Progress on B-physics lattice calculations by ETMC

Petros Dimopoulos

University of Rome Tor Vergata

on behalf of ETM Collaboration

September 19, 2012 "New Frontiers in Lattice Gauge Theory" Galileo Galilei Institute for Theoretical Physics

(日) (同) (日) (日)

Outline

- ETMC computation
 - Method based on Ratios of heavy-light (h, l/s) observables using relativistic quarks and exact knowledge of static limit for the appropriate ratios
 - Interpolation of $(h, \ell/s)$ observables to the b-region from the charm region and the static limit
- Application of Ratio method to *b*-quark mass, decay constants and Bag parameters.

• Summary

ETMC, JHEP 1201 (2012) 046; JHEP 1004 (2010) 049; N. Carrasco and A. Shindler @ LAT2012 ETMC-b : B. Blossier, N. Carrasco, P. Dimopoulos, R. Frezzotti, V. Gimenez, G. Herdoiza,

K. Jansen, V. Lubicz, G. Martinelli, C. Michael, D. Palao, G. C. Rossi, F. Sanfilippo, A. Shindler, S. Simula, C. Tarantino, M. Wagner

$ETMC - N_f = 2$ twisted-mass formulation

• Mtm lattice regularization of $N_f = 2$ QCD action is

[Frezzotti, Grassi, Sint, Weisz, JHEP 2001; Frezzotti, Rossi, JHEP 2004]

$$S_{N_{f}=2}^{\mathrm{ph}} = S_{L}^{\mathrm{YM}} + a^{4} \sum_{x} \bar{\psi}(x) \left[\gamma \cdot \widetilde{\nabla} - i\gamma_{5}\tau^{3} \left(-\frac{a}{2}r \nabla^{*} \nabla + M_{\mathrm{cr}}(r) \right) + \mu_{q} \right] \psi(x)$$

- ψ is a flavour doublet, $M_{
 m cr}(r)$ is the critical mass and au^3 acts on flavour indices
- From the "physical" basis (where the quark mass is real), the non-anomalous $\psi = \exp(i\pi\gamma_5\tau^3/4)\chi\,,\quad \bar\psi = \bar\chi\exp(i\pi\gamma_5\tau^3/4)$

transformation brings the lattice action in the so-called "twisted" basis

$$S_{N_{f}=2}^{\mathrm{tw}} = S_{L}^{\mathrm{YM}} + a^{4} \sum_{x} \bar{\chi}(x) \left[\gamma \cdot \widetilde{\nabla} - \frac{a}{2} r \nabla^{*} \nabla + M_{\mathrm{cr}}(r) + i \mu_{q} \gamma_{5} \tau^{3} \right] \chi(x)$$

• Unlike the standard Wilson regularization, in Mtm Wilson case the subtracted Wilson operator $-\frac{a}{2}r\nabla^*\nabla + M_{cr}(r)$ is "chirally rotated" w.r.t. the quark mass \implies offers important advantages...

$ETMC - N_f = 2$ twisted-mass formulation

- Automatic O(a) improvement for the physical quantities
- Dirac-Wilson matrix determinant is positive and (lowest eigenvalue)² bounded from below by μ_q²
- Simplified (operator) renormalization ...
 - Multiplicative quark mass renormalization
 - No RC for pseudoscalar decay constant (PCAC)
- O(a²) breaking of parity and isospin

Frezzotti, Rossi, JHEP 2004; ETMC, Phys.Lett.B 2007

ETMC $N_f = 2$ simulations

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

- $a = \{0.054, 0.067, 0.085, 0.098\}$ fm
- $m_{ps} \in \{270, 600\}$ MeV
- $L \in \{1.7, 2.8\}$ fm , $m_{ps}L \ge 3.5$

$\mbox{ETMC } N_f = 2 \mbox{ simulations }$

β	$a\mu_\ell$	$a\mu_s$ (valence)	$a\mu_h$ (valence)
3.80	0.0080, 0.0110	0.0175, 0.0194, 0.0213	0.1982,, 0.8536
3.90	0.0030, 0.0040,	0.0159, 0.0177, 0.0195	0.1828,, 0.7873
	0.0064, 0.0085, 0.0100		
4.05	0.0030, 0.0060, 0.0080	0.0139, 0.0154, 0.0169	0.1572,, 0.6771
4.20	0.0020, 0.0065	0.0116, 0.0129, 0.0142	0.13315,, 0.4876

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- $\mu_\ell \in [\sim m_s/6, \sim m_s/2]$
- $\mu_h \in [\sim m_c, \sim 3m_c]$

M^(hl) plateau quality

 Smearing techniques improve signal; reduce the coupling between the ground and excired states; safe good plateaux at earlier times; absolutely necessary for obtaining safe plateau in the calculation of 3-point correlation functions (when large heavy quark mass (> 1 GeV) are employed).

 Employ "optimal" source: Φ^{source}_W(w) = wΦ_S + (1 - w)Φ_L; Check vs. GEVP – when two states matter – seems OK (in progress).

Ratio method

- we use correlators with relativistic quarks
- *c*-mass region computations are reliable ('small' discr. errors)
- construct HQET-inspired ratios of the observable of interest at successive (nearby) values of the heavy quark mass $(\mu_h^{(n)} = \lambda \mu_h^{(n-1)})$
- ratios show smooth chiral and continuum limit behaviour
- ratios at the ∞ -mass (static) point are exactly known (= 1)
- physical values of the observable at the *b*-mass point is related to its *c*-like value by a *chain* of the ratios ending up at the static point: use HQET-inspired interpolation

b-quark mass computation - 1

• observing that
$$\lim_{\mu_h^{\text{pole}} \to \infty} \left(\frac{M_{h\ell}}{\mu_h^{\text{pole}}} \right) = \text{constant}$$
 (HQET)
• construct (taking $\frac{\bar{\mu}_h^{(n)}}{\bar{\mu}_h^{(n-1)}} = \lambda$):

$$\begin{split} y(\bar{\mu}_{h}^{(n)},\lambda;\bar{\mu}_{\ell},\mathbf{a}) &\equiv \frac{M_{h\ell}(\bar{\mu}_{h}^{(n)};\bar{\mu}_{\ell},\mathbf{a})}{M_{h\ell}(\bar{\mu}_{h}^{(n-1)};\bar{\mu}_{\ell},\mathbf{a})} \cdot \frac{\bar{\mu}_{h}^{(n-1)}}{\bar{\mu}_{h}^{(n)}} \cdot \frac{\rho(\bar{\mu}_{h}^{(n-1)},\mu^{*})}{\rho(\bar{\mu}_{h}^{(n)},\mu^{*})} = \\ &= \lambda^{-1} \frac{M_{h\ell}(\bar{\mu}_{h}^{(n)};\bar{\mu}_{\ell},\mathbf{a})}{M_{h\ell}(\bar{\mu}_{h}^{(n)}/\lambda;\bar{\mu}_{\ell},\mathbf{a})} \cdot \frac{\rho(\bar{\mu}_{h}^{(n)}/\lambda,\mu^{*})}{\rho(\bar{\mu}_{h}^{(n)},\mu^{*})}, \qquad n = 2, \dots, N \end{split}$$

$$\begin{split} \mu_h^{\rm pole} &= \rho(\bar{\mu}_h,\mu^*)\,\bar{\mu}_h(\mu^*) \quad (\text{with } \bar{\mu}_h \leftarrow \overline{\rm MS} \text{ scheme }) \\ \rho(\bar{\mu}_h,\mu^*) \text{ known up to N}^3 \text{LO} \quad - \text{ relevant only for the '}1/\bar{\mu}_h\text{'} \text{ interpolation} \end{split}$$

 $\rightarrow~$ In the static limit (and in CL) obviously:

$$\lim_{\bar{\mu}_h\to\infty} y(\bar{\mu}_h,\lambda;\bar{\mu}_\ell,a=0)=1$$

b-quark mass computation - 2

- Triggering input mass: M_{hℓ}(μ_h⁽¹⁾) PS meson mass (at μ_h⁽¹⁾ ~ m_c) affected by (tolerably) small cutoff effects.
- Ratios $y(\bar{\mu}_h^{(n)}, \lambda; \bar{\mu}_\ell, a)$ have small discretisation errors

• our calculation: $\lambda = 1.1784$ and $\bar{\mu}_{h}^{(1)} = 1.14$ GeV (in $\overline{\mathrm{MS}}$, 2 GeV)

- 日本 - 1 日本 - 日本 - 日本

- $\rightarrow \ \bar{\mu}_b = \lambda^K \bar{\mu}_h^{(1)} \ (K = 9)$
- y deviates from its static value $\sim 1\%$ for $\bar{\mu_h} \leq m_b$.
- curvature denotes a large $1/\bar{\mu_h}^2$ contribution to ratios y.

• Determine K (integer) such that $M_{hu/d}(\bar{\mu}_{h}^{(K+1)}) \equiv M_{B}^{expt}$: $y(\bar{\mu}_{h}^{(2)}) y(\bar{\mu}_{h}^{(3)}) \dots y(\bar{\mu}_{h}^{(K+1)}) = \lambda^{-\kappa} \frac{M_{hu/d}(\bar{\mu}_{h}^{(K+1)})}{M_{hu/d}(\bar{\mu}_{h}^{(1)})} \cdot \left[\frac{\rho(\bar{\mu}_{h}^{(1)}, \mu^{*})}{\rho(\bar{\mu}_{h}^{(K+1)}, \mu^{*})}\right]$ (strong cancellations of perturbative factors in the ratios)

• One adjusts $(\lambda, \bar{\mu}_{h}^{(1)})$ such that K integer

• our calculation: $\lambda = 1.1784$ and $\bar{\mu}_{h}^{(1)} = 1.14$ GeV (in $\overline{\mathrm{MS}}$, 2 GeV)

$$\rightarrow \ \bar{\mu}_b = \lambda^K \bar{\mu}_b^{(1)} \ (K = 9)$$

- y deviates from its static value $\sim 1\%$ for $\bar{\mu_h} \leq m_b$.
- curvature denotes a large 1/µ
 _h² contribution to ratios y.

(日本)(四本)(日本)(日本)

- y deviates from its static value $\sim 1\%$ for $\mu_h \leq m_b$.
- curvature denotes a large $1/\bar{\mu_h}^2$ contribution to ratios y.

b-quark mass - results

- $m_b(m_b, \overline{\mathrm{MS}})|_{N_f=2} = 4.35(12) \; \mathrm{GeV} \; (PRELIMINARY!)$
- compatible result for m_b when (hs)-data and M^{expt}_{Bs} as input are used

 Main source of uncertainty of the ETMC result is due to quark mass RC and scale setting uncertainties; stat & fit errors very small.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

f_B and f_{Bs}

• HQET behaviour $\lim_{\mu_h^{
m pole}
ightarrow \infty} f_{h\ell(s)} \sqrt{\mu_h^{
m pole}} = {
m constant}$

construct

$$\begin{aligned} z_{\ell}(\bar{\mu}_{h},\lambda;\bar{\mu}_{\ell},\mathbf{a}) &\equiv \lambda^{1/2} \frac{f_{h\ell}(\bar{\mu}_{h},\bar{\mu}_{\ell},\mathbf{a})}{f_{h\ell}(\bar{\mu}_{h}/\lambda,\bar{\mu}_{\ell},\mathbf{a})} \cdot \frac{C_{A}^{Stat}(\mu^{*},\bar{\mu}_{h}/\lambda)}{C_{A}^{stat}(\mu^{*},\bar{\mu}_{h})} \frac{[\rho(\bar{\mu}_{h},\mu^{*})]^{1/2}}{[\rho(\bar{\mu}_{h}/\lambda,\mu^{*})]^{1/2}} \\ z_{s}(\bar{\mu}_{h},\lambda;\bar{\mu}_{\ell},\bar{\mu}_{s},\mathbf{a}) &\equiv \lambda^{1/2} \frac{f_{hs}(\bar{\mu}_{h},\bar{\mu}_{\ell},\bar{\mu}_{s},\mathbf{a})}{f_{hs}(\bar{\mu}_{h}/\lambda,\bar{\mu}_{\ell},\bar{\mu}_{s},\mathbf{a})} \cdot \frac{C_{A}^{stat}(\mu^{*}_{b},\bar{\mu}_{h}/\lambda)}{C_{A}^{stat}(\mu^{*}_{b},\bar{\mu}_{h}/\lambda)} \frac{[\rho(\bar{\mu}_{h},\mu^{*})]^{1/2}}{[\rho(\bar{\mu}_{h}/\lambda,\mu^{*})]^{1/2}} \end{aligned}$$

 ${\cal C}_{A}^{stat}(\mu^*,\bar{\mu}_h)$ known up to N^2LO – relevant for the interpolation in '1/ $\bar{\mu}_h$ ' fit

 \rightarrow In the static limit (and in CL) obviously:

$$\lim_{\bar{\mu}_h \to \infty} z_{\ell/s}(\bar{\mu}_h, \lambda; \bar{\mu}_\ell, a = 0) = 1$$
$$\lim_{\bar{\mu}_h \to \infty} \frac{z_s(\bar{\mu}_h, \lambda; \bar{\mu}_\ell, a = 0)}{z_\ell(\bar{\mu}_h, \lambda; \bar{\mu}_\ell, a = 0)} = 1$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

f_{Bs}

- Ratios z_s(μ_h⁽ⁿ⁾, λ; μ_ℓ, a) have small discretisation effects (from ~ 1% for the smallest to ~ 3% for the largest heavy quark masses)
- At Triggering point f_{hs}(\$\overline{\mu}_h^{(1)}\$) pseudoscalar decay constant (with \$\overline{\mu}_h^{(1)} ~ m_c\$) is affected by (tolerably) small cutoff effects.

▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへ(?)

 $\rightarrow f_{Bs} = 234(6) \text{ MeV} (PRELIMINARY)$

(principal uncertainty from scale setting; other errors (stat+fit) < 1 %)

(principal uncertainty from scale setting; other errors (stat+fit) < 1 %)

f_{Bs}/f_B @ triggering point

• $f_{hs}/f_{h\ell}$ @ triggering point (~ m_c)

Linear fit, Linear + Log and HMChPT vs. light quark mass \rightarrow increase systematic uncertainty: $f_{hs}/f_{hu/d} = 1.18(1)_{stat}(4)_{syst}$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

f_{Bs}/f_B @ triggering point

Linear fit, Linear + Log and HMChPT vs. light quark mass \rightarrow increase systematic uncertainty: $f_{hs}/f_{hu/d} = 1.18(1)_{stat}(4)_{syst}$

 Try to smooth out the light quark dependence in the f_{hs}/f_{hℓ} ratio: fit (f_{hs}/f_{hℓ})^{trig} * (f_{sℓ}/f_K^{exp}) vs. μ_ℓ using linear fit ansatz (consistent with SU(2) ChPT; A. Roessl NPB 1999.)

 \rightarrow datapoints with larger error due to the scale uncertainty necessary for converting $f_{s\ell}$ in phys. units: $f_{hs}/f_{hu/d} = 1.18(3)$

f_{Bs}/f_B

 double ratio ζ = z_s/z_ℓ shows no significant μ_ℓ dependence at successive values of the heavy quark mass up to 3 GeV and small discr. effects

- apply similar method for z_s/z_ℓ to reach the b-quark mass point ...
- $\rightarrow f_{Bs}/f_B = 1.19(05) (PRELIMINARY!)$

(principal source of uncertainty due to systematics in the fit ansatz @ triggering mass point)

Results & Comparisons - I

*f*_{Bs}(ETMC - 2012) = 234(06) MeV (*PRELIMINARY*!) *f_{Bs}/f_B*(ETMC - 2012) = 1.19(05) MeV (*PRELIMINARY*!)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

★ vertical lines show average over $N_f = 2 + 1$ results ...

no significant dependence on dynamical strange degree of freedom (within the present precision)

Results & Comparisons - II

• $f_B(\text{ETMC} - 2012) = 197(10) \text{ MeV}$ (*PRELIMINARY!*) ($f_B = f_{Bs}/(f_{Bs}/f_B)$)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Ratio method for the $\Delta B = 2$ operators

QCD

HQET

★ Matching between QCD and HQET operators:

$$\begin{split} [\mathbf{W}_{QCD}^{\mathsf{T}}(\mu_h,\mu)]^{-1} \langle \vec{\mathcal{O}}(\mu) \rangle_{\mu_h} &= \mathcal{C}(\mu_h) \, [\mathbf{W}_{HQET}^{\mathsf{T}}(\mu_h,\tilde{\mu})]^{-1} \langle \vec{\mathcal{O}}(\tilde{\mu}) \rangle + \mathcal{O}(1/\mu_h) + \dots \\ [\mathbf{W}_{\dots}^{\mathsf{T}}(\mu_1,\mu_2)]^{-1} : \text{ evolution 5x5 matrices} \\ \mathcal{C}(\mu_h) : \text{ matching matrix} \end{split}$$

(e.g. D.Becirevic, V.Gimenez, G.Martinelli, M.Papinutto, J.Reyes, JHEP 2002)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Calculation of B_{Bd/s}

- *B*-bag parameters encode the non-perturbative QCD contribution to the $B_{d/s} - \bar{B}_{d/s}$ mixing amplitude: $\Delta M_q \propto |V_{tq}^* V_{tb}|^2 M_{B_q} f_{B_q}^2 \hat{B}_{B_q}$
- ETMC Calculation: [Frezzotti and Rossi, JHEP 2004] use mixed action; Osterwalder-Seiler valence quarks; suitable combinations of maximally twisted valence quarks ensure both
- $\rightarrow\,$ continuum-like renormalisation pattern for the 4-fermion operators
- \rightarrow automatic O(a)-improvement.

(application to the K-sector: ETMC, Phys.Rev.D 2011; ETMC, 1207.1287)

(see talk by R. Frezzotti)

•
$$R_{B_B} = \frac{C_{PO_1P}(x_0)}{8/3C_{PA}(x_0)C_{AP}(x_0)} \to B_B$$

 We present results at three values of lattice spacing a ∈ [0.1, 0.067] fm; a finer lattice spacing a = 0.054 fm in progress.

Ratio method for the $\Delta B = 2$ operators

set:

$$\vec{\Theta}(\mu_h, \mu, \tilde{\mu}) \equiv (\mathbf{W}_{QCD}^{\mathsf{T}}(\mu_h, \mu)C(\mu_h)[\mathbf{W}_{HQET}^{\mathsf{T}}(\mu_h, \tilde{\mu})]^{-1})^{-1} \langle \vec{O}(\mu) \rangle_{\mu_h} \equiv [C_B(\mu_h, \mu, \tilde{\mu})]^{-1} \langle \vec{O}(\mu) \rangle_{\mu_h} = \langle \vec{\tilde{O}}(\tilde{\mu}) \rangle + \mathcal{O}(1/\mu_h) + \dots$$

• $[\mathbf{W}_{\dots}^{\mathcal{T}}(\mu_1,\mu_2)]^{-1}$ and $C(\mu_h)$ are $(3 \times 3 \oplus 2 \times 2)$ block-diagonal matrices

• For B_{Bq} case, calculate ratios at successive values of $\mu_h^{(n)} = \lambda \mu_h^{(n-1)}$ (need only 3 × 3 matrices):

$$w_{\Theta}^{(n)} = \frac{\Theta_j(\mu_h^{(n)}, \mu, \mu)}{\Theta_j(\mu_h^{(n-1)}, \mu, \tilde{\mu})}$$
 for $j = 1, 2, 3$

and construct the appropriate ratio chain.

• up to LL order O_1 and \tilde{O}_1 renormalise multipicatively; need only j = 1

Ratio method for B_{B_s} , B_{B_d} and their ratio

• HQET predicts:
$$\lim_{\mu_b^{\text{pole}} \to \infty} B_{B_{d/s}} = \text{constant}$$

•
$$\lim_{\bar{\mu}_h \to \infty} w_{B_{d/s}}(\bar{\mu}_h, \lambda; \bar{\mu}_\ell, a = 0) = 1$$

form the chain for B_{Bs} and B_{Bd}:

$$\begin{split} & \mathsf{w}_{B_{d/s}}(\bar{\mu}_{h}^{(2)}) \, \mathsf{w}_{B_{d/s}}(\bar{\mu}_{h}^{(3)}) \, \dots \, \mathsf{w}_{B_{d/s}}(\bar{\mu}_{h}^{(K+1)}) = \\ & \frac{B_{B_{d/s}}(\bar{\mu}_{h}^{(K+1)}, \mu, \tilde{\mu})}{B_{B_{d/s}}(\bar{\mu}_{h}^{(1)}, \mu, \tilde{\mu})} \cdot \Big[\frac{C_{B}(\bar{\mu}_{h}^{(1)}, \mu, \tilde{\mu})}{C_{B}(\bar{\mu}_{h}^{(K+1)}, \mu, \tilde{\mu})} \Big] \end{split}$$

• work in a similar way; form the double ratios for B_{B_s}/B_{B_d} : $\zeta_w(\bar{\mu}_h^{(2)})\zeta_w(\bar{\mu}_h^{(3)})\ldots\zeta_w(\bar{\mu}_h^{(K+1)}) = \frac{w_{B_s}(\bar{\mu}_h^{(K+1)})w_{B_d}^{-1}(\bar{\mu}_h^{(K+1)})}{w_{B_s}(\bar{\mu}_h^{(1)})w_{B_d}^{-1}(\bar{\mu}_h^{(1)})}$

• for $\bar{\mu}_h^{(K+1)} = \lambda^K \bar{\mu}_h^{(1)} = m_b$ get the physical values for the Bag parameters and of their ratio

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

B_{Bs}/B_{Bd}

compute the double ratio

fit ansatze

 $\zeta_w(\bar{\mu}_h) = 1 + c_1/\bar{\mu}_h \ (+ c_2/\bar{\mu}_h^2)$

 $\rightarrow \ B_{B_s}/B_{B_d} = 1.03(2) \ (\text{at} \ \bar{\mu}_h^{(K+1)} = \lambda^K \bar{\mu}_h^{(1)} = m_b) \ (PRELIMINARY!)$

• For Comparison B_{B_s}/B_{B_d} (FNAL/MILC - 2012) = 1.06(11); B_{B_s}/B_{B_d} (HPQCD - 2009) = 1.05(07)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

ξ

• fit ansatze
$$\zeta_{\xi}(\bar{\mu}_h) = 1 + c_1'/\bar{\mu}_h (+ c_2'/\bar{\mu}_h^2)$$

 $\rightarrow \ \xi = 1.21(06) \ (\text{at } \bar{\mu}_{h}^{(K+1)} = \lambda^{K} \bar{\mu}_{h}^{(1)} = m_{b}) \ (PRELIMINARY!)$

(syst. error $\sim 4\%$ due to fit ansatze @ triggering mass point)

• For comparison:

 ξ (FNAL/MILC - 2012) = 1.268(63); ξ (HPQCD - 2009) = 1.258(33) = 2009

B_{Bs}

 smooth behaviour in the CL @ triggering point value (~ m_c)

- ratios $w_{B_s}(\bar{\mu}_h^{(n)}, \bar{\mu}_\ell)$ show smooth behaviour with $\bar{\mu}_\ell$ and small discr. effects
- ullet fit ansatz $w_{B_s}(ar{\mu}_h)=1+w_1/ar{\mu}_h~+~w_2/ar{\mu}_h^2$
- Similar analysis for B_{Bd}

Results for B-Bag Parameters

- $B_{B_s}/B_{B_d} = 1.03(2)$
- *ξ* = 1.21(06)

- $B_{B_d}(m_b, \overline{MS}) = 0.87(05)$
- $B_{B_s}(m_b, \overline{MS}) = 0.90(05)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(PRELIMINARY!)

Summary

- Ratio method uses relativistic quarks and an *obvious* value of the static limit. No static calculation needed.
- Ratio method can be used for all observables whose static limit behaviour is known from HQET.
- ETMC $(N_f = 2)$ results for

 m_b , f_{Bs} , f_B , f_{Bs}/f_B , B_{Bs} , B_{Bd} , B_{Bs}/B_{Bd} and ξ

are in the same ballpark of results from other collaborations.

Repeat/extend the study to N_f = 2 + 1 + 1 ensembles; work in progress; results available very soon using three lattice spacings a ∈ [0.09, 0.06] fm.

Thank you for your attention !

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

backup slides

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

b-quark mass ratios - phenom. indications

• consider (HQET)
$$M_{h\ell} = \mu_h^{\text{pole}} + \bar{\Lambda} - \frac{(\lambda_1 + 3\lambda_2)}{2} \frac{1}{\mu_h^{\text{pole}}} + \mathcal{O}\left(\frac{1}{(\mu_h^{\text{pole}})^2}\right)$$

• and get $y = 1 - \bar{\Lambda} \frac{\lambda_1^{\text{pole}} - 1}{\mu_h^{\text{pole}}} + \left(\frac{(\lambda_1 + 3\lambda_2)}{2}(\lambda^{\text{pole}} + 1) + \bar{\Lambda}^2 \lambda^{\text{pole}}\right) \frac{\lambda^{\text{pole}} - 1}{(\mu_h^{\text{pole}})^2}$
with $\lambda^{\text{pole}} = \mu_h^{\text{pole}}(\bar{\mu}_h) / \mu_h^{\text{pole}}(\bar{\mu}_h/\lambda) = \lambda \rho(\bar{\mu}_h) / \rho(\bar{\mu}_h/\lambda)$

• use phenomenological estimates for HQET parameters, as e.g. $\bar{\Lambda} = 0.39(11) \text{ GeV}$, $\lambda_1 = -0.19(10) \text{ GeV}^2$, $\lambda_2 = 0.12(2) \text{ GeV}^2$

[M. Gremm, A. Kapustin, Z. Ligeti, M.B. Wise, PhysRevLett 1996]

Ratios for f_{Bs} - Phenomenological Indications

$$\begin{split} z_s(\bar{\mu}_h) &= 1 + \frac{\zeta_1}{\bar{\mu}_h} + \frac{\zeta_2}{\bar{\mu}_h^2} \\ (\text{for } 1/\bar{\mu}_h > 0.60 \text{ estimated uncertainty on} \\ \text{the black curve} &\sim 0.03) \end{split}$$

• consider (HQET)

$$\Phi_{hs}(\bar{\mu}_h, \mu_b^*) = \frac{(f_{hs}\sqrt{M_{hs}})^{\text{QCD}}}{C_A^{stat}(\bar{\mu}_h, \mu_b^*)} = \Phi_0(\mu_b^*) \left(1 + \frac{\Phi_1(\mu_b^*)}{\mu_h^{\text{pole}}} + \frac{\Phi_2(\mu_b^*)}{(\mu_h^{\text{pole}})^2}\right) + \mathcal{O}\left(\frac{1}{(\mu_h^{\text{pole}})^3}\right)$$

$$y_s^{1/2} z_s = \frac{\Phi_{hs}(\bar{\mu}_h)}{\Phi_{hs}(\bar{\mu}_h/\lambda)} = 1 - \Phi_1 \frac{\lambda^{\rm pole} - 1}{\mu_h^{\rm pole}} - \left(\Phi_2(\lambda^{\rm pole} + 1) - \Phi_1^2 \lambda^{\rm pole}\right) \frac{\lambda^{\rm pole} - 1}{(\mu_h^{\rm pole})^2}$$

• use phenomenological values for HQET parameters $\bar{\Lambda}_s = \bar{\Lambda} + M_{B_s} - M_B$, $\lambda_{1s} = \lambda_1$, $\lambda_{2s} = \lambda_2$, $\Phi_0 = 0.60 \text{ GeV}^{3/2}$ and the estimates $\Phi_1 = -0.48 \text{ GeV}$, $\Phi_2 = 0.08 \text{ GeV}^2$ (\rightarrow values obtained from inputs at B_s and D_s .)