Hadron interactions from lattice QCD

Sinya Aoki University of Tsukuba

GGI Workshop "New Frontiers in Lattice Gauge Theory" GGI, Firenze, Italy, September 12, 2012

1. Introduction

How can we extract hadronic interaction from lattice QCD ?

Nuclear force is a basis for understanding ...

• Structure of ordinary and hyper nuclei

• Structure of neutron star

Ignition of Type II SuperNova

Can we extract a nuclear force in (lattice) QCD ?

Plan of my talk

- 1. Introduction
- 2. Our strategy
- 3. Example: Nuclear potential
- 4. Inelastic Scattering (work in progress)
- 5. Demonstration (as a conclusion)

2. Our Strategy

 $\delta_l(k)$ scattering phase shift (phase of the S-matrix) in QCD !

How can we extract it ?

cf. Maiani-Testa theorem

cf. Luescher's finite volume method

define non-local but energy-independent "potential" as

$$\mu = m_N/2$$

reduced mass

$$\begin{bmatrix} \epsilon_k - H_0 \end{bmatrix} \varphi_{\mathbf{k}}(\mathbf{x}) = \int d^3 y \, U(\mathbf{x}, \mathbf{y}) \varphi_{\mathbf{k}}(\mathbf{y})$$
$$\epsilon_k = \frac{\mathbf{k}^2}{2\mu} \qquad H_0 = \frac{-\nabla^2}{2\mu} \qquad \text{non-local potential}$$

Properties & Remarks

1. Potential itself is NOT an observable. Using this freedom, we can construct a non-local but energy-independent potential as

For $\forall W_{\mathbf{p}} < W_{\mathrm{th}} = 2m_N + m_{\pi}$ (threshold energy)

$$\int d^3y \, U(\mathbf{x}, \mathbf{y}) \phi_{\mathbf{p}}(\mathbf{y}) = \sum_{\mathbf{k}, \mathbf{k}'} \left[\epsilon_k - H_0 \right] \varphi_{\mathbf{k}}(x) \eta_{\mathbf{k}, \mathbf{k}'}^{-1} \eta_{\mathbf{k}', \mathbf{p}} = \left[\epsilon_p - H_0 \right] \varphi_{\mathbf{p}}(x)$$
Proof of existence (cf. Density Functional Theory)

Of course, potential satisfying this is not unique. (Scheme dependence. cf. running coupling)

2. Non-relativistic approximation is NOT used. We just take the specific (equal-time) flame.

$$V(\mathbf{x}, \nabla) = V_0(r) + V_{\sigma}(r)(\sigma_1 \cdot \sigma_2) + V_T(r)S_{12} + V_{\mathrm{LS}}(r)\mathbf{L} \cdot \mathbf{S} + O(\nabla^2)$$

LO LO LO NNLO

spins

tensor operator $S_{12} = \frac{3}{r^2}(\sigma_1 \cdot \mathbf{x})(\sigma_2 \cdot \mathbf{x}) - (\sigma_1 \cdot \sigma_2)$

 $V_A(\mathbf{x})$ local and energy independent coefficient function (cf. Low Energy Constants(LOC) in Chiral Perturbation Theory)

Step 4

extract the local potential at LO as

$$V_{\rm LO}(\mathbf{x}) = \frac{[\epsilon_k - H_0]\varphi_{\mathbf{k}}(\mathbf{x})}{\varphi_{\mathbf{k}}(\mathbf{x})}$$

solve the Schroedinger Eq. in the infinite volume with this potential.

phase shifts and biding energy below inelastic threshold

(We can calculate the phase shift at all angular momentum.)

- $\delta_L(k)$ exact by construction
- $\delta_L(p
 eq k)$ approximated one by the derivative expansion

expansion parameter

$$\frac{W_p - W_k}{W_{\rm th} - 2m_N} \simeq \frac{\Delta E_p}{m_\pi}$$

We can check a size of errors at LO of the expansion. (See later). We can improve results by extracting higher order terms in the expansion. This procedure gives a new method to extract phase shift from QCD. (by-pass Maiani-Testa theorem, using space correlation)

HAL QCD Collaboration

Sinya Aoki (U. Tsukuba) Bruno Charron* (U. Tokyo) Takumi Doi (Riken) Tetsuo Hatsuda (Riken/U. Tokyo) Yoichi Ikeda (TIT) Takashi Inoue (Nihon U.) Noriyoshi Ishii (U. Tsukuba) Keiko Murano (Riken) Hidekatsu Nemura (U. Tsukuba) Kenji Sasaki (U. Tsukuba) Masanori Yamada* (U. Tsukuba)

*PhD Students

HAL QCD method

Our strategy

Nuclear Physics with these potentials

Neutron stars Supernova explosion

3. Example: Nuclear potential

Extraction of NBS wave function

NBS wave function Potential $\varphi_{\mathbf{k}}(\mathbf{r}) = \langle 0 | N(\mathbf{x} + \mathbf{r}, 0) N(\mathbf{x}, 0) | NN, W_k \rangle \longrightarrow [\epsilon_k - H_0] \varphi_{\mathbf{k}}(\mathbf{x}) = \int d^3 y \, U(\mathbf{x}, \mathbf{y}) \varphi_{\mathbf{k}}(\mathbf{y})$ **4-pt Correlation function** source for NN $F(\mathbf{r}, t - t_0) = \langle 0 | T\{N(\mathbf{x} + \mathbf{r}, t)N(\mathbf{x}, t)\} \mathcal{J}(t_0) | 0 \rangle$ complete set for NN $F(\mathbf{r},t-t_0) = \langle 0|T\{N(\mathbf{x}+\mathbf{r},t)N(\mathbf{x},t)\} \sum_{n,s_1,s_2} |2N,W_n,s_1,s_2\rangle \langle 2N,W_n,s_1,s_2|\overline{\mathcal{J}}(t_0)|0\rangle + \cdots$ $= \sum A_{n,s_1,s_2} \varphi^{W_n}(\mathbf{r}) e^{-W_n(t-t_0)}, \quad A_{n,s_1,s_2} = \langle 2N, W_n, s_1, s_2 | \overline{\mathcal{J}}(0) | 0 \rangle.$

ground state saturation at large t

$$\lim_{(t-t_0)\to\infty} F(\mathbf{r}, t-t_0) = A_0 \varphi^{W_0}(\mathbf{r}) e^{-W_0(t-t_0)} + O(e^{-W_{n\neq0}(t-t_0)})$$

NBS wave function

This is a standard method in lattice QCD and was employed for our first calculation.

Ishii et al. (HALQCD), PLB712(2012) 437

Improved method

 $R(\mathbf{r},t) \equiv F(\mathbf{r},t)/(e^{-m_N t})^2 = \sum A_n \varphi^{W_n}(\mathbf{r}) e^{-\Delta W_n t}$ normalized 4-pt Correlation function $\Delta W_n = W_n - 2m_N = \frac{\mathbf{k}_n^2}{m_N} - \frac{(\Delta W_n)^2}{4m_N}$ $-\frac{\partial}{\partial t}R(\mathbf{r},t) = \left\{H_0 + U - \frac{1}{4m_N}\frac{\partial^2}{\partial t^2}\right\}R(\mathbf{r},t)$ potential Leading Order $\left\{-H_0 - \frac{\partial}{\partial t} + \frac{1}{4m_N}\frac{\partial^2}{\partial t^2}\right\}R(\mathbf{r},t) = \int d^3r' U(\mathbf{r},\mathbf{r}')R(\mathbf{r}',t) = V_C(\mathbf{r})R(\mathbf{r},t) + \cdots$ total 1st 2nd 3rd 40 30 20 3rd term(relativistic correction) 0 [MeV] 0 -10 is negligible. -20 total 1st term -30 2nd term 3rd term -400.5 1 1.5 2 2.5 0 r [fm]

Ground state saturation is no more required ! (advantage over finite volume method.)

NN potential

2+1 flavor QCD, spin-singlet potential (in preparation)

Qualitative features of NN potential are reproduced !

(1)attractions at medium and long distances(2)repulsion at short distance(repulsive core)

1st paper(quenched QCD): Ishii-Aoki-Hatsuda, PRL90(2007)0022001

This paper has been selected as one of 21 papers in Nature Research Highlights 2007.

It has a reasonable shape. The strength is weaker due to the heavier quark mass. Need calculations at physical quark mass.

Convergence of velocity expansion

If the higher order terms are large, LO potentials determined from NBS wave functions at different energy become different.(cf. LOC of ChPT).

Need to be checked at lighter pion mass in 2+1 flavor QCD.

Note: convergence of the velocity expansion can be checked within this method.

(cf. convergence of ChPT, convergence of perturbative QCD)

4. Inelastic scattering (work in progress)

1. Particle production

Ex.

$$NN \rightarrow NN, NN + \pi, NN + 2\pi, \cdots, NN + K\bar{K}, \cdots, NN + N\bar{N}, \cdots$$

2. Particle exchanges

Ex.
$$\Lambda\Lambda\to\Lambda\Lambda, N\Xi, \Sigma\Sigma$$

NBS wave function : multi-channel

Aoki et al. (HALQCD), Proc. Jpn. Acad. Ser. B, Vol. 87(2011) 509

 $AB \rightarrow AB, CD$

$$\begin{split} \psi_{AB}(\boldsymbol{r},\boldsymbol{k}) &= \lim_{\delta \to 0^+} \langle 0|T\{\varphi_A(\boldsymbol{x}+\boldsymbol{r},\delta)\varphi_B(\boldsymbol{x},0)\}|W\rangle, \qquad |W\rangle = c_{AB}|AB,W\rangle + c_{CD}|CD,W\rangle\\ \psi_{CD}(\boldsymbol{r},\boldsymbol{q}) &= \lim_{\delta \to 0^+} \langle 0|T\{\varphi_C(\boldsymbol{x}+\boldsymbol{r},\delta)\varphi_D(\boldsymbol{x},0)\}|W\rangle, \qquad W = E_k^A + E_k^B = E_q^C + E_q^D\\ \mathbf{r}| \to \infty\\ & \swarrow \qquad \left(\begin{array}{c} \hat{\psi}_{AB}^l(r,k)\\ \hat{\psi}_{CD}^l(r,q) \end{array} \right) \simeq \left(\begin{array}{c} j_l(kr) & 0\\ 0 & j_l(qr) \end{array} \right) \left(\begin{array}{c} c_{AB}\\ c_{CD} \end{array} \right) + \left(\begin{array}{c} n_l(kr) + ij_l(kr) & 0\\ 0 & n_l(qr) + ij_l(qr) \end{array} \right) \\ & \times O(W) \left(\begin{array}{c} e^{i\delta_l^1(W)}\sin\delta_l^1(W) & 0\\ 0 & e^{i\delta_l^2(W)}\sin\delta_l^2(W) \end{array} \right) O^{-1}(W) \left(\begin{array}{c} c_{AB}\\ c_{CD} \end{array} \right) \end{split}$$

 $\delta_l^1(W), \, \delta_l^2(W)$: phase shifts for anglura momentum l

$$O(W) = \begin{pmatrix} \cos \theta(W) & -\sin \theta(W) \\ \sin \theta(W) & \cos \theta(W) \end{pmatrix} \qquad \theta(W): \text{ mixing angle}$$

NBS wave function : multi-particles

Work in progress

scalar fields $\varphi + \varphi + \varphi \rightarrow \varphi + \varphi + \varphi$

NBS wave function $\Psi^3_{W,c}(\{\mathbf{x}\}) = \langle 0 | \underline{\varphi(\mathbf{x}_1)\varphi(\mathbf{x}_2)\varphi(\mathbf{x}_3)} | W, c \rangle_{\text{in}}$ c:quantum numbers $\varphi^3(\{\mathbf{x}\})$ Jacobi coordinate $\mathbf{r} = 2(\mathbf{x}_1 - \mathbf{x}_2), \ \mathbf{s} = (2\mathbf{x}_3 - (\mathbf{x}_1 + \mathbf{x}_2))/\sqrt{3}$ $|\mathbf{r}|, |\mathbf{s}| \to \infty$ $\Psi^3_{W,c}(\{\mathbf{x}\}) \simeq \frac{0\langle 0 | \varphi^3(\{\mathbf{x}\}) | W, c \rangle_0}{Z_3(W)} + \sum \sum i^{l_1+l_2} I_{l_1l_2}(r, s, k_r, k_s)$

 $Z_{3}(W) = Z_{3}(W) = Z_{3}(W)$

 $I_{l_1 l_2}(r, s, k_r, k_s) \propto [n_{l_1}(p_r r) + ij_{l_1}(p_r r)][n_{l_2}(p_s s) + ij_{l_2}(p_s s)]T^{3 \leftarrow 3}_{l_1 l_2}(p_r, p_s, k_r, k_s)$

Construction of energy-independent potential for inelastic scattering

$$W_{\text{th}}^{n} = 2m_{N} + nm_{\pi}$$

$$I_{n}$$

$$E_{W}^{n} = \frac{\mathbf{p}_{1}^{2}}{2m_{N}} + \frac{\mathbf{p}_{2}^{2}}{2m_{N}} + \sum_{i=1}^{n} \frac{\mathbf{k}_{i}^{2}}{2m_{\pi}}$$

$$W = \sqrt{m_{N}^{2} + \mathbf{p}_{1}^{2}} + \sqrt{m_{N}^{2} + \mathbf{p}_{2}^{2}} + \sum_{i}^{n} \sqrt{m_{\pi}^{2} + \mathbf{k}_{i}^{2}}$$

$$W = \sqrt{m_{N}^{2} + \mathbf{p}_{1}^{2}} + \sqrt{m_{N}^{2} + \mathbf{p}_{2}^{2}} + \sum_{i=1}^{n} \sqrt{m_{\pi}^{2} + \mathbf{k}_{i}^{2}}$$

$$W = \sqrt{m_{N}^{2} + \mathbf{p}_{1}^{2}} + \sqrt{m_{N}^{2} + \mathbf{p}_{2}^{2}} + \sum_{i=1}^{n} \sqrt{m_{\pi}^{2} + \mathbf{k}_{i}^{2}}$$

$$W_{th}^{1} = 2m_{N} + m_{\pi}$$

$$W \simeq W_{th}^{n} + E_{W}^{n}$$

$$H_{th}^{0} = 2m_{N}$$

$$W_{th}^{0} = 2m_{N}$$

NBS wave function $W \ge W_{\rm th}^n$

$$\begin{split} \varphi_{W,c_l}^{kl}([\mathbf{x}]_k) &= \langle 0|N(\mathbf{x},0)N(\mathbf{x}+\mathbf{x}_0,0)\prod_{i=1}^k \pi(\mathbf{x}+\mathbf{x}_i,0)|NN+l\pi,W,c_l\rangle_{\mathrm{in}}, \ \underline{k,l\leq n},\\ &= 0, \qquad \mathrm{otherwise}, \end{split}$$

OR

$$\varphi_{W,c_l}^{kl}([\mathbf{x}]_k) = \langle 0|N(\mathbf{x},0)N(\mathbf{x}+\mathbf{x}_0,0)\prod_{i=1}^k \pi(\mathbf{x}+\mathbf{x}_i,0)|NN+l\pi,W,c_l\rangle_{\text{in}}, \ \underline{l\leq n},$$

= 0 otherwise

0, otherwise,

For both choices

$$\varphi_{W,c_l}^{kl}([\mathbf{x}]_k) \simeq 0, \quad k > n \qquad |\mathbf{x}_i - \mathbf{x}_j| \to \infty$$

$$[\mathbf{x}]_k = \{\mathbf{x}_0, \mathbf{x}_1, \cdots, \mathbf{x}_k\}$$

vector of NBS wave functions

$$\varphi_{W,c_i}^i \equiv \left(\varphi_{W,c_i}^{0i}([\mathbf{x}]_0),\varphi_{W,c_i}^{1i}([\mathbf{x}]_1),\cdots,\varphi_{W,c_i}^{ni}([\mathbf{x}]_n),\cdots\right)$$

inverse

$$\sum_{k,W,e_k} (\eta^{-1})^{ik}_{W_1W,c_ie_k} \cdot \eta^{kj}_{WW_2,e_kd_j} = \delta^{ij} \delta_{W_1W_2} \delta_{c_id_j}$$

brackets

$$\langle \varphi_{W,c_i}^i | [\mathbf{x}]_k \rangle = \sum_{m,W_1,d_m} (\eta^{-1})_{WW_1,c_id_m}^{im} (\varphi_{W_1,d_m}^{km})^{\dagger} ([\mathbf{x}]_k)$$

$$\langle [\mathbf{x}]_k | \varphi_{W,c_i}^i \rangle = \varphi_{W,c_i}^{ki} ([\mathbf{x}]_k),$$

which satisfy

$$\begin{array}{ll} \langle \varphi_{W_1,c_i}^i | \varphi_{W_2,d_j}^j \rangle &\equiv & \sum_{k=0}^{\infty} \int \prod_{l=0}^k d^3 x_l \, \langle \varphi_{W_1,c_i}^{ki} | [\mathbf{x}]_k \rangle \langle [\mathbf{x}]_k | \varphi_{W_2,d_j}^{kj} \rangle \\ &= & \delta^{ij} \delta_{W_1W_2} \delta_{c_id_j}. \end{array}$$

coupled channel equation

$$(E_W^k - H_0^k)\varphi_{W,c_i}^{ki}([\mathbf{x}]_k) = \sum_{l=0}^{\infty} \int \prod_{n=1}^l d^3y_n \, U^{kl}([\mathbf{x}]_k, [\mathbf{y}]_l)\varphi_{W,c_i}^{li}([\mathbf{y}]_l)$$
$$\langle [\mathbf{x}]_k | (E_W - H_0) | [\mathbf{y}]_l \rangle \equiv (E_W^k - H_0^k)\delta_{kl} \prod_{n=1}^k \delta^3(\mathbf{x}_n - \mathbf{y}_n)$$
$$\langle [\mathbf{x}]_k | U | [\mathbf{y}]_l \rangle \equiv U^{kl}([\mathbf{x}]_k, [\mathbf{y}]_l),$$

$$(E_W - H_0)|\varphi^i_{W,c_i}\rangle = U|\varphi^i_{W,c_i}\rangle$$

construction of U

$$U = \sum_{i,W,c_i} (E_W - H_0) |\varphi^i_{W,c_i}\rangle \langle \varphi^i_{W,c_i} |,$$

$$\underbrace{\bullet}_{j,W_1,d_j} U |\varphi_{W,c_i}^i\rangle = \sum_{j,W_1,d_j} (E_{W_1} - H_0) |\varphi_{W_1,d_j}^j\rangle \langle \varphi_{W_1,d_j}^j | \varphi_{W,c_i}^i\rangle = (E_W - H_0) |\varphi_{W,c_i}^i\rangle.$$

Extension to arbitrary channels is straightforward.

k: any operators, l: any states

Non-local potential U describes all QCD processes.

QFT(QCD) at given energy. coupled channel quantum mechanics with energy-independent non-local potential U

5. Demonstration(as a conclusion)

H-dibaryon in the flavor SU(3) symmetric limit

Inoue et al. (HAL QCD Coll.), PRL106(2011)162002

Phase shift

Inoue et al. (HAL QCD Coll.), arXiv:1112.5926[hep-lat]

Η

 $\Lambda\Lambda$

bound state from $N\Xi$

resonance from $\Lambda\Lambda$

H-dibaryon seems to become resonance at physical point.

H couples most strongly $N\Xi$. $\Lambda\Lambda$ interaction is attractive.

H has a sizable coupling to $\Lambda\Lambda$ near and above the threshold.

Summary

- HAL QCD method is alternative to extract hadronic interactions in lattice QCD.
 - 2-particle elastic scattering(established).
 - asymptotic behavior of n-particle NBS wave function (in progress).
 - energy-independent non-local potential including inelastic scattering (in progress)
- Some Future directions
 - ex. rho resonance from pi-pi potential.
 - extension to weak interaction (work in progress).
 - Let us discuss this at GGI, if you are interested.