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QCD phase diagram
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QCD phase diagram?

at finite baryon chemical potential: complex weight

straightforward importance sampling not possible

overlap problem

various possibilities:

preserve overlap as best as possible

use approximate methods at small µ

do something radical:

rewrite partition function in other dof
explore field space in a different way
. . .
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Outline

into complex plane

reminder: real vs. complex Langevin dynamics

troubled past: stability and convergence

SU(3) spin model . . .

. . . versus XY model

Haar measure

lessons? exploit freedom?
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Overlap problem

configurations differ in an essential way from those
obtained at µ = 0 or with | detM |

cancelation between configurations with ‘positive’ and
‘negative’ weight

dominant configurations
in the path integral? x

 x)Reρ(  
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Complex integrals

consider simple integral

Z(a, b) =

∫ ∞

−∞

dx e−S(x) S(x) = ax2 + ibx

complete the square/saddle point approximation:

into complex plane

lesson: don’t be real(istic), be more imaginative

radically different approach:

complexify all degrees of freedom x→ z = x+ iy

enlarged complexified space

new directions to explore
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Complexified field space

dominant configurations in the path integral?

x

 x)Reρ(  

⇒

y

x

real and positive distribution P (x, y): how to obtain it?

⇒ solution of stochastic process

complex Langevin dynamics
Parisi 83, Klauder 83
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Real Langevin dynamics

partition function Z =
∫

dx e−S(x) S(x) ∈ R

Langevin equation

ẋ = −∂xS(x) + η, 〈η(t)η(t′)〉 = 2δ(t− t′)

associated distribution ρ(x, t)

〈O(x(t)〉η =

∫

dx ρ(x, t)O(x)

Langevin eq for x(t) ⇔ Fokker-Planck eq for ρ(x, t)

ρ̇(x, t) = ∂x
(

∂x + S′(x)
)

ρ(x, t)

stationary solution: ρ(x) ∼ e−S(x)
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Fokker-Planck equation

stationary solution typically reached exponentially fast

ρ̇(x, t) = ∂x
(

∂x + S′(x)
)

ρ(x, t)

write ρ(x, t) = ψ(x, t)e−
1

2
S(x)

ψ̇(x, t) = −HFPψ(x, t)

Fokker-Planck hamiltonian:

HFP = Q†Q =

[

−∂x +
1

2
S′(x)

] [

∂x +
1

2
S′(x)

]

≥ 0

Qψ(x) = 0 ⇔ ψ(x) ∼ e−
1

2
S(x)

ψ(x, t) = c0e
− 1

2
S(x) +

∑

λ>0

cλe
−λt → c0e

− 1

2
S(x)
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Complex Langevin dynamics

partition function Z =
∫

dx e−S(x) S(x) ∈ C

complex Langevin equation: complexify x→ z = x+ iy

ẋ = −Re ∂zS(z) + η 〈η(t)η(t′)〉 = 2δ(t− t′)

ẏ = −Im ∂zS(z) S(z) = S(x+ iy)

associated distribution P (x, y; t)

〈O(x+ iy)(t)〉 =

∫

dxdy P (x, y; t)O(x+ iy)

Langevin eq for x(t), y(t) ⇔ FP eq for P (x, y; t)

Ṗ (x, y; t) = [∂x (∂x +Re ∂zS) + ∂yIm ∂zS]P (x, y; t)

generic solutions? semi-positive FP hamiltonian?
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Equilibrium distributions

complex weight ρ(x) real weight P (x, y)

main premise:
∫

dx ρ(x)O(x) =

∫

dxdy P (x, y)O(x+ iy)

if equilibrium distribution P (x, y) is known analytically:
shift variables
∫

dxdy P (x, y)O(x+ iy) =

∫

dxO(x)

∫

dy P (x− iy, y)

⇒ ρ(x) =

∫

dy P (x− iy, y)

correct when P (x, y) is known analytically

hard to verify in numerical studies!
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Field theory

path integral Z =
∫

Dφe−S

Langevin dynamics in “fifth” time direction

∂φ(x, t)

∂t
= − δS[φ]

δφ(x, t)
+ η(x, t)

Gaussian noise

〈η(x, t)〉 = 0 〈η(x, t)η(x′, t′)〉 = 2δ(x− x′)δ(t− t′)

compute expectation values 〈φ(x, t)φ(x′, t)〉, etc

study converge as t→ ∞

Parisi & Wu 81, Parisi, Klauder 83

Damgaard & Hüffel 87
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Some achievements

complex Langevin dynamics can

handle severe sign problems . . .
. . . in thermodynamic limit

describe onset at expected critical chemical potential
i.e. not at phase-quenched value (Silver Blaze problem)

describe phase transitions

be implemented for gauge theories

however, success is not guaranteed

GA, Frank James, Erhard Seiler,

Nucu Stamatescu (& Denes Sexty) 08-now

GA & Kim Splittorff 10
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Troubled past

1. numerical problems: runaways, instabilities

⇒ adaptive stepsize

no instabilities observed, works for SU(3) gauge theory
GA, James, Seiler & Stamatescu 09

a la Ambjorn et al 86

2. theoretical status unclear

⇒ detailed analyis, identified necessary conditions
GA, FJ, ES & IOS 09-12

3. convergence to wrong limit

⇒ better understood but not yet resolved
in progress
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Instabilities: heavy dense QCD

adaptive time step during the evolution

0 100000 200000 300000

Langevin iteration

10
-8

10
-7

10
-6

10
-5

10
-4

st
ep

si
ze

occasionally very small stepsize required
can go to longer Langevin times without problems
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Analytical understanding

consider expectation values and Fokker-Planck equations

one degree of freedom x, complex action S(x), ρ(x) ∼ e−S(x)

wanted: 〈O〉ρ(t) =
∫

dx ρ(x, t)O(x)

∂tρ(x, t) = ∂x
(

∂x + S′(x)
)

ρ(x, t)

solved with CLE:

〈O〉P (t) =

∫

dxdy P (x, y; t)O(x+ iy)

∂tP (x, y; t) = [∂x (∂x −Kx)− ∂yKy]P (x, y; t)

with Kx = −ReS′, Ky = −ImS′

question: 〈O〉P (t) = 〈O〉ρ(t) if P (x, y; 0) = ρ(x; 0)δ(y) ?
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Analytical understanding

question: 〈O〉P (t) = 〈O〉ρ(t) as t→ ∞?

answer: yes, use Cauchy-Riemann equations
and satisfy some conditions:

distribution P (x, y) should drop off fast enough in y
direction

partial integration without boundary terms possible

actually O(x+ iy)P (x, y) for large enough set O(x)

⇒ distribution should be sufficiently localized

can be tested numerically via criteria for correctness

〈LO(x+ iy)〉 = 0

with L Langevin operator 0912.3360, 1101.3270
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SU(3) spin model

apply these ideas to 3D SU(3) spin model GA & James 11

earlier solved with complex Langevin Karsch & Wyld 85

Bilic, Gausterer & Sanielevici 88

however, no detailed tests performed

⇒ test reliability of complex Langevin using developed tools

analyticity in µ2:
from imaginary to real µ
Taylor series

criteria for correctness

comparison with flux formulation Gattringer & Mercado 12

contrast with 3D XY model GA & James 10
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SU(3) spin model

3-dimensional SU(3) spin model: S = SB + SF

SB = −β
∑

<xy>

[

PxP
∗
y + P ∗

xPy

]

SF = −h
∑

x

[

eµPx + e−µP ∗
x

]

SU(3) matrices: Px = TrUx

gauge action: nearest neighbour Polyakov loops

(static) quarks represented by Polyakov loops

complex action S∗(µ) = S(−µ∗)

effective model for QCD with static quarks, centre symmetry
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SU(3) spin model

phase structure

effective model for QCD with static quarks
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SU(3) spin model

phase structure at µ = 0: 〈P + P ∗〉/2
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β
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) 

>
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GGI, September 2012 – p. 20



SU(3) spin model

real and imaginary potential:

first-order transition in β − µ2 plane, 〈P + P ∗〉/2

-1 -0.5 0 0.5 1

µ2

0

0.5

1

1.5

2

<
 T

r(
U

+
U

-1
)/

2 
>

β=0.135
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β=0.130

-1 -0.5 0 0.5 1
0

0.5

1
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2

β=0.128
β=0.126
β=0.124
β=0.120

h=0.02, 10
3

negative µ2: real Langevin — positive µ2: complex Langevin
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SU(3) spin model

Taylor expansion (lowest order)

free energy density

f(µ) = f(0)− (c1 + c2h)hµ
2 +O(µ4)

density 〈n〉 = 2 (c1 + c2h)hµ+O(µ3)

Polyakov loops

〈P 〉 = c1 + c2hµ+O(µ2) 〈P ∗〉 = c1 − c2hµ +O(µ2)

in terms of

c1 =
1

Ω

∑

x

〈Px〉µ=0 c2 =
1

2Ω

∑

xy

〈

(Px − P ∗
x )

(

Py − P ∗
y

)〉

µ=0

c2 is absent in phase-quenched theory
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SU(3) spin model

start in ‘confining’ phase and increase µ

density 〈n〉 = 〈heµPx − he−µP ∗
x 〉: no Silver Blaze region

0 0.5 1 1.5 2 2.5 3 3.5
µ

0

0.5

1

1.5

<
n>

full
phase quenched

0 0.4 0.8 1.2
0

0.005

0.01

0.015

0.02

β=0.125, h=0.02, 10
3

inset: lines from first-order Taylor expansion
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SU(3) spin model

start in ‘confining’ phase and increase µ

splitting between 〈P 〉 and 〈P ∗〉: no Silver Blaze region
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µ
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-1
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inset: lines from first-order Taylor expansion
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SU(3) spin model

severeness of sign problem: 〈e−iImS〉pq = e−Ω∆f

0 1 2 3 4
µ

0

0.2

0.4

0.6

0.8

1
<

eiϕ
>

pq

4
3

8
3

12
3

β=0.125, h=0.02, phase quenched

∆f ≡ f − fpq = −c2h2µ2 +O(µ4) (c2 < 0)
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SU(3) spin model

beyond Taylor series: criteria for correctness 〈LO〉 = 0

left: 〈P 〉 (top) and 〈P ∗〉 (bottom) at µ = 3

right: criteria for correctness 〈LO〉 = 0
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<LTrU> - lowest order
<LTrU> - improved
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> - lowest order
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> - improved

β=0.125, µ=3, h=0.02, 10
3

improved stepsize algorithm to eliminate linear dependence

criteria satisfied as stepsize ǫ→ 0
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SU(3) spin model

lowest-order discretization: φn+1 = φn+ ǫK(φn)+
√
ǫηn

linear stepsize dependence: need extrapolation

higher order: Chien-Cheng Chang 87

ψn = φn +
1

2
ǫK(φn)

ψ̃n = φn +
1

2
ǫK(φn) +

3

2

√
ǫ α̃n

φn+1 = φn +
1

3
ǫ
[

K(ψn) + 2K(ψ̃n)
]

+
√
ǫ αn

noise α̃n =
1

2
αn +

√
3

6
ξn 〈αnαn′〉 = 〈ξnξn′〉 = 2δnn′

very little stepsize dependence remaining in
observables
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SU(3) spin model

comparison with result obtained using flux representation
Gattringer & Mercado 12
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µ2

0.0
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 / 
2V
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τ = 0.134
τ = 0.132
τ = 0.130
τ = 0.128
τ = 0.126
τ = 0.120

Filled symbols

Empty symbols

   = flux

   = c. Langevin

Asterisks = spin

X = improved 
   c. Langevin

CL: finite stepsize errors in lowest-order algorithm

improved algorithm removes discrepancy in critical
region
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Success/failure

3D SU(3) spin model:

complex Langevin passes all the tests: why?

3D XY model in the disordered phase:

complex Langevin fails all the tests: why?
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XY model

3D XY model [U(1) model] at nonzero µ

S = −β
∑

x,ν

cos (φx − φx+ν̂ − iµδν,0)

= −1

2
β
∑

x,ν

[

eµδν,0UxU
∗
x+ν̂ + e−µδν,0U∗

xUx+ν̂

]

µ couples to the conserved Noether charge

symmetry S∗(µ) = S(−µ∗)

unexpectedly difficult to simulate with complex Langevin!
GA & James 10

also studied by Banerjee & Chandrasekharan using
worldline formulation hep-lat/1001.3648
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Convergence: XY model

comparison with known result (world line formulation)

analytic continuation from imaginary µ = iµI

-0.2 -0.1 0 0.1 0.2

µ2

-1.6

-1.55

-1.5

-1.45

-1.4

<
S

>
/Ω

complex Langevin
real Langevin
world line

β=0.7, 83

action density
versus µ2

β = 0.7

ordered phase

“Roberge-Weiss” transition at µI = π/Nτ
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Convergence: XY model

comparison with known result (world line formulation)

analytic continuation from imaginary µ = iµI

-0.2 -0.1 0 0.1 0.2

µ2

-0.2

-0.18

-0.16

-0.14

<
S

>
/Ω

complex Langevin
real Langevin
world line

β=0.3, 83

action density
versus µ2

β = 0.3

disordered
phase

failure
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Convergence: XY model

comparison with known result (world line formulation)

phase diagram:

 0  0.5  1  1.5  2  2.5  3  3.5  4

µ

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

β

 0

 1

 2

 3

 4

 5

 6

 7 relative deviation:

∆S =
〈S〉cl − 〈S〉wl

〈S〉wl

high β: ordered

low β: disordered

phase boundary from Banerjee & Chandrasekharan

highly correlated with ordered/disordered phase
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Convergence: XY model

apparent correct results in the ordered phase

incorrect result in the disordered/transition region

diagnostics:

distribution P [φR, φI] qualitatively different

classical force distribution qualitatively different

note:

independent of strength of the sign problem

failure not due to sign problem

U(1) versus SU(3)?

GA, FJ, ES, IOS, DS, in preparation
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U(1) versus SU(N)

spin models: integrate over reduced Haar measure

U(1): U = eiφ
∫ π

−π

dφ

SU(N ):

U = diag
(

eiφ1, eiφ2 , . . . , eiφN
)

φ1+φ2+. . .+φN = 0

∫ π

−π

dφ1 . . . dφN δ (φ1 + φ2 + . . .+ φN )H({φi})

H({φi}) =
∏

i<j

sin2
(

φi − φj
2

)

role of Haar measure?
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U(1) versus SU(N)

study in effective one-link models:

S = −β
∑

<xy>

[

PxP
∗
y + P ∗

xPy

]

− h
∑

x

[

eµPx + e−µP ∗
x

]

nearest neighbours represent complex couplings

effective one-link model:

S = −β1(µ)P − β2(µ)P
∗

complex couplings

β1(µ) = |βeff |eiγ + heµ β2(µ) = β∗1(−µ)

with βeff = 6βP ∗
±ν̂ ∈ C
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U(1) versus SU(N)

effective complex couplings: βeff = 6βP ∗ = |βeff |eiγ ∈ C

(preliminary)
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U(1) versus SU(N)

SU(3) one-link model: S = −β1(µ)P − β2(µ)P
∗

-3 -2 -1 0 1 2 3
γ

-1

0

1

2

R
e 

<
T

r U
>

β=0.5
β=2
exact β=0.5
exact β=2

µ=1, h=0.02

one-link model

correct result for all angles γ
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U(1) versus SU(N)

understanding: SU(2) one-link model

interpolate between U(1) and SU(N )

one angle φ = x [SU(3) two angles, same conclusions]

Haar measure H(x) = sin2 x

partition function

Z =

∫ π

−π

dxH(x)eβ cosx

effective action

S = −β cosx− 2d ln sinx β ∈ C

d = 1: SU(2) d = 0: U(1)
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Flow: U(1) versus SU(N)

Haar measure only (β = 0, d = 1)

singular at origin, use adaptive stepsize

-3 -2 -1 0 1 2 3
-4

-2

0

2

4

x

y

always restoring! dynamics attracted to real manifold
GGI, September 2012 – p. 37



Flow: U(1) versus SU(N)

β 6= 0: small imaginary fluctuations

linear stability

ẏ = −λy λ = β cosx+
2d

1− cos 2x

-3 -2 -1 0 1 2 3
-4

-2

0

2

4

x

y

real manifold linearly
stable if β < 2d
(even marginally better)

SU(2): β = 0.4, d = 1

GGI, September 2012 – p. 37



Flow: U(1) versus SU(N)

β 6= 0: small imaginary fluctuations

linear stability

ẏ = −λy λ = β cosx+
2d

1− cos 2x

-3 -2 -1 0 1 2 3
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-2

0

2
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x

y

real manifold linearly
stable if β < 2d
(even marginally better)

SU(2): β = 2, d = 1
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Flow: U(1) versus SU(N)

β 6= 0: small imaginary fluctuations U(1)

linear stability

ẏ = −λy λ = β cosx+
2d

1− cos 2x

-3 -2 -1 0 1 2 3
-4

-2

0

2

4

x

y

real manifold linearly
stable if β < 2d

U(1): trivial Haar measure

real manifold unstable!

U(1): β = 0.4, d = 0

GGI, September 2012 – p. 37



Flow: U(1) versus SU(N)

β 6= 0: small imaginary fluctuations U(1)

linear stability

ẏ = −λy λ = β cosx+
2d

1− cos 2x

-3 -2 -1 0 1 2 3
-4

-2

0

2

4

x

y

real manifold linearly
stable if β < 2d

U(1): trivial Haar measure

real manifold unstable!

U(1): β = 2, d = 0
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U(1) versus SU(N)

role of Haar measure in SU(N )

dynamics due to Haar measure drives towards real
manifold: attractive

stable against small complex fluctuations

U(1)/XY model

real manifold unstable against small complex
fluctuations

simulations at µ→ 0 and µ = 0 do not agree

indeed observed in disordered phase of 3D XY model

in ordered phase, nearest neighbours are correlated and one-link
model is not applicable
XY model becomes effectively Gaussian in ordered phase
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Stabilizing drift

Haar measure contribution to complex drift restoring

controlled exploration of the complex field space

employ this: generate Jacobian by field redefinition

Z =

∫

dx e−S(x) x = x(u) J(u) =
∂x(u)

∂u

=

∫

du e−Seff(u) Seff(u) = S(u)− ln J(u)

drift: K(u) = −S′
eff(u) = −S′(u) + J ′(u)/J(u)

which field redefinition?

singular at J(u) = 0 but restoring in complex plane
with Jan Pawlowski & FJ, ES, IOS, DS
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Fun with complex Langevin

Gaussian example: defined when Re(σ) = a > 0

Z =

∫ ∞

−∞

dx e−
1

2
σx2

σ = a+ ib 〈x2〉 = 1

σ

what if a < 0? flow in complex space for a = −1, b = 1:

-2 -1 0 1 2
-2

-1

0

1

2

x

y

-2 -1 0 1 2
-2

-1

0

1

2

u

v

left: highly unstable right: after transformation x(u) = u3

attractive fixed points
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Fun with complex Langevin

do CLE in the u formulation and compute 〈x2〉 = 〈u6〉

-1 -0.5 0 0.5 1
a

-1

-0.5

0

0.5

<
x2 >

Re <x
2
>

Im <x
2
>

a+ib, b=1, x=u
3

〈x2〉 = 1

σ
=

a− ib

a2 + b2

take also negative a

CLE finds the analytically continued answer to negative a!
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Fun with complex Langevin

quartic ‘Minkowski’ integral

Z =

∫ ∞

−∞

dx exp

(

− iλ
4!
x4
)

correlator (defined via analytical continuation (λ→ iλ)

〈x2〉 = 2
√
3√
λ

Γ(34)

Γ(14)
(1− i).

same transformation
x(u) = u3

CLE finds correct answer! 0 0.2 0.4 0.6 0.8 1
λ

0

1

2

3

4

<
x2 >

Re <x
2
>

-Im <x
2
>

iλx
4
/4!, x=u

3
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Fun with complex Langevin

towards XY model Z =

∫ π

−π

dx eβ cosx β ∈ C

transformation 1: u = cosx, no ... real axis never stable!

transformation 2: generate jacobian as in SU(2)

x =
1

c
(u− sin u) J(u) =

∂x

∂u
=

2

c
sin2

u

2

0 0.1 0.2 0.3 0.4 0.5
b

0

0.05

0.1

0.15

0.2

0.25

<
co

s x
>

Re <cos x>
Im <cos x>

x=(u-sin u)/2, 0<u<2π
S(x)=-βcosx, β=a+ib, a=0.3

0 0.4 0.8 1.2
a

0

0.2

0.4

0.6

<
co

s x
>

Re <cos x>
Im <cos x>

x=(u-sin u)/c

S(x)=-βcosx, β=a+ib, b=0.1
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Fun with complex Langevin

towards XY model

better effective one-link model

Z =

∫ π

−π

dx eβ1 cosx+β2 sinx β1,2 ∈ C

classical flow diagrams very turbulent

no fun yet . . .

implementation in 3D XY model hints that the idea is correct

optimal field redefinition not yet found

GGI, September 2012 – p. 41



Summary

complex Langevin can handle

sign problem

Silver Blaze problem

phase transition

thermodynamic limit

problems from the 80s:

instabilities and runaways → adaptive stepsize

convergence: correct result not guaranteed

in progress:

theoretical foundation, criteria for correctness

exploit freedom under field redefinitions and
non-uniqueness of CLE

GGI, September 2012 – p. 42
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