QCD with many flavors at zero and non-zero temperature

Maria Paola Lombardo

Albert Deuzeman, MPL, Kohtaroh Miura, Tiago Nunes da Silva, Elisabetta Pallante

New Frontiers of Lattice Field Theories GGI Firenze 17 September 2012

QCD with many flavors : Sketchy view of the phase diagram

(ideal) Outline

- Nf=0
- Nf=1
- Nf=2
- Nf=3
- Nf=4
- Nf=5
- Nf=6
- Nf=7
- Nf=8
- Nf=9
- Nf=10
- Nf=11
- Nf=12
- Nf=13
- Nf=14
- Nf=15
- Nf=16
- Summary

Outline

Near Conformal: Continuum and Lattice

This talk's main theme: precursors effects of conformality when approaching Nfc from the QCD side

QCD-like : running coupling

Running vs Walking :

Both compatible with IR slavery and UV freedom

Running : Λ sets the scale

 m Λ
 Walking : Separation of Scales:
 Interesting for
 Phenomenology

The discovery of the conformal window of QCD

Miransky-Yamawaki, 1997; Appelquist et al. 1997

•For Nf > 8 the perturbative β function of QCD develops a second 0 : the Banks-Zacs **IRFP**.

•Then the coupling runs to **IRFP**

•Chiral Symmetry Breaking requires *OPOC*cr:

• 1) IRFP < $\alpha cr \rightarrow$ CONFORMAL WINDOW

2) IRFP > αcr → IRFP disappears QCD-like, but: NEAR-CONFORMALITY, WALKING

Can we establish walking as well?

Can we establish walking as well? (if yes, it has to be for Nf > 5)

Near-Conformal behaviour On the QCD-side can be seen in:

. . .

Different scales $\Lambda {\sf UV}$ and $\Lambda {\sf IR}$

Critical behaviour Nf ---> Nfc

m
$$(N_f) = K |N_f - N_f^c|^{-1/\theta}$$
.

Thermal transition and near-conformal dynamics

J. Braun , H. Gies 06 08 09

Towards Conformality: Continuum (from the lattice)

From the Lattice..

..to the continuum Via old fashioned asymptotic scaling

$$\Lambda_{\rm L} a(\beta_{\rm L}) = \left(\frac{2N_c b_0}{\beta_{\rm L}}\right)^{-b_1/(2b_0^2)} \exp\left[\frac{-\beta_{\rm L}}{4N_c b_0}\right].$$
$$\frac{1}{N_t} = \left|\frac{T_c}{\Lambda_{\rm L}}\right| \times \left(\Lambda_{\rm L} a(\beta_{\rm L}^{\rm c})\right).$$
Must be approx. constant for several Nt (Old fashioned asymptotic scaling)

Nf = 6 Chiral crossover of order parameter

Nf=6, Polyakov loop

Nf=6 : Chiral crossover of the chiral cumulant $R\pi$

Summary of results for βc (updated at xQCD2012)

Table: $N_f = 0, 4, 6$: Miura-Lombardo-Pallante ('12), $N_f = 8$: Deuzeman-Lombardo-Pallante ('08)

$N_f \setminus N_t$	4	6	8	12
0	7.35 ± 0.1	7.88 ± 0.05	8.20 ± 0.1	-
4	-	5.89 ± 0.05	-	
6	4.65 ± 0.05	5.05 ± 0.05	5.2 ± 0.05	5.55 ± 0.1
8	-	4.1125 ± 0.0125	-	4.34 ± 0.04

 The Monte-Carlo simulations have been performed by using the same lattice action (one-loop Symanzik tad-pole improved AskTad action) up to

$$\frac{1}{N_t} = \frac{T_c}{\Lambda_L} \times \left(\Lambda_L \ a(\beta_L^{\ c})\right).$$
Must be Nt
independent

Nt-(quasi) independence of Tc/ Λ Lat for Nf = 6

Tc/ Λ as a function of Nf

Fixing an UV scale

• We have measured the tadpole factosr $u_0 = \langle \Box \rangle^{1/4}$ at T = 0.

• We use the couplings obtained by the constant *u*₀ line to define a UV reference scale *M*.

Tc/M_{UV}

Trading Λ LAT for Λ IR stable

 $T_c(N_f) = K|N_f - N_f^c|^{-1/\theta}$. 1.1 < 1/ $|\theta|$ < 2.5,

Alternative analysis

(Quasi)Conformality and High T QCD

Ē

```
\eta/S < (3-5) / 4 \pi
```

AdS/CFT vs. lattice data in a 'quasi-conformal' regime

For $T \simeq 3T_c$, the lattice results reveal that the deconfined plasma, while still strongly interacting and far from the Stefan-Boltzmann limit, approaches a scale-invariant regime ...

 $p(\varepsilon)$ equation of state and approach to conformality

M. Panero 2010

S. Borsaniy et al.2011

Conformality and near-Conformality at zero and finite T: coupling 'walks' in the 0.6 T/T_c $\alpha_{qq}(r,T)$ 0.5 0.4 2.50.3 **NEAR-CONFORMAL QGP** 0.2 SQGP 0-0I 200 3-di 1.5 0.1 T-dep 1 150 T _{cr} [Mev] the ru "More" Stronger QGP – develo more slowly walking 100 0.5 r [fm] 1 50 Kaczmarez-Zantov 2005 0 2 12 4 6 8 10 **Conformal Window** Nf J. Braun, H. Gies, 06

Towards Conformality-Lattice

PHASES OF QCD ON THE LATTICE : Temperature = 0

Miransky, Yamawaki

PHASES OF QCD ON THE LATTICE : Finite Nt

PHASES OF QCD ON THE LATTICE : Finite Nt Numerical results

Critical number of flavor from thermal lines

Inside the Conformal window

The nucleon mass and the 'Edinburgh Plot' in the conformal window

Mass ratio : qualitative features discriminating broken and symmetric phases

A sketchy view of the behavior of the π to σ mass ratio as a function of the bare mass. Each line corresponds to one lattice coupling, and the coupling decreases from bottom to top. Chiral symmetry is broken on the lower part

The transition of 4dQED on a Lattice

Ч.

Nf = 12 SAME TREND AS IN SYMMETRIC QED, SUPPORTING SYMMETRIC PHASE

A. Deuzeman, M. P. Lombardo, E. Pallante, Phys. Rev. D82 (2010) 074503

 m_{a}

Nf=12: mass ratio

Chiral Partners, and anomalous dimension

$$\delta_{a_1} = 0.67(4), \, \delta_{\rho} = 0.68(3), \, \text{at } \beta_L = 3.9,$$

 $\delta_{a_1} = 0.68(7), \, \delta_{\rho} = 0.67(3) \, \text{at } \beta_L = 4.0,$

Caveat... Can we compute anomalous dimenions away from IRFP ???

ANALOGY WITH STRONGLY COUPLED QED

Summary

Near-conformal dynamics (continuum):

Tc/ Λ suggests scale separation for Nf > 6 Pre-conformal (critical) behaviour

$$T_c(N_f) = K|N_f - N_f^c|^{-1/\theta}$$

observed for Nf > 6, with Nf critical = 11 (3) Shuryak's (equivalent) view : coupling at (Tc, Nfc) = coupling at IRFP

Near-conformal dynamics (lattice) :

Thermal pseudocritical lines meet at (g*, Nf critical), with **Nf critical = 10(2)** (preliminary)

All estimates confirm that twelve flavors is close to the conformal transitions – *Nf*=12 difficult to study directly (as we know!)

Interesting interplay with finite temperature QCD with implications for the physics of the strongly interactive quark gluon plasma