Lattice computation of heavy hadron axial couplings

Phys.Rev.Lett. 108 (2012) 172003 Phys.Rev.D84 (2011) 094502 Phys.Rev.D85 (2012) 114508

C.-J. David Lin (NCTU, Taiwan) Work done with William Detmold and Stefan Meinel

05/09/2012 GGI Firenze

Motivation

- LHCb phenomenology, b baryon physics.
- Better control in chiral extrapolations.
- Heavy hadron decay widths.

Outline

- Heavy hadron chiral perturbation theory.
- Axial couplings.
- Numerical calculation.
- Heavy hadron decay widths*.

Single-HQ hadron states

Heavy mesons,

$$H_i^{(\bar{b})} = (B_{i,\mu}^* \gamma^{\mu} - B_i \gamma_5) \frac{1-\not}{2}.$$

• Heavy baryons with $s_l = 0$ (s = 1/2),

$$T = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & \Lambda_b \\ -\Lambda_b & 0 \end{pmatrix}.$$

• Heavy baryons with $s_l = 1$,

$$S_{ij}^{\mu} = \sqrt{\frac{1}{3}} (v^{\mu} + \gamma^{\mu}) \gamma_5 \mathcal{B}_{ij} + \mathcal{B}_{ij}^{*\mu} (\mathcal{B}_{ij} : s = 1/2, \ \mathcal{B}_{ij}^* : s = 3/2)$$

$$\mathcal{B} = \begin{pmatrix} \Sigma_b^{+1} & \frac{1}{\sqrt{2}} \Sigma_b^0 \\ \frac{1}{\sqrt{2}} \Sigma_b^0 & \Sigma_b^{-1} \end{pmatrix}, \ \mathcal{B}^* = \begin{pmatrix} \Sigma_b^{+*} & \frac{1}{\sqrt{2}} \Sigma_b^{0*} \\ \frac{1}{\sqrt{2}} \Sigma_b^{0*} & \Sigma_b^{-*} \end{pmatrix}.$$

$\mathsf{HH}\chi\mathsf{PT}\ \mathsf{Lagrangian}$

G.Burdman & J.Donoghue; P.Cho; M.Wise; T.M.Yan et al., circa 1990.

 $\mathcal{L}_{HH\chi PT} = \mathcal{L}_{HH} + \mathcal{L}_{pure-Goldstone},$

$$\mathcal{L}_{\mathsf{HH}}^{(\mathsf{LO})} = -i \operatorname{tr}_{\mathsf{D}} \left[\bar{H}^{(\bar{b})i} v_{\mu} \mathcal{D}^{\mu} H_{i}^{(\bar{b})} \right] + i \left(\bar{T} v_{\mu} \mathcal{D}^{\mu} T \right)_{\mathsf{f}} - i \left(\bar{S}^{\nu} v_{\mu} \mathcal{D}^{\mu} S_{\nu} \right)_{\mathsf{f}} + \Delta^{(B)} \left(\bar{S}^{\nu} S_{\nu} \right)_{\mathsf{f}} + g_{\mathsf{1}} \operatorname{tr}_{\mathsf{D}} \left[\bar{H}_{i}^{(\bar{b})} \gamma_{\mu} \gamma_{\mathsf{5}} H_{j}^{(\bar{b})} A^{ij} \right] + i g_{\mathsf{2}} \epsilon_{\mu\nu\sigma\rho} \left(\bar{S}^{\mu} v^{\nu} A^{\sigma} S^{\rho} \right)_{\mathsf{f}} + \sqrt{2} g_{\mathsf{3}} \left[\left(\bar{T} A^{\mu} S_{\mu} \right)_{\mathsf{f}} + \left(\bar{S}_{\mu} A^{\mu} T \right)_{\mathsf{f}} \right]$$

• HH's are (almost) on-shell, with fixed velocity.

•
$$V^{\mu} = \frac{1}{2} \left(\xi^{\dagger} \partial^{\mu} \xi + \xi \partial^{\mu} \xi^{\dagger} \right), \ A^{\mu} = \frac{i}{2} \left(\xi^{\dagger} \partial^{\mu} \xi - \xi \partial^{\mu} \xi^{\dagger} \right).$$

- The mass difference, $\Delta^{(B)}$, does not vanish in any limit.
- Three LEC's which were poorly determined.

Axial currents

$$J_{ij,\mu}^{A} = g_{1} \operatorname{tr}_{\mathsf{D}} \left[\bar{H}_{k}^{(\bar{b})} H_{l}^{(\bar{b})} \left(\tau_{ij,\xi}^{(+)} \right)^{kl} \gamma_{\mu} \gamma_{5} \right] + ig_{2} \epsilon_{\mu\nu\sigma\rho} \left(\bar{S}^{\nu} v^{\sigma} \tau_{ij,\xi}^{(+)} S^{\rho} \right)_{\mathsf{f}} + \sqrt{2} g_{3} \left[\left(\bar{S}_{\mu} \tau_{ij,\xi}^{(+)} T \right)_{\mathsf{f}} + \left(\bar{T} \tau_{ij,\xi}^{(+)} S_{\mu} \right)_{\mathsf{f}} \right] + \text{higher order.}$$

•
$$\tau_{ij,\xi}^{(+)} = \left(\xi^{\dagger}\tau_{ij}\xi + \xi\tau_{ij}\xi^{\dagger}\right)/2$$
, where $(\tau_{ij})_{kl} = \delta_{il}\delta_{jk}$.

- Obtained using the Noether theorem.
- Matrix elements,

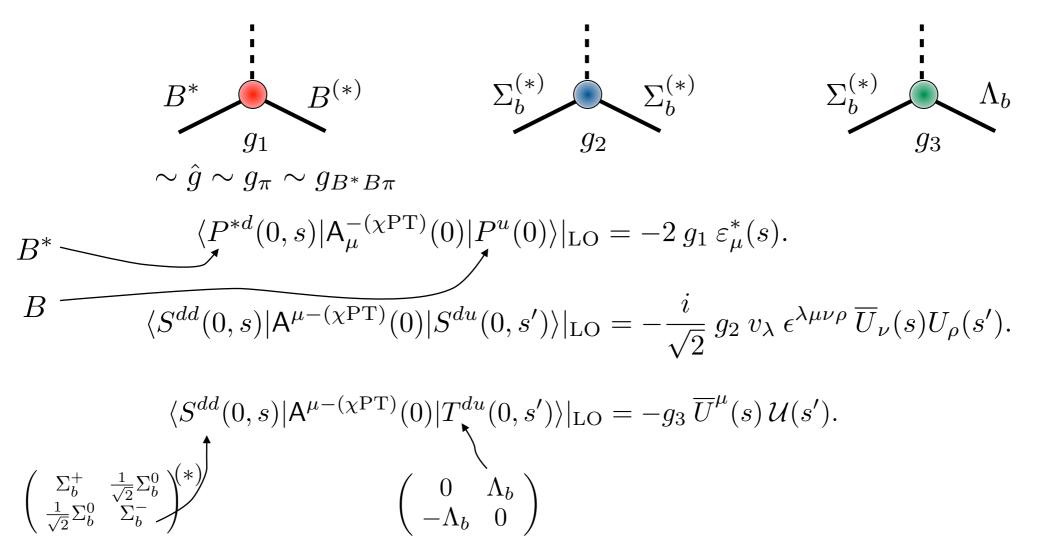
$$\langle B_j^* | J_{ij,\mu}^A | B_i \rangle = -2 (g_1)_{\text{eff}} \epsilon_{\mu}^*,$$

$$\langle S_{kj} | J_{ij,\mu}^A | S_{ki} \rangle = -\frac{i}{\sqrt{2}} (g_2)_{\text{eff}} v^{\sigma} \epsilon_{\sigma\mu\nu\rho} \overline{U}^{\nu} U^{\rho},$$

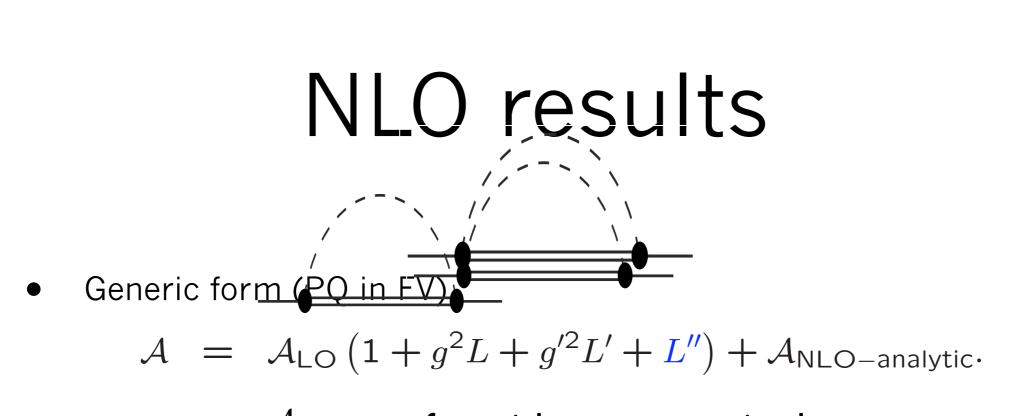
$$\langle S_{kj} | J_{ij,\mu}^A | T_{ki} \rangle = -(g_3)_{\text{eff}} \overline{U}_{\mu} \mathcal{U}.$$

Chiral dynamics of heavy hadrons

• Axial couplings defined in static limit



• Heavy-light mesons and baryons: dynamics amenable to HQ and chiral expansions [Wise; Burdman & Donoghue; Cheng et al.]



 $\mathcal{A}_{\mathrm{LO}} \sim g$ for axial current matrix elements.

• Compare
$$(g_1)_{\text{eff}}$$
 and $\langle B^*|B\pi\rangle$,

$$(g_{1})_{\text{eff}} = g_{1} \left[1 - 2 \left(\frac{M_{\pi}^{2}}{4\pi f} \right) \log \left(\frac{M_{\pi}^{2}}{\mu^{2}} \right) - 4g_{1}^{2} \left(\frac{M_{\pi}^{2}}{4\pi f} \right) \log \left(\frac{M_{\pi}^{2}}{\mu^{2}} \right) + c(\mu)M_{\pi}^{2} \right]$$
$$\langle B^{*}|B\pi\rangle = g_{1} \left[1 - 4g_{1}^{2} \left(\frac{M_{\pi}^{2}}{4\pi f} \right) \log \left(\frac{M_{\pi}^{2}}{\mu^{2}} \right) + c'(\mu)M_{\pi}^{2} \right]$$

2

Current knowledge of g1,2,3

• Model estimates for g_{1,2,3} [Cho normalisation]

Reference	Method	g_1	g_2	g_3
Yan <i>et al.</i> , 1992 [5]	Nonrelativistic quark model	1	2	$\sqrt{2}$
Colangelo $et al.$, 1994 [45]	Relativistic quark model	1/3	• • •	
Bećirević, 1999 [46]	Quark model with Dirac eq.	0.6 ± 0.1	• • •	
Guralnik <i>et al.</i> , 1992 [47]	Skyrme model		1.6	1.3
Colangelo $et al.$, 1994 [48]	Sum rules	0.15 - 0.55	• • •	
Belyaev et al., 1994 [49]	Sum rules	0.32 ± 0.02		
Dosch and Narison, 1995 [50]	Sum rules	0.15 ± 0.03	• • •	
Colangelo and Fazio, 1997 [51	.] Sum rules	0.09 - 0.44	• • •	
Pirjol and Yan, 1997 [52]	Sum rules		$<\sqrt{6-g_3^2}$	$<\sqrt{2}$
Zhu and Dai, 1998 [53]	Sum rules		$1.56 \pm 0.30 \pm 0.30$	$0.94 \pm 0.06 \pm 0.20$
Cho and Georgi, 1992 [54]	$\mathcal{B}[D^* \to D \pi], \mathcal{B}[D^* \to D \gamma]$	0.34 ± 0.48		
Arnesen <i>et al.</i> , 2005 [57]	$\mathcal{B}[D_{(s)}^* \rightarrow D_{(s)}\pi], \mathcal{B}[D_{(s)}^* \rightarrow D_{(s)}\gamma], \Gamma[D^*]$	0.51	• • •	
Li et al., 2010 [58]	$\mathrm{d}\Gamma[B o \pi \ell \nu]$	< 0.87		

- All over the place!
- Precise calculation needed

Current knowledge of g

- Experimental extraction of g_1 from $D^* \to D\pi$, $D^* \to D\gamma$
 - g₁=0.5(?) [Arnesen et al.]
- Lattice calculations for g

Reference	n_f , action	$[m_{\pi}^{(\mathrm{vv})}]^2 \; (\mathrm{GeV}^2)$	g_1
De Divitiis $et \ al., 1998 \ [14]$	0, clover	0.58 - 0.81	$0.42 \pm 0.04 \pm 0.08$
Abada <i>et al.</i> , 2004 [15]	0, clover	0.30 - 0.71	$0.48 \pm 0.03 \pm 0.11$
Negishi et al., 2007 [16]	0, clover	0.43 - 0.72	0.517 ± 0.016
Ohki et al., 2008 [17]	2, clover	0.24 - 1.2	$0.516 \pm 0.005 \pm 0.033 \pm 0.028 \pm 0.028$
Bećirević <i>et al.</i> , 2009 [18]	2, clover	0.16 - 1.2	$0.44 \pm 0.03^{+0.07}_{-0.00}$
Bulava <i>et al.</i> , 2010 [19]	2, clover	0.063 - 0.49	0.51 ± 0.02

• Need fully quantified uncertainties

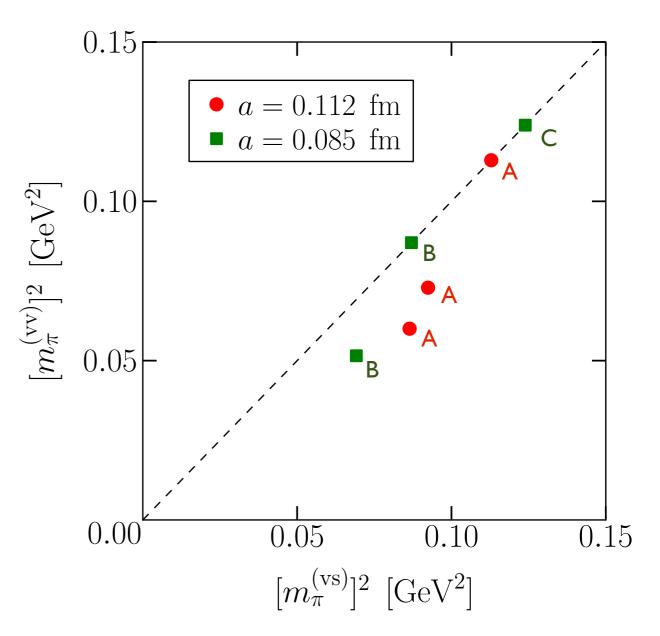
Actions and ensembles

- Domain-wall light quarks [RBC/UKQCD]
 - Lattice chiral symmetry
- Static heavy quarks with n_{HYP}=0,1,2,3,5,10 levels of HYP smearing
- Two lattice spacings a = 0.085, 0.112 fm
- Six <u>valence</u> quark masses $m_{\pi} = 0.23-0.35$ GeV
- Single $(2.5 \text{ fm})^3$ volume

Ensemble	$a \ ({\rm fm})$	$L^3 \times T$	$am_{u,d}^{(\mathrm{sea})}$	$m_{\pi}^{(\mathrm{ss})}$ (MeV)
А	0.1119(17)	$24^3 \times 64$	0.005	336(5)
В	0.0849(12)	$32^3 \times 64$	0.004	295(4)
С	0.0848(17)	$32^3 \times 64$	0.006	352(7)
Ensemble	$am_{u,d}^{(\mathrm{val})}$ m	$_{\pi}^{(vs)}$ (MeV)	$m_{\pi}^{(\mathrm{vv})}$ (MeV)) t/a
А	0.001	294(5)	245(4)	4, 5,, 10
А	0.002	304(5)	270(4)	4, 5,, 10
А	0.005	336(5)	336(5)	4,5,,10
В	0.002	263(4)	227(3)	6,9,12
В	0.004	295(4)	295(4)	6,9,12
С	0.006	352(7)	352(7)	13

Actions and ensembles

- Domain-wall light quarks [RBC/UKQCD]
 - Lattice chiral symmetry
- Static heavy quarks with n_{HYP}=0,1,2,3,5,10 levels of HYP smearing
- Two lattice spacings a = 0.085, 0.112 fm
- Six <u>valence</u> quark masses $m_{\pi} = 0.23-0.35$ GeV
- Single $(2.5 \text{ fm})^3$ volume



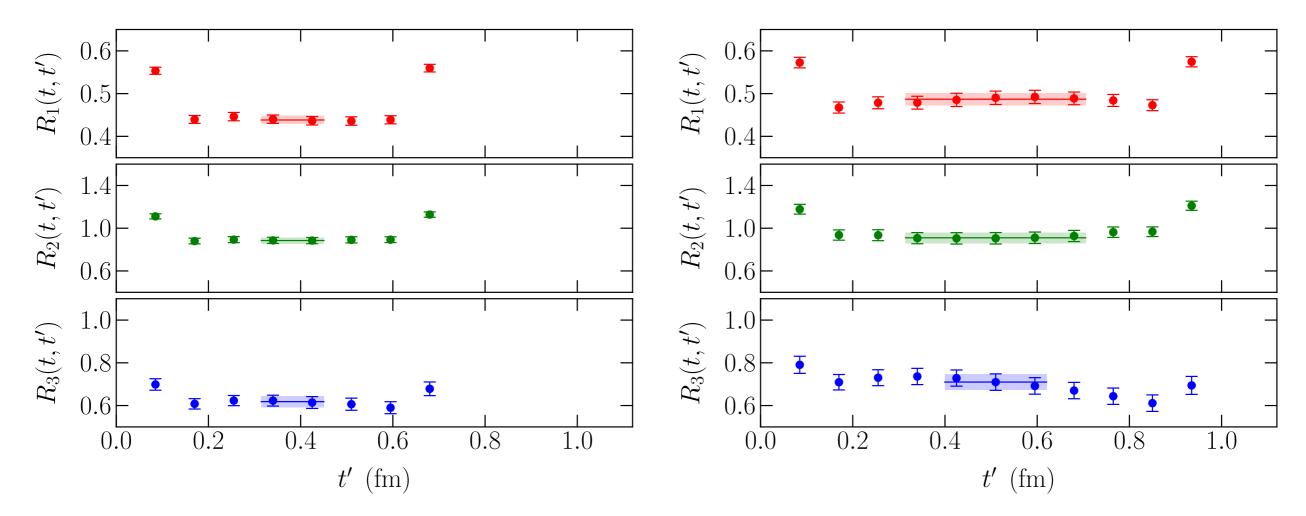
• O(a) improved^{*} axial current: $Z_A = \begin{cases} 0.7019(26) & \text{for } a = 0.112 & \text{fm}, \\ 0.7396(17) & \text{for } a = 0.085 & \text{fm}. \end{cases}$ [RBC]

Correlation functions

- Interpolating operators in static limit
 - $P^{i} = \overline{Q}_{a\alpha} (\gamma_{5})_{\alpha\beta} \tilde{q}^{i}_{a\beta}, \qquad S^{ij}_{\mu\alpha} = \epsilon_{abc} (C\gamma_{\mu})_{\beta\gamma} \tilde{q}^{i}_{a\beta} \tilde{q}^{j}_{b\gamma} Q_{c\alpha},$ $P^{*i}_{\mu} = \overline{Q}_{a\alpha} (\gamma_{\mu})_{\alpha\beta} \tilde{q}^{i}_{a\beta}, \qquad T^{ij}_{\alpha} = \epsilon_{abc} (C\gamma_{5})_{\beta\gamma} \tilde{q}^{i}_{a\beta} \tilde{q}^{j}_{b\gamma} Q_{c\alpha}.$
- Two point and three point correlation functions $C[P^{u} P_{u}^{\dagger}](t) = \sum_{\mathbf{x}} \langle P^{u}(\mathbf{x},t) P_{u}^{\dagger}(0) \rangle,$ $C[P^{*d} P_{d}^{*\dagger}]^{\mu\nu}(t) = \sum_{\mathbf{x}} \langle P^{*d\mu}(\mathbf{x},t) P_{d}^{*\nu\dagger}(0) \rangle,$ $C[S^{dd} \overline{S}_{dd}]^{\mu\nu}_{\alpha\beta}(t) = \sum_{\mathbf{x}} \langle S^{dd\mu}_{\alpha}(\mathbf{x},t) \overline{S}^{\nu}_{dd\beta}(0) \rangle,$ $C[S^{du} \overline{S}_{du}]^{\mu\nu}_{\alpha\beta}(t) = \sum_{\mathbf{x}} \langle S^{dd\mu}_{\alpha}(\mathbf{x},t) \overline{S}^{\nu}_{du\beta}(0) \rangle,$ $C[T^{du} \overline{T}_{du}]_{\alpha\beta}(t) = \sum_{\mathbf{x}} \langle T^{du}_{\alpha}(\mathbf{x},t) \overline{T}_{du\beta}(0) \rangle.$ $C[T^{du} \overline{T}_{du}]_{\alpha\beta}(t) = \sum_{\mathbf{x}} \langle T^{du}_{\alpha}(\mathbf{x},t) \overline{T}_{du\beta}(0) \rangle.$
- Calculate with forward propagators from 2 sources

Correlator ratios

• Ratios for varying operator insertion time



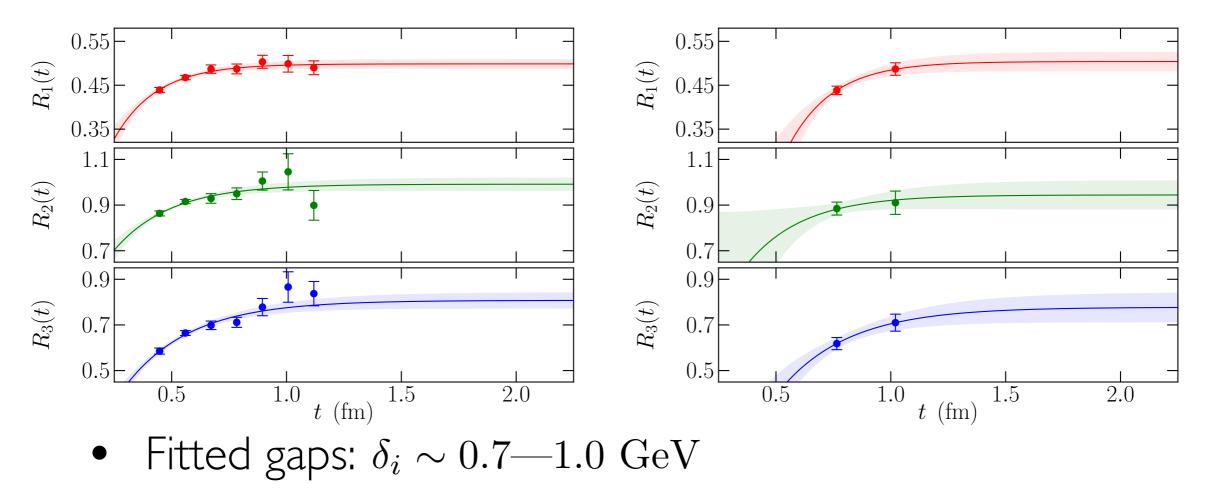
• Negligible t' dependence away from source/sink

Source-sink separation

• Extract effective axial couplings (g_i)_{eff} from t extrapolation

 $R_i(t, a, m_{\pi}, n_{\rm HYP}) = (g_i)_{\rm eff}(a, m_{\pi}, n_{\rm HYP}) - A_i(a, m_{\pi}, n_{\rm HYP})e^{-\delta_i(a, m_{\pi}, n_{\rm HYP})t}$

• Constrain δ_i for a=0.086 fm from δ_i at a=0.112 fm

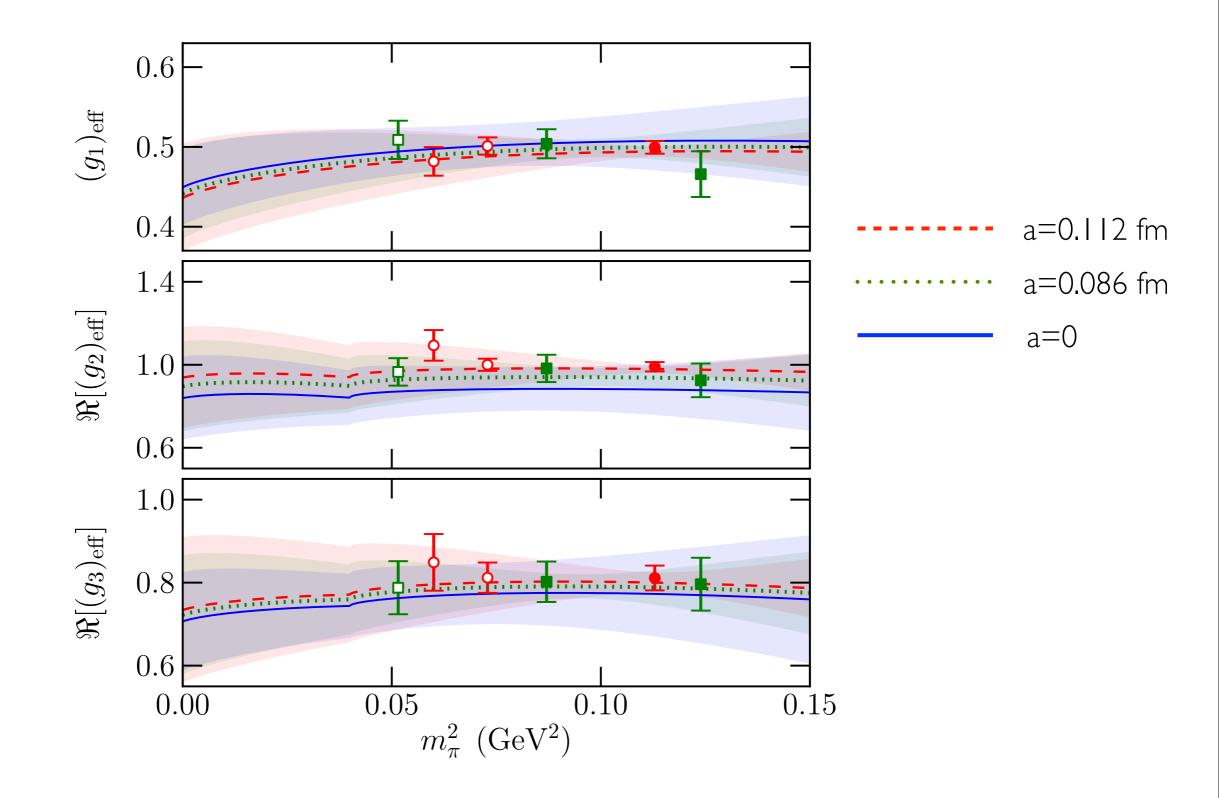


Chiral and continuum extrapolation

• Use NLO partially quenched SU(4|2) HH χ PT at finite volume and include polynomial discretisation effects ____Partial quenching

$$\begin{split} (g_{1})_{\text{eff}}(a,m,n_{\text{HYP}}) = & \underbrace{\bigoplus_{j=1}^{2} \mathcal{I}(m_{\pi}^{(\text{vs})}) + \underbrace{\bigoplus_{j=1}^{q_{2}}^{q_{2}} \left\{ 4 \mathcal{H}(m_{\pi_{\pi}}^{(\text{vs})}, 0) - 4 \delta_{VS}^{2} \mathcal{H}_{\eta'}(m_{\pi}^{(\text{vv})}, 0) \right\}}_{\text{Loop functions}} \\ & + c_{1}^{(\text{vv})} [m_{\pi}^{(\text{vv})}]^{2} + c_{1}^{(\text{vs})} [m_{\pi}^{(\text{vs})}]^{2} + d_{1, n_{\text{HYP}}} a^{2}]}. \\ (g_{2})_{\text{eff}}(a,m,n_{\text{HYP}}) = \underbrace{\bigoplus_{j=2}^{q_{2}} \mathcal{I}(m_{\pi}^{(\text{vs})}) + \underbrace{\bigoplus_{j=2}^{q_{2}}^{q_{2}} \left\{ \frac{3}{2} \mathcal{H}(m_{\pi}^{(\text{vs})}, 0) - \delta_{VS}^{2} \mathcal{H}_{\eta'}(m_{\pi}^{(\text{vv})}, 0) \right\}}_{\text{depend on } n_{\text{HYP}}} \\ & + \underbrace{\bigoplus_{j=2}^{q_{2}}^{q_{2}} \left\{ 2 \mathcal{H}(m_{\pi}^{(\text{vs})}, -\Delta) - \mathcal{H}(m_{\pi}^{(\text{vv})}, -\Delta) - 2 \mathcal{K}(m_{\pi}^{(\text{vs})}, -\Delta, 0) \right\}}_{\text{depend on } n_{\text{HYP}}} \\ & + \underbrace{\bigoplus_{j=2}^{q_{2}}^{q_{2}} \left\{ 2 \mathcal{H}(m_{\pi}^{(\text{vs})}, -\Delta) - \mathcal{H}(m_{\pi}^{(\text{vv})}, -\Delta) - 2 \mathcal{K}(m_{\pi}^{(\text{vs})}, -\Delta, 0) \right\}}_{\text{depend on } n_{\text{HYP}}} \\ & + \underbrace{\bigoplus_{j=2}^{q_{2}}} \left\{ 2 \mathcal{H}(m_{\pi}^{(\text{vs})}) + \underbrace{\bigoplus_{j=2}^{q_{2}}} \left\{ \mathcal{H}(m_{\pi}^{(\text{vs})}, -\Delta) - 2 \mathcal{K}(m_{\pi}^{(\text{vs})}, -\Delta, 0) \right\}}_{\text{depend on } n_{\text{HYP}}} \\ & + \underbrace{\bigoplus_{j=2}^{q_{2}}} \left\{ 1 - \frac{2}{f^{2}} \mathcal{I}(m_{\pi}^{(\text{vs})}) + \underbrace{\bigoplus_{j=2}^{q_{2}}} \left\{ \mathcal{H}(m_{\pi}^{(\text{vs})}, -\Delta) - \frac{1}{2} \mathcal{H}(m_{\pi}^{(\text{vv})}, -\Delta) \right\}}_{\text{depend on } n_{\text{isc}}} \\ & + \underbrace{\max_{j=2}^{q_{j}} \mathcal{H}(m_{\pi}^{(\text{vv})}) + \underbrace{\bigoplus_{j=2}^{q_{j}}} \left\{ \mathcal{H}(m_{\pi}^{(\text{vs})}, -\Delta) - \frac{1}{2} \mathcal{H}(m_{\pi}^{(\text{vv})}, -\Delta) \right\}}_{\text{depend on } n_{\text{isc}}} \\ & + \underbrace{\max_{j=2}^{q_{j}} \mathcal{H}(m_{\pi}^{(\text{vv})}, \Delta) + 3 \mathcal{H}(m_{\pi}^{(\text{vs})}, \Delta) - \mathcal{K}(m_{\pi}^{(\text{vs})}, \Delta, 0) \right\}}_{\text{depend on } n_{\text{isc}}} \\ & + \underbrace{\max_{j=2}^{q_{j}} \mathcal{H}(m_{\pi}^{(\text{vv})}, \Delta) + 3 \mathcal{H}(m_{\pi}^{(\text{vs})}, \Delta) - \mathcal{K}(m_{\pi}^{(\text{vs})}, \Delta, 0) \right\}}_{\text{depend on } n_{\text{depend on } n_{\text{isc}}} \\ & + \underbrace{\max_{j=2}^{q_{j}} \mathcal{H}(m_{\pi}^{(\text{vv})}, \Delta) + 3 \mathcal{H}(m_{\pi}^{(\text{vs})}, \Delta) - \mathcal{K}(m_{\pi}^{(\text{vs})}, \Delta, 0) \right\}}_{\text{depend on } n_{\text{isc}}} \\ & + \underbrace{\max_{j=2}^{q_{j}} \mathcal{H}(m_{\pi}^{(\text{vv})}, \Delta) + 3 \mathcal{H}(m_{\pi}^{(\text{vs})}, \Delta) - \mathcal{K}(m_{\pi}^{(\text{vs})}, \partial, 0) - \underbrace{\max_{j=2}^{q_{j}} \mathcal{H}(m_{\pi}^{(\text{vv})}, \partial, 0) \right\}}_{\text{depend on } n_{\text{depend on } n_{\text{depend on } n_{\text{depend on } n_{\text{depend on } n_{\text{depen$$

Chiral and continuum extrapolation



Axial couplings

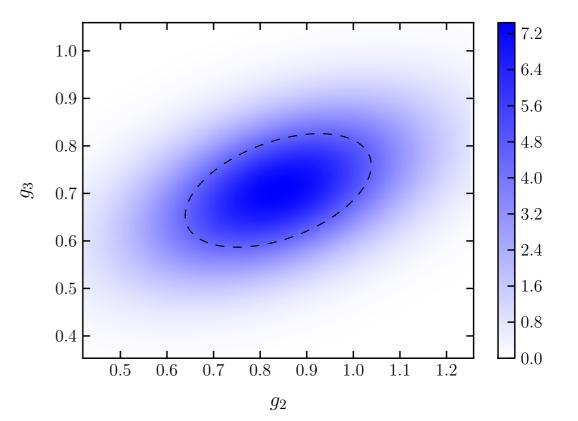
• Final extracted values

 $g_{1} = 0.449 \pm 0.047_{\text{stat}} \pm 0.019_{\text{syst}}$ $g_{2} = 0.84 \pm 0.20_{\text{stat}} \pm 0.04_{\text{syst}}$ $g_{3} = 0.71 \pm 0.12_{\text{stat}} \pm 0.04_{\text{syst}}$

• Sources of systematic errors

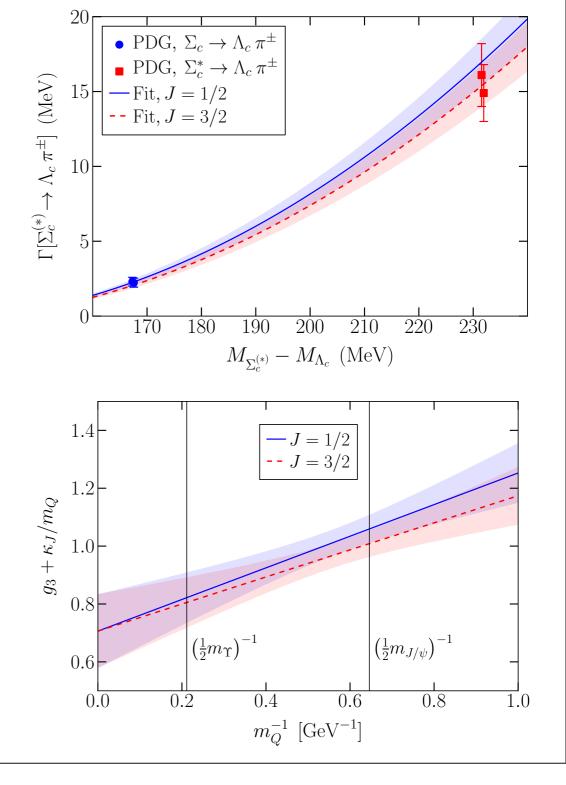
Source	g_1	g_2	g_3
NNLO terms in fits of m_{π} - and <i>a</i> -dependence	3.6%	2.8%	3.7%
Higher excited states in fits to $R_i(t)$	1.7%	2.8%	4.9%
Unphysical value of $m_s^{(sea)}$	1.5%	1.5%	1.5%
Total	4.2%	4.3%	6.3%

• Dominated by statistical errors



Decay widths

- Strong decays allowed for heavy baryons $\Gamma[S \to T \pi] = c_{\rm f}^2 \frac{1}{6\pi f_{\pi}^2} \left(g_3 + \frac{\kappa_J}{m_Q}\right)^2 \frac{M_T}{M_S} |\mathbf{p}_{\pi}|^3$ $c_{\rm f} = \begin{cases} 1 & \text{for } \Sigma_Q^{(*)} \to \Lambda_Q \pi^{\pm}, \\ 1 & \text{for } \Sigma_Q^{(*)} \to \Lambda_Q \pi^0, \\ 1/\sqrt{2} & \text{for } \Xi_Q^{(*)} \to \Xi_Q \pi^{\pm}, \\ 1/2 & \text{for } \Xi_Q^{\prime(*)} \to \Xi_Q \pi^0. \end{cases}$
- I/m_Q corrections important: determine from charm sector
- Effective coupling vs $1/m_Q$
- Valid only at LO in $\text{HH}\chi\text{PT}$

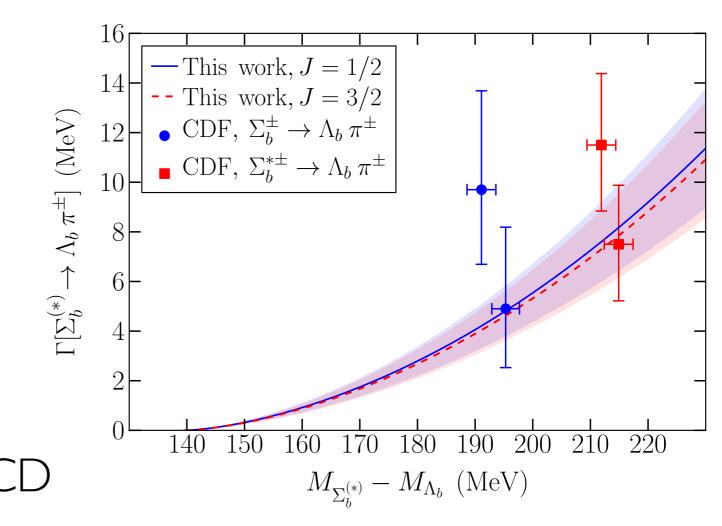


Decay widths

Calculate (and predict) bottom and charm baryon decay widths

Hadron	This work	Experiment
Σ_b^+	4.2(1.0)	$9.7^{+3.8+1.2}_{-2.8-1.1}$ [13]
Σ_b^-	4.8(1.1)	$4.9^{+3.1}_{-2.1} \pm 1.1 \ [13]$
Σ_b^{*+}	7.3(1.6)	$11.5^{+2.7+1.0}_{-2.2-1.5}$ [13]
Σ_b^{*-}	7.8(1.8)	$7.5^{+2.2+0.9}_{-1.8-1.4}$ [13]
Ξ_b'	1.1 (CL=90%)	
Ξ_b^*	2.8 (CL=90%)	
Ξ_c^{*+}	2.44(26)	< 3.1 (CL=90%) [70]
Ξ_c^{*0}	2.78(29)	< 5.5 (CL=90%) [71]

• Uses determinations of Ξ_b', Ξ_b^* masses from LQCD [Lewis & Woloshyn 09]



Heavy hadron axial couplings

• First complete calculation of axial couplings controlling all systematics

 $g_{1} = 0.449 \pm 0.047_{\text{stat}} \pm 0.019_{\text{syst}}$ $g_{2} = 0.84 \pm 0.20_{\text{stat}} \pm 0.04_{\text{syst}}$ $g_{3} = 0.71 \pm 0.12_{\text{stat}} \pm 0.04_{\text{syst}}$

- Considerably smaller than quark model estimates
- Pleasant consequences for convergence of $HH\chi PT$
- Allows pre- (and post-) dictions of strong decay widths (also $\Gamma[\Xi_c^* \to \Xi_c \gamma]$)