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1. Introduction

low T high T

Chiral symmetry of QCD

restoration of chiral symmetry

U(1)B ⊗ S(Nf )V U(1)B ⊗ S(Nf )L ⊗ SU(Nf )R

phase transition

Some questions

1. Eigenvalue distribution of Dirac operator 

2. Recovery of U(1)_A symmetry at high T ?

related ?



Previous studies  on 1

Cossu et al. (JLQCD11), Overlap
Topological susceptibility and axial symmetry at finite temperature Guido Cossu
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Figure 2: Spectral density of the overlap Dirac operator for Nf = 2. The several b s were isolated to
emphasize the mass dependence of the density. Zero counting of eigenvalues is intended on the left when
line stops.

the correlators of meson operators in all the channels looking for their degeneracy in the chiral
limit, signal of effective restoration of both chiral and axial symmetry. We found evidence of this
restoration, corroborated also by the spectral density analysis that exhibits a gap in the chiral limit
at temperatures above > 192 MeV, in the current data set.

We can currently fairly say that we have clear evidence of U(1)A effective restoration in a
region just above the chiral phase transition in two flavors QCD. The next step is narrowing the
region of uncertainty about the temperature when the gap starts opening. In a forthcoming paper in
preparation a complete analysis and the newly collected data will be presented.

References

[1] Edward Witten. Current Algebra Theorems for the U(1) Goldstone Boson. Nucl.Phys., B156:269,
1979.

[2] G. Veneziano. U(1) Without Instantons. Nucl.Phys., B159:213–224, 1979.

[3] Herbert Neuberger. Exactly massless quarks on the lattice. Phys.Lett., B417:141–144, 1998.

[4] T. Kaneko et al. JLQCD’s dynamical overlap project. PoS, LAT2006:054, 2006.

[5] Paul H. Ginsparg and Kenneth G. Wilson. A Remnant of Chiral Symmetry on the Lattice. Phys.Rev.,
D25:2649, 1982.

6

T=209MeV

T=177,192MeV

T=172MeV

�(�) = lim
V��

1
V

�

n

�(�� �n)Dirac Eigenvalue Spectrum at Finite Temperature Using DWF Zhongjie Lin

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 0.05 0.1 0.15 0.2

ρ
(Λ

)

Λ

150 MeV
ml+mres
ms+mres

Δ<  ψψ > /π
<  ψψ > /π

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 0.05 0.1 0.15 0.2

ρ
(Λ

)

Λ

160 MeV
ml+mres
ms+mres

Δ<  ψψ > /π
<  ψψ > /π

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 0.05 0.1 0.15 0.2

ρ
(Λ

)

Λ

170 MeV
ml+mres
ms+mres

Δ<  ψψ > /π
<  ψψ > /π

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 0.05 0.1 0.15 0.2

ρ
(Λ

)

Λ

180 MeV
ml+mres
ms+mres

Δ<  ψψ > /π
<  ψψ > /π

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 0.05 0.1 0.15 0.2

ρ
(Λ

)

Λ

190 MeV

0

0.002

0 0.015

ml+mres
ms+mres

Δ<  ψψ > /π
<  ψψ > /π

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 0.05 0.1 0.15 0.2

ρ
(Λ

)

Λ

200 MeV

0

0.002

0 0.015

ml+mres
ms+mres

Δ<  ψψ > /π
<  ψψ > /π

Figure 4: Dirac eigenvalue spectrum for the T = 150−200 MeV ensembles. Here the temperature is lowest
in the upper left and largest in the lower right. The chiral symmetry breaking density of near zero eigenvalues
disappears rapidly with increasing temperature and for the two highest temperature cases there appears to
be a gap with very few eigenvalues just above zero. The magnified inset in these two cases show some near
zero eigenvalues and a suggestive zero mode peak located at Λ= mf +mres

[7] M. Cheng, PoS LAT2011, 186 (2011).

[8] T. Kalkreuter, and H. Simma, Comput.Phys.Commun. 93, 33–47 (1996), hep-lat/9507023.

[9] L. Giusti, and M. Luscher, JHEP 0903, 013 (2009), 0812.3638.

[10] G. Martinelli, et al., Nucl.Phys. B445, 81 (1995), hep-lat/9411010.

[11] Y. Aoki, et al., Phys.Rev. D83, 074508 (2011). 1011.0892

[12] M. Cheng, et al., in preparation (2011).

[13] P. Hegde, PoS LAT2011, 014 (2011).

7

Lin (HotQCD11), DW

Eigenvalue distribution of the Dirac operator at finite temperature with (2+1)-flavor . . . H. Ohno
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Figure 2: The eigenvalue density above Tc. Plus, cross, asterisk, square, circle, triangle, and downward
triangle symbols indicate ρ(λ ) at T =173.0, 177.7, 188.7, 210.6, 239.7, 275.9, and 331.6 MeV, respectively.
The right figure shows a logarithmic plot of the same data for the small λ region. All of the data points for
T = 331.6 MeV are outside of the region shown.

universal scaling function fG(z) as
M = h1/δ fG(z) , (4.1)

with z ≡ t/h1/βδ , where h and t are scaling variables corresponding to a symmetry breaking field
and temperature, respectively, and β and δ are critical exponents. In QCD 〈  ψψ〉 and the (light)
quark mass m are regarded as M and h, respectively. Thus one has the relation

〈  ψψ〉 ∼ m1/δ fG(z) . (4.2)

On the other hand, in the infinite volume limit, 〈  ψψ〉 can be obtained from the eigenvalues of
the Dirac operators as

〈  ψψ〉=−
∫ ∞

0
dλ

2mρ(λ )
λ 2 +m2 . (4.3)

Assuming ρ(λ )∼ Aλα , Eq. (4.3) can be rewritten in the limit m→ 0 as

〈  ψψ〉=−mα
∫ ∞

0
d  λ

2A  λα
 λ 2 +1

, (4.4)

with  λ ≡ λ/m. Thus, by comparing (4.2) to (4.4), α = 1/δ would be expected at Tc in the chiral
limit and α should have a value close to 1/δ for a small enough quark mass and near Tc.

To test this expectation, we fit the eigenvalue density around Tc to the Ansatz ρ(λ ) = Aλα .
Here we set the fit range as [0,λmax]. Since the part of ρ(λ ) with large λ is suppressed due to us
having calculated only a fixed number of low-lying eigenvalues per configuration, the largest λ in
the region without such a suppression effect is chosen as λmax.

Figure 3 shows the temperature dependence of the fit parameters α and A. α increases mono-
tonically as the temperature increases and it has a value close to 1/δ for either the O(2) or O(4)
universality class2 at a temperature not more than 10 MeV below the pseudocritical temperature
for both ml/ms = 1/20 and 1/40. Since we expect that α = 1/δ at Tc only in the chiral limit, the

21/δ for the O(2) and O(4) universality classes are too similar to be distinguishable within our numerical accuracy.
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Previous studies  on 2

Cohen(96), Theory

�U(1)A
=

�
d4x ��(x)�(0) � �(x)�(0)�

Yes ! χU(1)A
/V = 0, (m → 0)

Lee-Hatsuda(96), Theory No ! zero mode contributions are  important.

�U(1)A
= O(m2) + � � = O(1) at Nf = 2: contributions from Q = ±1

Lattice results
Bernard, et al. (96), KSChandrasekharan et al., (98), KS No ! No !
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FIG. 2. The quantity ω, which directly measures anomalous symmetry breaking, plotted versus

fermion mass, ma. Also shown are the chiral condensate 〈χ̄χ〉 and the pseudoscalar susceptibility
χP. We studied a 163 × 4 lattice at β = 5.3, just above βc.
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FIG. 1. Phase diagram for the standard SU(3)
Wilson gauge plus two-flavor staggered fermion
action showing the approximate Nt = 6 crossover
location (crosses and burst) as a function of gauge
coupling 6/g2 and quark mass amq. Data sample
points are indicated by octagons. FIG. 2. Chiral order parameters extrapolated in

quark mass squared.

We measure this susceptibility directly from the connected part of the f0 correlator: χconn =
∫

d4x 〈f0(0)f0(r)〉|conn,
while Chandrasekharan and Christ measure it by taking the derivative of 〈f0〉 with respect to the valence quark mass
[6]. Finally, a well-known Ward identity relates the pion susceptibility to the chiral order parameter [11]:

χπ = NfTa2/V
〈

Tr(M †M)−1
〉

= 〈f0〉 /(2mq). (8)

In practice we measure the order parameters (2) through

χSU(2)×SU(2) = 〈f0〉 /(2mq) − χconn − χdisc and χU(1) = 〈f0〉 /(2mq) − χconn (9)

The simulation consisted of a subset of configurations generated in an extensive study of the equation of state for
Nt = 6 and Nf = 2 at 6/g2 = 5.45 and quark masses amq = 0.0075, 0.01, 0.0125, 0.015, 0.02, and 0.025 [4,5]. This
parameter range lies in the high temperature phase slightly above the phase transition, as illustrated in Fig. 1, and
was selected to permit an extrapolation of the measured quantities to zero quark mass in the high temperature phase.
The simulation sample at each mass covered a molecular dynamics time span of at least 2000 time units with the first
400 omitted. Measurements were taken at intervals of at most 50 time units. The chiral order parameter 〈f0〉 ≡

〈

ψ̄ψ
〉

was measured using the random source method [12] with 33 random sources. These measurements, with care taken to
avoid biases inherent in the noisy source technique, in turn, provided an estimate of χdisc through the configuration
variance.

III. RESULTS AND CONCLUSIONS

Results are shown in Fig. 2 and table I. We have indicated a linear extrapolation in (amq)2. Because they are
closer to the crossover (Fig. 1), where curvature may be expected, we chose to exclude the two highest mass points
from the fit. The zero mass intercepts are

χSU(2)×SU(2) = 0.04(31) and χU(1) = 0.75(22) (10)

with χ2/df = 2.6/2 and 2.5/2 respectively. Fits to all points gave χSU(2)×SU(2) = −0.33(20) with χ2/df = 5.6/4 and
χU(1) = 0.81(11) with 2.7/4.

It is surprising that a fit of the same points to an expression linear in amq gives a result consistent with a zero
intercept for both order parameters: χSU(2)×SU(2) = 0.15(38) with χ2/df = 1.8/2 and χU(1) = 0.40(56) with 2.4/2. So

3

Chiral symmetry is restored. U(1)A is NOT.



Looking for U(1)A Restoration Prasad Hegde

depending on the type of correlator being integrated. Furthermore, the disconnected parts of the σ
and η ′ susceptibilities are equal to the disconnected susceptibilities χdisc and χ5,disc viz.

χσ ,disc =
〈

(ψψ)2
〉

−
〈

(ψψ)
〉2 ≡ χdisc and χη ′,disc =

〈

(ψγ5ψ)
2 〉≡ χ5,disc. (3.4)

The appropriate symmetry restoration gives rise to equalities among the different susceptibilities:

χπ = χδ + χdisc and χδ = χπ − χ5,disc.
[

SU(2)L×SU(2)R
]

(3.5a)
χπ = χδ and χδ + χdisc = χπ − χ5,disc.

[

U(1)A
]

. (3.5b)

The difference χπ−χδ must go to zero asU(1)A breaking is suppressed. Eq. (3.5a) tells us that this
difference equals χdisc once chiral symmetry is restored. Moreover, we see that chiral symmetry
restoration implies that χdisc = χ5,disc whereas axial symmetry restoration implies the opposite,
namely χdisc = −χ5,disc. Either way, when both chiral and axial symmetry are restored, one has
χdisc = 0= χ5,disc. In other words,U(1)A restoration is signaled by a vanishing disconnected chiral
susceptibility.

0
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χdisc/T
2

χ5,disc/T
2

(χπ-χδ)/T
2

Figure 4: The susceptibilities χdisc, χ5,disc and χπ − χδ for each of the temperatures. All are very nearly
equal from T = 170 MeV onward. None of these susceptibilities vanishes for all the temperatures shown
here. The red and blue points have been horizontally displaced by ±1 MeV for clarity.

Fig. 4 plots these susceptibilities for each of the temperatures that we studied. Although the
equalities derived in Eqs. (3.5) are strictly valid only in the chiral limit, we see that χdisc, χ5,disc and
χπ − χδ are almost equal to each other from about 170 MeV onwards. Furthermore, none of these
susceptibilities is equal to zero even at T = 200 MeV, the highest temperature that we studied. If
we take Tc ≈ 160 MeV, this would seem to suggest thatU(1)A remains broken even at T ≈ 1.25Tc.

4. The Correlation with Topology

Let us take a closer look at the source of U(1)A violation. If we write the π and δ correlators
(Eqs. (3.1)) in terms of their left- and right-handed components, we get

Cδ/π(x) =
〈

uLdR(x)dRuL(0)+uRdL(x)dLuR(0)
〉

±
〈

uLdR(x)dLuR(0)+uRdL(x)dRuL(0)
〉

.
(4.1)
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Hegde (HotQCD11), DW

Recent lattice results
Topological susceptibility and axial symmetry at finite temperature Guido Cossu
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Figure 4: Meson correlators at several temperatures and masses.
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�U(1)A
= 0 or not ?

meson correlators
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Our work

give constraints on eigenvalue densities of 2-flavor overlap fermions, if chiral 
symmetry in QCD is restored at finite temperature.
discuss a behavior of singlet susceptibility using the constraints. 

1. Introduction

2. Overlap fermions

3. Constraints on eigenvalue densities

4. Discussions: singlet susceptibility 

Content



2. Overlap fermions

S = �̄[D �mF (D)]�, F (D) = 1� Ra

2
D

Ginsparg-Wilson relation

Action

2 Overlap fermions

The argument is the previous section is ”formal”, since an existence of U(1)A

anomaly is not explicitly taken into account there. It is therefore interesting and
important to extend the argument to the case of overlap fermions.

2.1 Chiral symmetry W-T identities

We first consider the W-T identities for the overlap fermion under chiral symmetry,
which is compactly written as

〈(Ja
x − δa

xS)O + δa
xO〉 = 0 (58)

where δa
x is the local chiral rotation, Ja

x is the corresponding contribution from the
measure term, O is an arbitrary operator, and the action is given by

S = ψ̄Dψ − m

∫
d4x ψ̄F (D)ψ. (59)

Here the overlap Dirac operator D satisfies the GW relation that

Dγ5 + γ5D = aDRγ5D (60)

and F (D) = 1 − R

2
aD. Since the total derivative term in δS vanishes after x

integration as
∫

d4x ∂µJa
µ = 0, we obtain

∫
d4x〈{Ja

x + 2mP a(x)}O + δa
xO〉 = 0. (61)

This is the master equation in this section. Here scalar and pseudo-scalar operators
are defined by

Sa(x) = ψ̄(x)T aF (D)ψ(x), (62)
P a(x) = ψ̄(x)T aiγ5F (D)ψ(x), (63)

which are transformed as

δbSa(x) = 2dab
c P c(x), (δ0Sa(x) = 2P a(x) = δaS0(x)) (64)

δbP a(x) = −2dab
c Sc(x), (δ0P a(x) = −2Sa(x) = δaP 0(x)) (65)

under the global chiral transformation δa =
∫

d4x δa
x, where

{
T a, T b

}
= 2dab

c T c.
In this note, the infinitesimal ”chiral” transformation for the overlap fermion is

defined by

θa(x)δa
xψ(x) = iθa(x)T aγ5(1 − RaD)ψ(x), (66)

θa(x)δa
xψ̄(x) = iψ̄(x)θa(x)T aγ5, (67)

for the infinitesimal parameter θa(x), under which the measure term is given by

Ja
x = −2itr T aγ5

(
1 − R

2
aD

)
(x, x) = −δa02iNf tr γ5

(
1 − R

2
aD

)
(x, x).(68)

where the minus sign comes from the fact that ψ and ψ̄ are Grassmann numbers.
For O = Sa(y)P a(z) and δb = δ0, we obtain the anomalous WT identity,
〈∫

d4x {J0
x + 2mP 0}Sa(y)P a(z) + 2P a(y)P a(z) − 2Sa(y)Sa(z)

〉
= 0, (69)
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Propagator

Measure

zero modes(chiral) doublers(chiral)bulk modes(non-chiral)

fm = 1 +
Rma

2

Pm(A) = e�SY M (A)(�m)Nf NA
R+L

�
2

Ra

�Nf NA
D �

��A
n >0

�
Z2

m�̄A
n �A

n + m2
�

S(x, y) =
�

n

�
�n(x)�†

n(y)
fm�n �m

+
�5�n(x)�†

n(y)�5

fm�̄n �m

�
�

NR+L�
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1
m

�k(x)�†
k(y) +

ND�

K=1

Ra

2
�K(x)�†
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Z2
m = 1� (ma)2
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4

positive definite and even function of m �= 0 for even Nf

N_f=2 in this talk.

 # of zero modes
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Ward-Takahashi identities under “chiral” rotation

2 Overlap fermions

The argument is the previous section is ”formal”, since an existence of U(1)A

anomaly is not explicitly taken into account there. It is therefore interesting and
important to extend the argument to the case of overlap fermions.

2.1 Chiral symmetry W-T identities

We first consider the W-T identities for the overlap fermion under chiral symmetry,
which is compactly written as

〈(Ja
x − δa

xS)O + δa
xO〉 = 0 (58)

where δa
x is the local chiral rotation, Ja

x is the corresponding contribution from the
measure term, O is an arbitrary operator, and the action is given by

S = ψ̄Dψ − m

∫
d4x ψ̄F (D)ψ. (59)

Here the overlap Dirac operator D satisfies the GW relation that

Dγ5 + γ5D = aDRγ5D (60)

and F (D) = 1 − R

2
aD. Since the total derivative term in δS vanishes after x

integration as
∫

d4x ∂µJa
µ = 0, we obtain

∫
d4x〈{Ja

x + 2mP a(x)}O + δa
xO〉 = 0. (61)

This is the master equation in this section. Here scalar and pseudo-scalar operators
are defined by

Sa(x) = ψ̄(x)T aF (D)ψ(x), (62)
P a(x) = ψ̄(x)T aiγ5F (D)ψ(x), (63)

which are transformed as

δbSa(x) = 2dab
c P c(x), (δ0Sa(x) = 2P a(x) = δaS0(x)) (64)

δbP a(x) = −2dab
c Sc(x), (δ0P a(x) = −2Sa(x) = δaP 0(x)) (65)

under the global chiral transformation δa =
∫

d4x δa
x, where

{
T a, T b

}
= 2dab

c T c.
In this note, the infinitesimal ”chiral” transformation for the overlap fermion is

defined by

θa(x)δa
xψ(x) = iθa(x)T aγ5(1 − RaD)ψ(x), (66)

θa(x)δa
xψ̄(x) = iψ̄(x)θa(x)T aγ5, (67)

for the infinitesimal parameter θa(x), under which the measure term is given by

Ja
x = −2itr T aγ5

(
1 − R

2
aD

)
(x, x) = −δa02iNf tr γ5

(
1 − R

2
aD

)
(x, x).(68)
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scalar
pseudo-scalar

chiral rotation at N_f=2

Integrated operators

Sa =
�

d4xSa(x), P a =
�

d4xP a(x)

On1,n2,n3,n4 = (P a)n1(Sa)n2(P 0)n3(S0)n4 N =
�

i

ni, n1 + n2 = odd, n1 + n3 = odd

If the chiral symmetry is restored,

lim
m�0

��aOn1,n2,n3,n4�m = 0

�a

2
On1,n2,n3,n4 = �n1On1�1,n2,n3,n4+1 + n2On1,n2�1,n3+1,n4 � n3On1,n2+1,n3�1,n4 + n4On1+1,n2,n3,n4�1

WT identities

explicit from

�aSb = 2�abP 0, �aP b = �2�abS0



3. Constraints on eigenvalue densities

Assumption 1 non-singlet chiral symmetry is restored:

C. Basic properties and assumptions

In this subsection, we explicitly give the basic properties and assumptions used in this

paper.

If the SU(2)L × SU(2)R chiral symmetry is restored at T > Tc, we should have

lim
m→0

lim
V →∞

〈δaO〉m = 0 (for a $= 0), (21)

for an arbitrary operator O, where an average over gauge fields is defined by

〈O(A)〉m =
1

Z

∫
DAPm(A)O(A), Z =

∫
DAPm(A). (22)

Here we have put the subscript m to remind the readers of the m-dependence.

In the following analysis, we will normalize the operator O (by multiplying 1/V k with an

integer k ) so that limV →∞〈δaO〉 is well-defined. Note that Pm(A) is positive for even Nf

and
∫
DAPm(A)/Z = 1.

In our analysis, we assume that the vacuum expectation values of m-independent observ-

able O(A) is an analytic function of m2, if the chiral symmetry is restored. Therefore if

O(A) is m-independent and positive for all A, and is shown to satisfies

lim
m→0

1

mk
〈O(A)l0〉m = 0 (23)

with a non-negative integer k and a positive integer l0, we can write

〈O(A)l0〉m = m2([k/2]+1)
∫
DAP̂ (m2, A)O(A)l0 (24)

where [c] is the largest integer not larger than c, P̂ (0, A) $= 0 for ∃A and
∫

DAP̂ (m2, A)O(A)l0 is non-negative and assumed to be finite in the large volume limit. In

other words, the leading m dependence arises from the contribution of configurations which

satisfy P̂ (0, A) $= 0.

Under the above assumption, it is easy to see

〈O(A)l〉m = m2([k/2]+1)
∫

DA P̂ (m2, A)O(A)l = O(m2(k+1)), (25)

for an arbitrary positive integer l, as long as
∫

DAP̂ (m2, A)O(A)l is finite, since O(A)l0 and

O(A)l are both positive and therefore share the same support in the configuration space.
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Assumption 2 if O(A) is m-independent

�O(A)�m = f(m2) f(x) is analytic at x = 0

Pm(A): even in m

Note that this does not hold if the chiral symmetry is spontaneously broken.

Ex. lim
V��

1
V

�Q(A)2�m = m
�
Nf

+ O(m2)



Assumption 3 if O(A) is m-independent and positive, and satisfies

lim
m�0

1
m2k

�O(A)�m = 0

P̂ (0, A) �= 0 for �A

consequence

�O(A)�m = m2(k+1)

�
DA P̂ (m2, A)O(A)

�O(A)l�m = m2(k+1)

�
DA P̂ (m2, A)O(A)l = O(m2(k+1))

for �l integer

finite

since O(A) and O(A)l are both positive and share the same support.



�A(�) � lim
V��

1
V

�

n

�

�
��

�
�̄A

n �A
n

�

 

Assumption 4 eigenvalues density can be expanded as

More precisely, configurations which can not be expanded at the origin 
are “measure zero” in the configuration space. 

=
��

n=0

�A
n

�n

n! at � = 0 (� < � )



general N(odd)

1
V N

�(S0)N �m = NN
f

��
NA

R+L

mV
+ I1

�N�

m

+ O(V �1) � 0
m� 0

I1 =
1

Zm

� �R

0
d� �A(�)g0(�2)

2mR

�2 + m2
R

= ��A
0 + O(m)

g0(�2) = 1� �2

�2
R

, mR = m/Zm

�R = 2
Ra : cut-o�

��A
0 �m = O(m2) 1st constraint

Both �A
0 and NA

R+L are positive.

lim
V��

�
NR+L

V

�

m

= O(mN+1) lim
V��

�
NR+L

V

�

m

= 0

�N for small but non-zero m

4. Constraints on eigenvalue densities
O1,0,0,N�1

C. Contribution from zero modes at general N

Before extending our analysis to higher N , let us discuss the fate of the zero-mode con-

tribution at general N . For this purpose we consider an operator O(N)
a = O1,0,0,N−1, whose

non-singlet chiral WT identity requires

lim
m→0

lim
V →∞

(−〈O0,0,0,N〉m + (N − 1)〈O2,0,0,N−2〉m) = 0. (48)

Its dominant contribution at large volume is

− 1

V N
〈(S0)

N〉m = −NN
f

〈{

(−1)

(
NA

R+L

mV
+ I1

)}N〉

m

+ O(V −1), (49)

and, therefore, from the positivity of NA
R+L and I1,

lim
V →∞

〈(NA
R+L)N〉m
V N

=






O(mN+2) (for even N)

O(mN+1) (for odd N)
. (50)

Since this holds for arbitrary N , and NA
R+L does not explicitly depend on m, we conclude

that

lim
V →∞

〈NA
R+L〉m
V

= 0, (51)

at small but non-zero m.

This result implies that any zero-mode’s contributions to an arbitrary local operator are

measure-zero in the thermodynamical limit, as we have already seen an example in Section I

[17]. Therefore, we hereafter set limV →∞〈NA
R+L〉m/V = 0 even at small but non-zero m.

D. Constraints at N = 2

We next consider the N = 2 case. In this case, two WT identities from O1001 and

O0110 ∈ O(N=1)
a require that the so-called (non-singlet) chiral susceptibilities,

χσ−π =
1

V 2
〈S2

0 − P 2
a 〉m, χη−δ =

1

V
〈P 2

0 − S2
a〉m (52)

vanish in the V → ∞ and m → 0 limits at T > Tc. The first one, χσ−π, has been already

examined in the previous subsection.

In a similar way in the N = 1 case, χη−δ can be expressed in terms of eigenvalues as

lim
V →∞

χη−δ = lim
V →∞

〈

−
N2

f

m2V
Q(A)2

〉

m

+ Nf

〈(
I1

m
+ I2

)〉

m
, (53)

13

large volume



N=2

3.3 Constraints at N = 2

We consider the (non-singlet) chiral susceptibilities defined by

χσ−π =
1

V 2
〈S2

0 − P 2
a 〉m, χη−δ =

1
V
〈P 2

0 − S2
a〉m. (3.20)

For χσ−π, a term with two traces is dominate in the large volume limit. We therefore
obtain

χσ−π =
〈
N2

f

(
1

mV
NR+L + I1

)2〉

m
+ O

(
1
V

)
. (3.21)

Again positivity implies

lim
m→0

lim
V →∞

1
m2V 2

〈(NA
R+L)2〉m = lim

m→0
lim

V →∞

1
mV

〈NA
R+L ρ

A
0 〉m = lim

m→0
〈(ρA

0 )2〉m = 0.(3.22)

The last two conditions are automatically satisfied since 〈ρA
0 〉m ∝ m2 and ρA

0 is m inde-
pendent. The first condition gives

lim
V →∞

1
V 2

〈(NA
R+L)2〉m = O(m4). (3.23)

Since NA
R+L does not depend on quark mass m, we conclude

lim
V →∞

1
V
〈NA

R+L〉m = m4N̄2 + O(m6), (3.24)

which means that N̄1 = 0.
We next consider χη−δ, which becomes

χη−δ = Nf

〈
1

m2V
{2NR+L − NfQ(A)2} +

1
Zm

(
I1

mR
+ I2

)〉

m

(3.25)

where, Q(A) = NA
R − NA

L ,

I2 =
2

Zm

∫ ΛR

0
dλ ρA(λ)

m2
R − λ2g0(λ2)gm

(λ2 + m2
R)2

, gm =
1

Z2
m

(
1 +

m2

2Λ2
R

)
. (3.26)

Since, in the m → 0 limit, we have

I1

mR
+ I2 = ρA

0

(
πm

m
+

2
ΛR

)
+ 2ρA

1 + O(m), (3.27)

in addition to 〈NR+L〉m = O(m4V ) and 〈ρA
0 〉m = O(m2), the condition that limm→0 χη−δ =

0 gives

lim
m→0

N2
f 〈Q(A)2〉m

m2V
= 2 lim

m→0
〈ρA

1 〉m ≡ 2ρ̄1. (3.28)
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+ I2

)〉

m

(3.25)

where, Q(A) = NA
R − NA

L ,

I2 =
2

Zm

∫ ΛR

0
dλ ρA(λ)

m2
R − λ2g0(λ2)gm

(λ2 + m2
R)2

, gm =
1

Z2
m

(
1 +

m2

2Λ2
R

)
. (3.26)

Since, in the m → 0 limit, we have

I1

mR
+ I2 = ρA

0

(
πm

m
+

2
ΛR

)
+ 2ρA

1 + O(m), (3.27)

in addition to 〈NR+L〉m = O(m4V ) and 〈ρA
0 〉m = O(m2), the condition that limm→0 χη−δ =

0 gives

lim
m→0

N2
f 〈Q(A)2〉m

m2V
= 2 lim

m→0
〈ρA

1 〉m ≡ 2ρ̄1. (3.28)
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topological charge

=0

=0



N=3

3.4 Constraints at N = 3

We next consider the N = 3 case. WT identities at N = 3 are given by

〈O2001〉m → 0, 〈−O0201 + 2O1110〉m → 0, 〈O0021 + 2O1110〉m = 0,

〈−O0003 + 2O2001〉m → 0, 〈O0021 −O0201 + O1110〉m → 0, (3.29)

as m → 0. By combining these 3-pt functions, we obtain following 5 conditions in the large
volume limit.

χ1

V 2
= −N2

f

〈(
NR+L

mV
+ I1

)(
NR+L

m2V
− I2

)〉

m

→ 0 (3.30)

χ2

V 3
= N3

f

〈(
NR+L

mV
+ I1

)3
〉

m

→ 0 (3.31)

χ3

V
=

〈
−N2

f

N2
R−L

m3V
+ 2Nf

(
NR+L

m3V
+ I3

)〉

m

→ 0 (3.32)

χ4

V 2
= N3

f

〈(
NR+L

mV
+ I1

)
N2

R−L

m2V

〉

m

→ 0 (3.33)

χ5

V 2
=

〈
N2

f

m

(
NR+L

mV
+ I1

)(
NR+L

mV
− I1

)〉

m

→ 0, (3.34)

as m → 0. From the results in the previous subsection, it is easy to see

〈(NA
R+L)2〉m
m3V 2

= O(m),
〈NA

R+LI1〉m
m2V

= O(m2) (3.35)

〈NA
R+LI2〉m
mV

= O(m3), 〈I1I2〉m = O(m), (3.36)

〈(NA
R+L)3〉m
m3V 2

= O(m),
〈(NA

R+L)2I1〉m
m2V

= O(m2), 〈I3
1 〉A = O(m2), (3.37)

〈NA
R+LI2

1 〉m
mV

= O(m3), N2
f
〈Q(A)2〉m

m3V
= 2Nf

ρ̄1

m
, (3.38)

2Nf 〈I3〉m = 2Nf

[
π

2
〈ρA

0 〉m
m2

+
ρ̄1

m
+
π

4
〈ρA

2 〉m
]

(3.39)

〈NA
R+LQ(A)2〉m

m3V 2
= O(m),

〈I2
1 〉m
m

= O(m) (3.40)

〈Q(A)2I1〉m
m2V

= N2
fπ

〈Q(A)2ρA
0 〉m

m2V
,

〈(NA
R+L)2〉m
m3V 2

= O(m). (3.41)
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lim
V��

�Q(A)2�A
0 �m

V
= O(m4)

WT identities

��A
0 �m = �m2

2
��A

2 �m + O(m4)



N=4

where k is an arbitrary positive integer(k = 1, 2, · · · ) while n is an arbitrary non-negative
integer (n = 0, 1, 2, · · · ).

Using these properties, we have

lim
m→0

lim
V →∞

χ1,2,5 = 0, (3.37)

lim
m→0

lim
V →∞

χ3 = πNf lim
m→0

[
〈ρA

0 〉m
m2

+
〈ρA

2 〉m
2

]
, (3.38)

lim
m→0

lim
V →∞

χ4 = πN3
f lim

m→0
lim

V →∞

〈Q(A)2ρA
0 〉m

m2V
. (3.39)

The condition for χ3 gives

〈ρA
0 〉m = −m2 〈ρA

2 〉m
2

+ O(m4). (3.40)

Since 〈ρA
0 〉m is positive from the positivity of 〈ρA(0)〉m, 〈ρA

2 〉m must be negative for small
m from the above condition. The condition for χ4 leads to

〈Q(A)2ρA
0 〉m

m2V
= O(m2). (3.41)

This condition does not necessarily give stronger conditions than 〈Q(A)2〉m = O(m2V ) and
〈ρA

0 〉m = O(m2), since it only requires that a set of gauge configurations which satisfies
both Q(A)2 $= 0 and ρA

0 $= 0 has a weight m4P̂ (A,m2) + O(m6).

3.5 Constraints at N = 4

Eight WT identities at N = 4 give 7 independent constraints that

〈O4000 −O0004〉m → 0, 〈O4000 − 3O2002〉m → 0, (3.42)

〈O0400 −O0040〉m → 0, 〈O0400 − 3O0220〉m → 0, (3.43)

〈O2020 −O0202〉m → 0, 〈O2200 −O0022〉m → 0, (3.44)

〈2O1111 −O0202 + O0022〉m → 0. (3.45)

From O(V 4) contributions, we have

1
V 4

〈S4
0〉m = N4

f

〈{
NA

R+L

mV
+ I1

}4〉

m

→ 0, (3.46)

which leads to

〈(NA
R+L)4〉m
V 4

= O(m6) ⇒
〈(NA

R+L)n〉m
V n

= O(m6) (3.47)

for an arbitrary integer n. Under this condition, other terms automatically vanish since
I1 = πρ0 + O(m). Hereafter we neglect terms which contain one or more NA

R+L, which are
highly suppressed as m → 0.
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At O(V 3), there are 3 conditions that

1
V 3

〈P 2
a S2

0〉m → 0,
1

V 3
〈S2

aS2
0〉m → 0,

1
V 3

〈P 2
0 S2

0〉m → 0. (3.48)

The fist condition (with NA
R+L terms omitted) becomes

N3
f
〈I3

1 〉m
m

→ 0, (3.49)

which is automatically satisfied as

〈I3
1 〉m
m

=
〈
{
πρA

0 + O(m)
}3〉m

m
= O(m), (3.50)

since 〈ρA
0 〉m = O(m2). The second one becomes

−N3
f 〈I2

1I2〉m → 0, (3.51)

which is automatically satisfied since

〈I2
1I2〉m = 〈

{
πρA

0 + O(m)
}2

I2〉m = O(m2). (3.52)

The third one, leading to

N3
f

〈
I2
1

{
I1

m
− Q(A)2

m2V

}〉

m

→ 0, (3.53)

is also satisfied, since the first terms vanishes as before and the second one is estimated as

〈I2
1Q(A)2〉m

m2V
=

〈{πρA
0 + O(m)}2Q(A)2〉m

m2V
= O(m2) (3.54)

from eq. (3.41).
At O(V 2) we have

1
V 2

〈S4
a − P 4

0 〉m → 0,
1

V 2
〈S4

a − 3S2
aP 2

0 〉m → 0,
1

V 2
〈P 2

a (P 2
0 − S2

a) − 2PaSaP0S0〉m → 0.

(3.55)

After a little algebra, the first condition becomes

3N2
f 〈(I2 + I1/m)(I1 − I2/m)〉m +

6N3
f

m3V
〈Q(A)2I1〉m −

N4
f

m4V 2
〈Q(A)4〉m → 0. (3.56)

Since

I2 +
I1

m
= ρA

0

(
π

m
+

2
ΛR

)
+ 2ρA

1 + O(m) (3.57)

I2 −
I1

m
= ρA

0

(
− π

m
+

6
ΛR

)
+ ρA

1

(
4 − 2 log

Λ2
R

m2

)
+ O(1) (3.58)
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� log m � 1
m � 1

m2

lim
V��

�Q(A)2�m

V
= O(m4) ��A

1 �m = O(m2)

2nd constraint

3.3 Constraints at N = 2

We consider the (non-singlet) chiral susceptibilities defined by

χσ−π =
1

V 2
〈S2

0 − P 2
a 〉m, χη−δ =

1
V
〈P 2

0 − S2
a〉m. (3.20)

For χσ−π, a term with two traces is dominate in the large volume limit. We therefore
obtain

χσ−π =
〈
N2

f

(
1

mV
NR+L + I1

)2〉

m
+ O

(
1
V

)
. (3.21)

Again positivity implies

lim
m→0

lim
V →∞

1
m2V 2

〈(NA
R+L)2〉m = lim

m→0
lim

V →∞

1
mV

〈NA
R+L ρ

A
0 〉m = lim

m→0
〈(ρA

0 )2〉m = 0.(3.22)

The last two conditions are automatically satisfied since 〈ρA
0 〉m ∝ m2 and ρA

0 is m inde-
pendent. The first condition gives

lim
V →∞

1
V 2

〈(NA
R+L)2〉m = O(m4). (3.23)

Since NA
R+L does not depend on quark mass m, we conclude

lim
V →∞

1
V
〈NA

R+L〉m = m4N̄2 + O(m6), (3.24)

which means that N̄1 = 0.
We next consider χη−δ, which becomes

χη−δ = Nf

〈
1

m2V
{2NR+L − NfQ(A)2} +

1
Zm

(
I1

mR
+ I2

)〉

m

(3.25)

where, Q(A) = NA
R − NA

L ,

I2 =
2

Zm

∫ ΛR

0
dλ ρA(λ)

m2
R − λ2g0(λ2)gm

(λ2 + m2
R)2

, gm =
1

Z2
m

(
1 +

m2

2Λ2
R

)
. (3.26)

Since, in the m → 0 limit, we have

I1

mR
+ I2 = ρA

0

(
πm

m
+

2
ΛR

)
+ 2ρA

1 + O(m), (3.27)

in addition to 〈NR+L〉m = O(m4V ) and 〈ρA
0 〉m = O(m2), the condition that limm→0 χη−δ =

0 gives

lim
m→0

N2
f 〈Q(A)2〉m

m2V
= 2 lim

m→0
〈ρA

1 〉m ≡ 2ρ̄1. (3.28)
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and 〈(ρA
0 )n〉m = O(m2), the first term is at most logarithmically divergent as m → 0. On

the other hand, the second term vanishes tanks to eq. (3.41). Therefore, in order to satisfy
eq. (3.56), we need at least

lim
V →∞

1
V 2

〈Q(A)4〉m = O(m4) (3.59)

which leads to

lim
V →∞

1
V k

〈Q(A)2k〉m = O(m4) (3.60)

for an arbitrary positive integer k. Combining this with eq. (3.26), we have

〈ρA
1 〉m = O(m2), (3.61)

so that eq. (3.56) now becomes

−3N2
f

π2

m2
〈(ρA

0 )2〉m −
N4

f

m4V 2
〈Q(A)4〉m → 0. (3.62)

Since both terms are negative semidefinite, this WT identity gives

〈(ρA
0 )k〉m = O(m4), lim

V →∞

1
V l

〈Q(A)2l〉m = O(m6) (3.63)

for arbitrary positive integers k and l. The first condition also gives

〈ρA
2 〉m = O(m2) (3.64)

from eq. (3.40). We also show this using a different argument. From eq. (3.61), the
eigenvalues density near chiral limit becomes

〈ρA(λ)〉m = 〈ρA
2 〉m

λ2

2
+ O(λ3) + O(m2). (3.65)

The positivity of 〈ρA(λ)〉m implies 〈ρA
2 〉m ≥ 0 near m = 0. Eq. (3.40) and the fact that

〈ρA
0 〉m is positive at all m, on the other hand, implies that 〈ρA

2 〉m can not become positive
in the chiral limit. Therefore 〈ρA

2 〉m = O(m2) and thus 〈(ρA
0 )〉m = O(m4).

It is now easy to see that the second and third conditions in eq. (3.55) are automatically
satisfied: The second one becomes

3N2
f 〈I2(I2 + I1/m)〉m −

3N3
f

m2V
〈I2Q(A)2〉m = O(m) + O(m4) (3.66)

while the third one is

N2
f 〈(I1/m) (I2 + I1/m)〉m −

3N3
f

m3V
〈I1Q(A)2〉m = O(m) + O(m3). (3.67)
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negative semi-definite

��A
0 �m = O(m4)

lim
V��

�Q(A)2�m

V
= O(m6)

��A
2 �m = O(m2)

3rd constraint��A
0 �m = �m2

2
��A

2 �m



Final results

lim
m�0

��A(�)�m = lim
m�0

��A
3 �m

|�|3

3!
+ O(�4)

+ result from N=4k (general)

We think that we can not prove 〈ρA
3 〉0 = 0 in general since 〈ρA

3 〉0 #= 0 for the free theory.
Note here that the density of eigenvalues is always defined in the V → ∞ limit.

For discrete zero modes, we have

lim
V →∞

1
V k

〈(NA
R+L)k〉m = 0, lim

V →∞

1
V k

〈Q(A)2k〉m = 0 (3.83)

for an arbitrary positive integer k even at a small but non-zero m.

4. Singlet susceptibilities

In this section, we consider possible constraints to singlet susceptibilities using constraints
obtained in the previous section. It seems that singlet susceptibilities at odd N automat-
ically vanish. We explicitly check this property at N = 1, 3, 5. See appendix B for more
general cases. We therefore consider even N here.

4.1 N = 2 case

At N = 2 a nontrivial singlet susceptibility is given by

χπ−η =
1
V
〈P 2

a − P 2
0 〉m = lim

V →∞

N2
f

m2V
〈Q(A)2〉m = 0. (4.1)

Therefore the singlet susceptibility vanishes at this order.

4.2 N=4

From Appendix B, there are two non-trivial susceptibilities at N = 4 , which is given by

χ6 = 〈O0022 −O2002〉m, χ7 = 〈O0022 −O0220〉m (4.2)

See Appendix B. Since we can neglect NA
R+L/V and Q(A)2/V terms in the large N limit,

we have

lim
m→0

lim
V →∞

χ6

V 3
= − lim

m→0
lim

V →∞
N3

f

〈
NfQ(A)2

m2V

(
NA

R+L

mV
+ I1

)2〉

m

= 0, (4.3)

lim
m→0

lim
V →∞

χ7

V 3
= lim

m→0
lim

V →∞

N3
f

m

〈(
NA

R+L

mV
+ I1

)2 (
NA

R+L

mV
+ I1 −

NfQ(A)2

mV

)〉

m

= lim
m→0

N3
f

m

〈
I3
1

〉
m

. (4.4)

The second term also vanishes as

〈I3
1 〉m = 〈

(
πρA

1 + O(m)
)3〉m = O(m3). (4.5)

We therefore conclude that leading order contributions in V for the singlet susceptibilities
vanish also at N = 4.
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No constraints to higher ��A
n �m

��A
3 �m �= 0 even for ”free” theory.

��A
0 �m = 0



5. Discussion: Singlet susceptibility

Singlet susceptibility at high T

Both Cohen and Lee-Hatsuda are inaccurate.

This, however, does not mean U(1)_A symmetry is recovered at high T.

is necessary but NOT “sufficient” for the recovery of U(1)_A .

lim
m�0

���� = 0

lim
V�0

���� = lim
m�0

lim
V��

N2
f

m2V
�Q(A)2�m = 0



More general Singlet WT identities

�J0O + �0O�m = O(m)
anomaly(measure) singlet rotation

We can show for

where k is the smallest integer which makes the V �� limit finite.

lim
m�0

lim
V��

1
V k

��0O�m = 0

On1,n2,n3,n4 = (P a)n1(Sa)n2(P 0)n3(S0)n4O =

lim
V��

1
V k

�J0O�m = lim
V��

�
Q(A)2

mV
� O(V 0)

�

m

= 0

Breaking of U(1)_A symmetry is absent for these “bulk quantities”.

S0 � O(V ), P a, Sa, P 0 � O(V 1/2)



Important consequence

Effect of U(1)_A anomaly is invisible in scalar and pseudo-scalar sector.

Pisarski-Wilczek argument

Chiral phase transition in 2-flavor QCD is likely to be of first order !?

Final Comments

1. Large volume limit is required for the correct result.

2. If the action breaks the chiral symmetry, the continuum limit is also required. 

3. We only use a part of WT identities. Therefore, our constraints are necessary 
condition.
4. We can extend our analysis to the eigenvalue density with fractional power. 
The conclusion remains the same. 


