bullet systematic error from finite-size effects, fitting range and analytic ansatz $~(\gamma^* \! < \! 0)$

For a given N_f , does g^* depend on β ?

Rummukainen et al, arXiv:1111.4104: SU(2) with $N_f = 10 \rightarrow Banks-Zaks$ perturbative IRFP



Does $g^2(\beta, a/L)$ go to $(g^2)^*$ when $a/L \to 0 \quad \forall \beta$?