Interquark Potentials in Charmonium at Finite Temperature^a

^{*a*} Wynne Evans, Jon-Ivar Skullerud, CA

Interquark Potentials in Charmonium at Finite Temperature^a

and related topics^b

^{*a*} Wynne Evans, Jon-Ivar Skullerud, CA

^b Gert Aarts, Tim Harris, Seyong Kim, Maria Paola Lombardo, Mehmet Oktay, Sinead Ryan, Don Sinclair, Jon-Ivar Skullerud, CA Interquark potential in charmonium at finite temperature

- Schrödinger Equation Approach
 - Nambu-Bethe-Salpeter wavefunction
- Conventional Exponential Fits
- Maximum Entropy Method

Interquark potential in charmonium at finite temperature

- Schrödinger Equation Approach
 - Nambu-Bethe-Salpeter wavefunction
- Conventional Exponential Fits
- Maximum Entropy Method

Related topics = bottomonium at finite temperature

- Spectral Functions
- Non-zero momenta
- "Ground state" masswidth

Particle Data Book

$\sim 1,500~\mathrm{pages}$

zero pages on Quark-Gluon Plasma...

Static Quark Potential (T = 0)

UKQCD Collaboration [pre-history]

N-N potential

HAL QCD Collaboration, Aoki, Doi, Hatsuda, Ikeda, Inoue, Ishii, Murano, Nemura, Sasaki

Inter-quark potential from the Lattice

Kawanai, Sasaki, arXiv:1111.025 Ikeda, Iida, arXiv:1102.2097

- finite-quark mass
- quenched

We extend this by using:

- 2 (+1) flavour
- finite temperature
- anisotropic lattices

Hatsuda, PoS CD09 (2009) 068 use the Schrödinger equation to "reverse engineer" the potential, V(r), given the Nambu-Bethe-Salpeter wavefunction, $\psi(r)$:

input input

$$\begin{pmatrix} \frac{p^2}{2M} + V(r) \\ \downarrow \end{pmatrix} \begin{pmatrix} \downarrow & \downarrow & \downarrow \\ \psi(r) = E & \psi(r) \\ \downarrow \end{pmatrix}$$

output

 $\psi(r)$ is determined from a lattice simulation from correlators of *non-local* (point-split) operators, $J(x; \vec{r}) = q(x) \Gamma U(x, x + \vec{r}) \overline{q}(x + \vec{r})$

$$\begin{array}{lll} C(\vec{r},t) & = & \displaystyle \sum_{\vec{x}} < J(0;\vec{r}) \; J(x;\vec{r}) > \\ & \longrightarrow & |\psi(r)|^2 \; e^{-Et} \end{array}$$

Dublin-Maynooth $N_f = 2$ configurations

N_s	N_{τ}	T(MeV)	T/T_c	$N_{\rm cfg}$
12	80	90	0.42	250
12	32	230	1.05	1000
12	28	263	1.20	1000
12	24	306	1.40	500
12	20	368	1.68	1000
12	18	408	1.86	1000
12	16	458	2.09	1000

Dublin-Maynooth $N_f = 2$ configurations

N_s	N_{τ}	T(MeV)	T/T_c	$N_{\rm cfg}$
12	80	90	0.42	250
12	32	230	1.05	1000
12	28	263	1.20	1000
12	24	306	1.40	500
12	20	368	1.68	1000
12	18	408	1.86	1000
12	16	458	2.09	1000

anisotropic lattice with $\xi = a_s/a_\tau \approx 6$

 $a_s = 0.167 \; {\rm fm}$

Vector and Pseudoscalar Channels Charm treated relativistically

$$V_{q\overline{q}} = \frac{1}{4} [V_{\mathsf{PS}}(r) + 3V_V(r)]$$

with the Schrödinger Eq'n used to define V(r):

$$V_{\Gamma}(r) = E + \frac{1}{\psi(r)} \frac{\nabla^2}{2\mu} \psi(r)$$

where μ is the reduced mass:

$$\mu = \frac{1}{2}m_Q$$
 where $m_Q \approx M_H/2$

$V_{q-\overline{q}}$ Potential (exp fitting)

$V_{q-\overline{q}}$ Potential (exp fitting)

MEM

Do bound hadronic states persist into the "quark-gluon" plasma phase? How can we extract transport coefficients?

Spectral functions can answer this!

$$C(t, \vec{p}) = \int \rho(\omega, \vec{p}) K(t, \omega) d\omega$$

$$\uparrow \qquad \downarrow \qquad \swarrow$$
Euclidean
Spectral
(Lattice)
Correlator
Function
Kernel

where the (lattice) Kernel is:

$$K(t,\omega) = \frac{\cosh[\omega(t-N_t/2)]}{\sinh[\omega/(2T)]}$$
$$\sim \exp[-\omega t]$$

Spectral Functions via MEM

- Extraction of a spectral density from a lattice correlator is an ill-posed problem:
 - Given C(t) derive $\rho(\omega)$
 - More ω data points then t data points!
- Requires the use of Bayesian analysis -Maximum Entropy Method (MEM)
 - Hatsuda, Asakawa et al
 - Commonly used in other areas...
- Need to check MEM output w.r.t. choice of:
 - Default model
 - Statistics
 - Energy range
 - Euclidean time range

Range in ω spans the ground state mass from exp fit

Wavefunctions: MEM v exp (PS)

Wavefunctions: MEM v exp (PS)

Wavefunctions: MEM v exp (PS)

Spectral Functions: Excited State (PS)

Successfully calculated the inter-quark potential in charmonium at finite temperature.

Future Plans:

- Increase from 12^3 to 24^3 and 32^3 volumes with $N_f = 2 + 1$
- Will study P-wave states

Related topics = bottomonium at finite temperature

Pb-Pb collisions

Dublin-Maynooth $N_f = 2$ configurations

N_s	N_{τ}	T(MeV)	T/T_c	$N_{\rm cfg}$
12	80	90	0.42	250
12	32	230	1.05	1000
12	28	263	1.20	1000
12	24	306	1.40	500
12	20	368	1.68	1000
12	18	408	1.86	1000
12	16	458	2.09	1000

anisotropic lattice with $\xi = a_s/a_\tau \approx 6$ ($a_s = 0.167$ fm) Bottom quark = NRQCD Have < one part per mille statistical error in correlators $p_{\text{latt}} = (1, 0, 0), \dots (2, 2, 0)$ i.e. $p = 0.634, \dots 1.73$ GeV

$$G_P(\tau) \sim \int \frac{d^3 p}{(2\pi)^3} p^2 \exp(-2E\tau) \sim \tau^{-5/2}$$

Confirmation that (high temp) P-wave state is "free"

state	$a_{\tau}\Delta E$	Mass (MeV)	Expt (MeV)	
$1^1 S_0(\eta_b)$	0.118(1)	9438(8)	9390.9(2.8)	
$2^{1}S_{0}(\eta_{b}(2S))$	0.197(2)	10019(15)	-	
$1^3S_1(\Upsilon)$	0.121(1)	9460*	9460.30(26)	
$2^{3}S_{1}(\Upsilon')$	0.198(2)	10026(15)	10023.26(31)	
$1^1 P_1(h_b)$	0.178(2)	9879(15)		
$1^{3}P_{0}(\chi_{b0})$	0.175(4)	9857(29)	9859.44(42)(31)	
$1^{3}P_{1}(\chi_{b1})$	0.176(3)	9864(22)	9892.78(26)(31)	
$1^{3}P_{2}(\chi_{b2})$	0.182(3)	9908(22)	9912.21(26)(31)	

state	$a_{\tau}\Delta E$	Mass (MeV)	Expt (MeV)	
$1^{1}S_{0}(\eta_{b})$	0.118(1)	9438(8)	9390.9(2.8)	
$2^{1}S_{0}(\eta_{b}(2S))$	0.197(2)	10019(15)	-	
$1^3S_1(\Upsilon)$	0.121(1)	9460*	9460.30(26)	
$2^{3}S_{1}(\Upsilon')$	0.198(2)	10026(15)	10023.26(31)	
$1^1 P_1(h_b)$	0.178(2)	9879(15)	9898.3 $\pm 1.1^{+1.0}_{-1.1}$	prediction
$1^{3}P_{0}(\chi_{b0})$	0.175(4)	9857(29)	9859.44(42)(31)	
$1^{3}P_{1}(\chi_{b1})$	0.176(3)	9864(22)	9892.78(26)(31)	
$1^{3}P_{2}(\chi_{b2})$	0.182(3)	9908(22)	9912.21(26)(31)	

Belle Collaboration

Zero temperature spectral functions, p = 0

Non-zero temperature spectral functions, p = 0

Pb-Pb collisions

p-p collisions

Non-zero temperature Mass, p = 0

From Brambilla et al thermal contribution to the width is

$$\frac{\Gamma}{T} = \frac{1156}{81} \alpha_s^3 \simeq 14.27 \alpha_s^3,$$

(at leading order in weak coupling and large mass expansion).

Our results $\longrightarrow \Gamma/T \sim 1$ so $\alpha_s \sim 0.4$.

Also from Brambilla et al thermal contribution to the mass is

$$\delta E_{\rm thermal} = \frac{17\pi}{9} \alpha_s \frac{T^2}{M} \simeq 5.93 \alpha_s \frac{T^2}{M}$$

(see dashed line)

Non-zero temperature Mass, p = 0

Preliminary...

$$p_{\text{latt}} = (1, 0, 0), \dots (2, 2, 0)$$
 i.e. $p = 0.634, \dots 1.73$ GeV

Variation with *T*, fixed $p \neq 0$

Variation with $\boldsymbol{p}\text{, fixed }T$

Single ratio

Double ratio

$$\frac{G(\tau; p, T)}{G(\tau; p = 0, T)} / \frac{G(\tau; p, T_0)}{G(\tau; p = 0, T_0)}$$

Double ratio

t

Non-zero momentum, spectral function, T = 0

ω

Non-zero momentum, spectral function, $T \neq 0$

Upsilon

Mass as function of speed

Width as function of speed

Particle Data Book

$\sim 1,500 \mathrm{~pages}$

zero pages on Quark-Gluon Plasma...

the end

Slides to help me answer difficult questions