Chiral Symmetry Restoration, Eigenvalue Density of Dirac Operator and axial U(1) anomaly at Finite Temperature

Sinya AOKI

University of Tsukuba
with H. Fukaya and Y. Taniguchi for JLQCD Collaboration

1. Introduction

Chiral symmetry of QCD

phase transition

\[U(1)_B \otimes S(N_f)_V \quad \rightarrow \quad U(1)_B \otimes S(N_f)_L \otimes SU(N_f)_R \]

restoration of chiral symmetry

Some questions

1. Eigenvalue distribution of Dirac operator

related ?

2. Recovery of U(1)_A symmetry at high T?
Previous studies on $\rho(\lambda) = \lim_{V \to \infty} \frac{1}{V} \sum_n \delta(\lambda - \lambda_n)$

Cossu et al. (JLQCD11), Overlap

Eigenvalues distribution $N_f=2 - 16^3 \times 8$

- $T=172\text{MeV}$
- $T=177,192\text{MeV}$
- $T=209\text{MeV}$

Ohno et al. (11), HISQ

Is small λ suppressed?
Previous studies on 2

Cohen(96), Theory Yes!

Lee-Hatsuda(96), Theory No!

Lattice results

Chandrasekharan et al., (98), KS No!

Bernard, et al. (96), KS No!

\[
\chi_{U(1)_A} = O(m^2) + \Delta
\]

\[
\Delta = O(1) \text{ at } N_f = 2: \text{ contributions from } Q = \pm 1
\]

Chiral symmetry is restored. U(1)\textsubscript{A} is NOT.
Recent lattice results

Hegde (HotQCD11), DW

\[\chi_{U(1)_A} = 0 \text{ or not ?} \]

Cossu et al. (JLQCD11), Overlap

\[\beta = 2.30 \ (T \sim 208) \ am = 0.025 \]

\[\beta = 2.30 \ (T \sim 208) \ am = 0.01 \]

\[\chi_{\text{disc}}/T^2 \]

\[\chi_{5, \text{disc}}/T^2 \]

\[(\chi_{\nu} - \chi_{\delta})/T^2 \]
Our work
give constraints on eigenvalue densities of 2-flavor overlap fermions, if chiral symmetry in QCD is restored at finite temperature. discuss a behavior of singlet susceptibility using the constraints.

Content

1. Introduction

2. Overlap fermions

3. Constraints on eigenvalue densities

4. Discussions: singlet susceptibility
2. Overlap fermions

Action

\[S = \bar{\psi} [D - mF(D)] \psi, \quad F(D) = 1 - \frac{Ra}{2} D \]

Ginsparg-Wilson relation

\[D \gamma_5 + \gamma_5 D = a D R \gamma_5 D \]

Eigenvalue spectrum

\[\lambda_n^A + \bar{\lambda}_n^A = a R \bar{\lambda}_n^A \lambda_n^A \]

zero modes (chiral)

doublers (chiral)

\[\begin{align*}
D(A) \gamma_5 \phi_n^A &= \bar{\lambda}_n^A \gamma_5 \phi_n^A \\
D(A) \phi_n^A &= \lambda_n^A \phi_n^A
\end{align*} \]
Propagator

\[S(x, y) = \sum_n \left[\frac{\phi_n(x)\phi_n^+(y)}{f_m\lambda_n - m} + \gamma_5\phi_n(x)\phi_n^+(y)\gamma_5 \right] - \sum_{k=1}^{N_{R+L}} \frac{1}{m} \phi_k(x)\phi_k^+(y) + \sum_{K=1}^{N_D} \frac{Ra}{2} \phi_K(x)\phi_K^+(y) \]

bulk modes (non-chiral) zero modes (chiral) doublers (chiral)

Measure

\[P_m(A) = e^{-S_{YM}(A)}(-m)^{N_fN^A_{R+L}} \left(\frac{2}{Ra} \right)^{N_fN^A_D} \prod_{\Re\lambda_n^A > 0} \left(Z_m^2 \bar{\lambda}_n^A\lambda_n^A + m^2 \right) \]

positive definite and even function of \(m \neq 0 \) for even \(N_f \)

\[Z_m^2 = 1 - (ma)^2 \frac{R^2}{4} \]

\[f_m = 1 + \frac{Rma}{2} \]

\[N_f=2 \] in this talk.
Ward-Takahashi identities under “chiral” rotation

\[\theta^a(x) \delta^a_x \psi(x) = i \theta^a(x) T^a \gamma_5 (1 - R a D) \]
\[\theta^a(x) \delta^a_x \bar{\psi}(x) = i \bar{\psi}(x) \theta^a(x) T^a \gamma_5, \]

Integrated operators

\[S^a = \int d^4 x \, S^a(x), \quad P^a = \int d^4 x \, P^a(x) \]
\[S^a(x) = \bar{\psi}(x) T^a F(D) \psi(x), \quad P^a(x) = \bar{\psi}(x) T^a i \gamma_5 F(D) \psi(x), \]

chiral rotation at \(N_f=2 \)

\[\delta^a S^b = 2 \delta^{ab} P^0, \quad \delta^a P^b = -2 \delta^{ab} S^0 \]

If the chiral symmetry is restored,

\[\lim_{m \to 0} \langle \delta^a \mathcal{O}_{n_1, n_2, n_3, n_4} \rangle_m = 0 \]

WT identities

\[\mathcal{O}_{n_1, n_2, n_3, n_4} = (P^a)^{n_1} (S^a)^{n_2} (P^0)^{n_3} (S^0)^{n_4} \]
\[N = \sum_i n_i, \quad n_1 + n_2 = \text{odd}, \quad n_1 + n_3 = \text{odd} \]

explicit from

\[\frac{\delta^a}{2} \mathcal{O}_{n_1, n_2, n_3, n_4} = -n_1 \mathcal{O}_{n_1-1, n_2, n_3, n_4+1} + n_2 \mathcal{O}_{n_1, n_2-1, n_3+1, n_4} - n_3 \mathcal{O}_{n_1, n_2+1, n_3-1, n_4} + n_4 \mathcal{O}_{n_1+1, n_2, n_3, n_4-1} \]
3. Constraints on eigenvalue densities

Assumption 1 non-singlet chiral symmetry is restored:

\[
\lim_{m \to 0} \lim_{V \to \infty} \langle \delta_a \mathcal{O} \rangle_m = 0 \quad \text{(for } a \neq 0),
\]

\[
\langle \mathcal{O}(A) \rangle_m = \frac{1}{Z} \int \mathcal{D}A P_m(A) \mathcal{O}(A), \quad Z = \int \mathcal{D}A P_m(A).
\]

\[P_m(A)\text{: even in } m\]

Assumption 2 if \(\mathcal{O}(A)\) is \(m\)-independent

\[
\langle \mathcal{O}(A) \rangle_m = f(m^2)
\]

\[f(x)\text{ is analytic at } x = 0\]

Note that this does not hold if the chiral symmetry is spontaneously broken.

Ex.

\[
\lim_{V \to \infty} \frac{1}{V} \langle Q(A)^2 \rangle_m = m \frac{\Sigma}{N_f} + O(m^2)
\]
Assumption 3: if $\mathcal{O}(A)$ is m-independent and positive, and satisfies

$$\lim_{m \to 0} \frac{1}{m^{2k}} \langle \mathcal{O}(A) \rangle_m = 0$$

then

$$\langle \mathcal{O}(A) \rangle_m = m^{2(k+1)} \int \mathcal{D}A \hat{P}(m^2, A) \mathcal{O}(A)$$

is finite for $\hat{P}(0, A) \neq 0$ for $\exists A$.

Consequence: for $\forall l$ integer

$$\langle \mathcal{O}(A)^l \rangle_m = m^{2(k+1)} \int \mathcal{D}A \hat{P}(m^2, A) \mathcal{O}(A)^l = O(m^{2(k+1)})$$

since $\mathcal{O}(A)$ and $\mathcal{O}(A)^l$ are both positive and share the same support.
Assumption 4

Eigenvalues density can be expanded as

\[\rho^A(\lambda) \equiv \lim_{V \to \infty} \frac{1}{V} \sum_n \delta \left(\lambda - \sqrt{\frac{\lambda}{\lambda_n} A_n A_n} \right) = \sum_{n=0}^{\infty} \rho^A_n \frac{\lambda^n}{n!} \quad \text{at } \lambda = 0 \quad (\lambda < \epsilon) \]

More precisely, configurations which can not be expanded at the origin are "measure zero" in the configuration space.
4. Constraints on eigenvalue densities

general N(odd)

\[\mathcal{O}_{1,0,0,N-1} \]

\[
\lim_{m \to 0} \lim_{V \to \infty} (-\langle \mathcal{O}_{0,0,0,N} \rangle_m + (N-1)\langle \mathcal{O}_{2,0,0,N-2} \rangle_m) = 0.
\]

large volume

\[
\frac{1}{VN} \langle (S_0)^N \rangle_m = N_f^N \left\langle \left\{ \frac{N_R^A + L}{mV} + I_1 \right\} \right\rangle^N_m + O(V^{-1}) \to 0 \quad m \to 0
\]

\[
I_1 = \frac{1}{Z_m} \int_{0}^{\Lambda_R} d\lambda \rho^A(\lambda) g_0(\lambda^2) \frac{2m_R}{\lambda^2 + m_R^2} = \pi \rho_0^A + O(m)
\]

\[\Lambda_R = \frac{2}{R\alpha} : \text{cut-off} \]

\[g_0(\lambda^2) = 1 - \frac{\lambda^2}{\Lambda_R^2}, \quad m_R = m/Z_m \]

Both \(\rho_0^A \) and \(N_R^{A+L} \) are positive.

\[
\langle \rho_0^A \rangle_m = O(m^2) \quad \text{1st constraint}
\]

\[
\lim_{V \to \infty} \left\langle \frac{N_{R+L}}{V} \right\rangle_m = O(m^{N+1})
\]

\[
\forall N \quad \lim_{V \to \infty} \left\langle \frac{N_{R+L}}{V} \right\rangle_m = 0 \quad \text{for small but non-zero } m
\]
\[N=2 \]

\[
\chi^{\sigma-\pi} = \frac{1}{V} \langle S_0^2 - P_a^2 \rangle_m, \quad \chi^{\eta-\delta} = \frac{1}{V} \langle P_0^2 - S_a^2 \rangle_m
\]

\[= 0 \]

\[
\chi^{\eta-\delta} = N_f \left\langle \frac{1}{m^2 V} \left\{ 2N_{R+L} - N_f Q(A)^2 \right\} + \frac{1}{Z_m} \left(\frac{I_1}{m_R} + I_2 \right) \right\rangle_m
\]

\[= 0 \]

\[
I_2 = \frac{2}{Z_m} \int_0^{\Lambda_R} d\lambda \rho^A(\lambda) \frac{m_R^2 - \lambda^2 g_0 \langle \lambda^2 \rangle g_m}{(\lambda^2 + m_R^2)^2}, \quad g_m = \frac{1}{Z_m^2} \left(1 + \frac{m^2}{2\Lambda_R^2} \right)
\]

\[
\frac{I_1}{m_R} + I_2 = \rho_0^A \left(\frac{\pi_m}{m} + \frac{2}{\Lambda_R} \right) + 2\rho_1^A + O(m).
\]

\[
\lim_{m \to 0} \chi^{\eta-\delta} = 0 \quad \Rightarrow \quad \lim_{m \to 0} \frac{N_f^2 \langle Q(A)^2 \rangle_m}{m^2 V} = 2 \lim_{m \to 0} \langle \rho_1^A \rangle_m
\]
WT identities

\[\langle O_{2001} \rangle_m \to 0, \quad \langle -O_{0201} + 2O_{1110} \rangle_m \to 0, \quad \langle O_{0021} + 2O_{1110} \rangle_m = 0 \]
\[\langle -O_{0003} + 2O_{2001} \rangle_m \to 0, \quad \langle O_{0021} - O_{0201} + O_{1110} \rangle_m \to 0, \]

\[\langle \rho_0^A \rangle_m = -\frac{m^2}{2} \langle \rho_2^A \rangle_m + O(m^4) \]

\[\lim_{V \to \infty} \frac{\langle Q(A)^2 \rho_0^A \rangle_m}{V} = O(m^4) \]
\[\langle O_{4000} - O_{0004} \rangle_m \to 0, \quad \langle O_{4000} - 3O_{2002} \rangle_m \to 0, \]
\[\langle O_{0400} - O_{0040} \rangle_m \to 0, \quad \langle O_{0400} - 3O_{0220} \rangle_m \to 0, \]
\[\langle O_{2020} - O_{0202} \rangle_m \to 0, \quad \langle O_{2200} - O_{0022} \rangle_m \to 0, \]
\[\langle 2O_{1111} - O_{0202} + O_{0022} \rangle_m \to 0. \]

\[3N_f^2 \langle (I_2 + I_1/m)(I_1 - I_2/m) \rangle_m + \frac{6N_f^3}{m^3V} \langle Q(A)^2 I_1 \rangle_m - \frac{N_f^4}{m^4V^2} \langle Q(A)^4 \rangle_m \to 0. \]
\[\sim \log m \]
\[\sim \frac{1}{m} \]
\[\sim \frac{1}{m^2} \]

\[\lim_{V \to \infty} \frac{\langle Q(A)^2 \rangle_m}{V} = O(m^4) \]
\[\langle \rho_A^1 \rangle_m = O(m^2) \]

\[\lim_{m \to 0} \frac{N_f^2 \langle Q(A)^2 \rangle_m}{m^2V} = 2 \lim_{m \to 0} \langle \rho_1^A \rangle_m \]
2nd constraint

\[-3N_f^2 \frac{\pi^2}{m^2} \langle (\rho_0^A)^2 \rangle_m - \frac{N_f^4}{m^4V^2} \langle Q(A)^4 \rangle_m \to 0. \]

\[\langle \rho_0^A \rangle_m = O(m^4) \],
\[\langle \rho_2^A \rangle_m = O(m^2) \]

\[\langle \rho_0^A \rangle_m = -\frac{m^2}{2} \langle \rho_2^A \rangle_m \]
3rd constraint

\[\langle Q(A)^2 \rangle_m \to O(m^6) \]
Final results

\[\lim_{m \to 0} \langle \rho^A(\lambda) \rangle_m = \lim_{m \to 0} \langle \rho^A_3 \rangle_m \frac{|\lambda|^3}{3!} + O(\lambda^4) \]

No constraints to higher \(\langle \rho^A_n \rangle_m \)

\(\langle \rho^A_3 \rangle_m \neq 0 \) even for ”free” theory.

\[\langle \rho^A_0 \rangle_m = 0 \]

\[\lim_{V \to \infty} \frac{1}{V^k} \langle (N^A_{R+L})^k \rangle_m = 0, \quad \lim_{V \to \infty} \frac{1}{V^k} \langle Q(A)^{2k} \rangle_m = 0 \]

+ result from N=4k (general)
5. Discussion: Singlet susceptibility

Singlet susceptibility at high T

\[
\lim_{V \to 0} \chi^{\pi - \eta} = \lim_{m \to 0} \lim_{V \to \infty} \frac{N_f^2}{m^2 V} \langle Q(A)^2 \rangle_m = 0
\]

Both Cohen and Lee-Hatsuda are inaccurate.

This, however, does not mean U(1)_A symmetry is recovered at high T.

\[
\lim_{m \to 0} \chi^{\pi - \eta} = 0
\]

is necessary but NOT “sufficient” for the recovery of U(1)_A.
More general Singlet WT identities

\[\langle J^0 \mathcal{O} + \delta^0 \mathcal{O} \rangle_m = O(m) \]

anomaly(measure) singlet rotation

We can show for \(\mathcal{O} = \mathcal{O}_{n_1, n_2, n_3, n_4} = (P^a)^{n_1} (S^a)^{n_2} (P^0)^{n_3} (S^0)^{n_4} \)

\[
\lim_{V \to \infty} \frac{1}{V^k} \langle J^0 \mathcal{O} \rangle_m = \lim_{V \to \infty} \left\langle \frac{Q(A)^2}{mV} \times O(V^0) \right\rangle_m = 0
\]

where \(k \) is the smallest integer which makes the \(V \to \infty \) limit finite.

\[
S^0 \sim O(V), \ P^a, S^a, P^0 \sim O(V^{1/2})
\]

\[
\lim_{m \to 0} \lim_{V \to \infty} \frac{1}{V^k} \langle \delta^0 \mathcal{O} \rangle_m = 0
\]

Breaking of \(U(1)_A \) symmetry is absent for these “bulk quantities”.
Important consequence

Effect of $U(1)_A$ anomaly is invisible in scalar and pseudo-scalar sector.

Chiral phase transition in 2-flavor QCD is likely to be of first order !?

Final Comments

1. Large volume limit is required for the correct result.

2. If the action breaks the chiral symmetry, the continuum limit is also required.

3. We only use a part of WT identities. Therefore, our constraints are necessary condition.

4. We can extend our analysis to the eigenvalue density with fractional power. The conclusion remains the same.