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Possible Outline
✦ Claude’s talk focused mainly on results that are usually 

considered “Standard Model” quantities:
• leptonic decay constants (heavy-light, light-light)
• heavy-light meson mixing 

• final results so far only for SM operator O1 (actually ratio ξ)
• BSM operators in progress

✦ He also prepared slides on two topics he did not get to:
• K → π  l ν 

• Electromagnetic effects on π, K masses
✦ He said I will talk about more “BSMy” quantities:

•  E.g.,  B → K l l ;      B → D τ ν ;                                        
semileptonic ratio (Bs →Ds)/(B→D)  for   Bs → μ+ μ-  ;   ...
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E&M Effects on Masses of π, K
✦ Disentangling electromagnetic and isospin-violating 

effects in the pions and kaons is long-standing issue.
✦ Crucial for determining light quark masses.

• Fundamental parameters in Standard Model; important for 
phenomenology.

• Size of EM contributions is largest uncertainty in determination of 
mu/md.

• Reduce error by calculating EM effects on the lattice.
3

mu  [MeV] md  [MeV] mu/md

value 1.9 4.6 0.42

statistics 0.0 0.0 0.00

lattice syst. 0.1 0.2 0.01

perturbative 0.1 0.2 --

EM 0.1 0.1 0.04

MILC, RMP 82, 
1349 (2010),           
arXiv:0903.3598 
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E&M: Background
✦ EM error in mu/md dominated by error in                        , 

whereγindicates the EM contribution.
✦ Dashen (1960) showed that EM splittings same for K and 
π (to “leading order in chiral expansion”).

✦ Parameterize higher order effects (“corrections to 
Dashen’s theorem”) by 

• Note:     not exactly same as quantity defined by FLAG (Colangelo, et al., 
arXiv:1011.4408), which uses experimental pion splittings.  But EM 
splitting ≈ experimental splitting, since isospin violations in pions small.  
So difference negligible for us at this stage.

4

(M2
K+ �M2

K0)�

(M2
K+ �M2

K0)� = (M2
⇡+ �M2

⇡0)�

(M2
K+ �M2

K0)� = (1 + ✏)(M2
⇡+ �M2

⇡0)�

✏



S. Gottlieb, GGI Florence,  9-21-12

E&M: Background
✦  MILC calculations of mu/md after 2004 assumed                 .

•  Came from estimate by Donoghue of range of continuum 
phenomenology, based on:  Bijnens and Prades, NPB 490 (1997) 239;  
Donoghue and Perez, PRD 55 (1997) 7075;  B. Moussallam, NPB 504 
(1997) 381.

✦ This now seems too large; FLAG (Colangelo, et al., arXiv:1011.4408) 
quote                 , based largely on η→ 3π decay  (but also 
lattice results by several groups).

✦ Would like to improve on this value with direct lattice 
calculation of EM effects.

✦ Fortunately, Bijnens & Danielsson, PRD75 (2007) 014505  
showed that EM contributions to (mass)2 differences are 
calculable through NLO in SU(3)          with quenched photons 
(and full QCD).
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✏ = 1.2(5)

✏ = 0.7(5)

�PT



S. Gottlieb, GGI Florence,  9-21-12

MILC EM Project
✦ We have been accumulating a library of dynamical QCD 

plus quenched EM.
• Improved staggered (“Asqtad”) ensembles:

• 2+1 flavors.
• 0.12 fm ≥ a ≥ 0.06 fm.
• ~1000-2000 configs for most ensembles.
• valence quark charges 1, 2, or 3 × physical charges:

✦  ±2/3e, ±4/3e, ±2e for u-like quarks.
✦  ±1/3e, ±2/3e, ±e for d-like quarks.

• Progress has been reported previously: PoS(LATTICE 2008)127, 
PoS(Lattice 2010)084, PoS(Lattice 2010)127.
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MILC
C. Bernard, L. Levkova, SG
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Asqtad Ensembles
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Some Definitions
✦ Lattice data includes many partially quenched points.

• valence quarks called x and y, with charges qx  and qy.
• [Always talk of quark charges, not antiquark ones.  A neutral meson 

has qx = qy.]
• sea quarks are u, d, s.  

• Sea charges vanish in simulation, but physical charges can be 
restored at NLO in SU(3)           for (mass)2 differences 

– i.e., difference with same valence masses, different valence charges
• Other quantities may also be calculated, but they have an 

uncontrolled electromagnetic quenching error.           

8
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Chiral Perturbation Theory
✦ Staggered version of NLO SU(3)           has been calculated 

(C.B. & Freeland, arXiv:1011.3994):

• x,y are the valence quarks. 
• qx, qy are quark charges;  qxy ≡ qx - qy  is meson charge.           
•          is the LO LEC;  ξ is the staggered taste
• σ runs over sea quarks (mu, md, ms, with mu = md ≡ ml )

✦ Errors in                                                 are ~ 0.3% for 
charged mesons, ~1% for neutrals.
• Need NNLO: but only analytic terms are available.
• May need O(α2) too. 9
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Taste Splitting
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• As charges increase, EM 
taste-violating effects 
start to become evident.



S. Gottlieb, GGI Florence,  9-21-12

Taste Splitting

10

• As charges increase, EM 
taste-violating effects 
start to become evident.



• EM taste-violations not 
included in the          .          

S. Gottlieb, GGI Florence,  9-21-12

Taste Splitting

10

• As charges increase, EM 
taste-violating effects 
start to become evident.

�PT



• EM taste-violations not 
included in the          .          

• But if effect stays 
relatively small, should be 
describable by α2 
analytic terms.  
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• EM taste-violations not 
included in the          .          

• But if effect stays 
relatively small, should be 
describable by α2 
analytic terms.  

• Results below use only 
physical charges, 
however.
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Chiral Fit and Extrapolation

11

• Only unitary π+ & K+ shown, 
but fit is to all partially 
quenched points, charged 
and neutral.

• Different masses & charges 
for same ensembles are 
highly correlated, leading to 
nearly singular covariance 
matrix.

• This fit is non-covariant 
(neglects correlations).

• Covariant fits generally have 
very poor p values; a few of 
better ones are included in 
systematic error estimate.
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Chiral Fit and Extrapolation

12

• Extrapolate to continuum, 
and set valence, sea masses 
equal. 

• Adjust ms to physical value.

• Keep sea charges = 0.
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Chiral Fit and Extrapolation

13

• Set sea quark charges to 
their physical values, using 
NLO chiral logs.

• Difference with previous case 
is very small for kaon; 
vanishes identically for pion.
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Chiral Fit and Extrapolation

14

• Neutral     -like mesons      
(qx = qy =1/3) for same fit.

• Note difference in scale from 
charged meson plot.

• ~Function of (mx+my) only 
(π  and  K  line up).

• Nearly linear: chiral logs 
vanish for neutrals.

dd



✏ = 0.65(7)
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Chiral Fit and Extrapolation

15

• Now subtract neutral masses.

• Perfect agreement of π 
splitting with physical value is 
an accident: 
• systematic errors are larger 

than the difference of purple & 
black lines: difference between 
“π0” and π(qx=qy=0).  

• Can now read off ratio of π 
and K splittings:
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Preliminary Results

16

uncontrolled EM 
quenching error

• Finite volume errors not yet included:  seem relatively small at present, but 
need to be studied more, and quantified.

• The quantity                 may give rough estimate of size of effect of 
neglecting disconnected EM diagrams in the “π0”. 

• Keeping that in mind, and neglecting effects of isospin violation in the π0 ,           
tttttttt                 may be compared with expt. π+-π0 splitting:                    .

(M2
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�

(M2
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Comparison with Other Work
✦ ε = 0.60(14) [statistics only], Portelli et al. (2010), arXiv:1011.4189.

✦ ε = 0.628(59) [statistics only], Blum et al. (2010), arXiv:1006.1311.

✦ ε = 0.70(4)(8)(??), Portelli et al. (2012), arXiv:1201.2787.

✦ ε = 0.65(7)(14)(?), this work.

?? = discretization errors;   ? = finite volume errors

• Good agreement between the groups.

• Errors still need work...
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• From HISQ lattices.

• Extrapolations omit             
ml = 0.2 ms  ensembles.

• Preliminary analysis, not 
including staggered          .
• Is upward curvature 

believable? 

• Get:

• EM error reduced by ~factor 
of 2 (but still the main source 
of error).         

mu/md = 0.508(10)(22)
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Preliminary Effect on mu/md
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Bs ! µ+µ�
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B ! Kll Rare decays



✦               is a rare decay mediated by a flavor changing 
neutral current (FCNC)

✦ Standard model (SM) contribution occurs through 
penguin diagrams (b->s l l)

✦ Since SM contribution is small there is an opportunity to 
detect BSM physics

✦ Studied by BABAR, Belle, CDF, LHCb, etc.
✦ LHCb, SuperB, and SuperKEKB will improve 

experimental precision
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                Motivation
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B ! Kll

B ! Kll
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Typical Penguin Diagram

21



B ! Kll
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• differential branching 
ratio from CDF, PRL 
106, 161801 (2011)

• Red lines are based 
on the max. and 
min. allowed form 
factors from light 
cone sum rules 
(LCSR); Ali et al., 
PRD 61, 074024 
(2000).
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• differential branching 
ratio from Bobeth, 
Hiller and Dyk, arXiv:
1006.5013

• Blue band shows 
uncertainty due to 
form factor.

• Green band shows 
uncertainty due to 
Lambda/Q 
expansion of 
improved Isgur-Wise 
relations

23

B+ ! K⇤l+l�

• Red band show uncertainty from subleading 
terms of order alpha_s lambda/Q (low recoil); 
or lambda/m_b and lambda/E_K* terms (high 
recoil).



S. Gottlieb, GGI Florence,  9-21-12

LQCD Studies of B→Kll form factors

✦ Quenched lattice QCD:
• A. Abada et al. Phys. Lett. B 365, 275 (1996)
• L. Del Debbio et al. Phys. Lett. B 416, 392 (1998)
• D. Becirevic et al. Nucl. Phys. B 769, 31 (2007)
• A. Al-Haydari et al. (QCDSF) Eur. Phys. J. A 43, 107120 (2010)

✦ Recent studies with dynamical Nf=2+1 flavors:
• FNAL/MILC: (B→Kll), hep-lat/1111.0981
• Cambridge/W&M/Edinburgh: (B→K/K*ll), hep-ph/1101.2726

24



S. Gottlieb, GGI Florence,  9-21-12

Asqtad Ensembles used in B→Kll
✦ Four time sources are used on each configuration

25

∼a(fm) size aml/ams Nmeas

0.12 203×64 0.02/0.05 2052
0.12 203×64 0.01/0.05 2259
0.12 203×64 0.007/0.05 2110
0.12 203×64 0.005/0.05 2099
0.09 283×96 0.124/0.031 1996
0.09 283×96 0.0062/0.031 1931
0.09 323×96 0.00465/0.031 984
0.09 403×96 0.0031/0.031 1015
0.09 643×96 0.00155/0.031 791
0.06 483×144 0.0036/0.018 673
0.06 643×144 0.0018/0.018 827
0.045 643×192 0.0028/0.014 800
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Form Factors in B→Kll decays: I
✦ Two matrix elements are needed:

✦ Vector current:

✦ Tensor current:

26

hB|b̄�µs|{K(k)i hB|b̄�µ⌫s|{K(k)i
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mB +mK

[(pµ + kµ)q⌫ � (p⌫ + k⌫)qµ]
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Form Factors in B→Kll decays: II

✦ For LQCD convenient to work in B rest frame.  We define:

✦ Form factors considered to be functions of kaon energy:

and

27
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mB +mKp
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NLO Staggered 𝛘PT

✦ where ΔB* =mBs*-mB; D and logs are chiral log terms.
• we use SU(2) chiral logs in the chiral fit
• the expression for fT and f⊥ are the same at this order in the 1/mB 

expansion (Becirevic et al., PRD 68, 074003 (2003)).
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Chiral-continuum extrapolations give form factors at 
small EK (large q2).

q2 = (pB � pK)2 = m2
B +m2

K � 2mBEK
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z-expansion for B→Kll form factors

31

✦ z-expansion is based on field theoretic principles: 
analyticity, crossing symmetry, unitarity.  It is 
systematically improvable by adding more orders.
• z-expansion maps q2 to z by:

• choose                                   such that z ≪ 1
• expand form factors as a function of z

• where B(z) is used to account for the pole structure and Φ(z) 
assures 

z(q2, t0) =
p

t+�q2�p
t+�t0p

t+�q2+
p
t+�t0

, t± = (mB ±mK)2

t0 = t+

✓
1�

r
1� t�

t+

◆

f(q2) = 1
B(z)�(z)

P1
k=0 akz

k

P1
k=0 a

2
k  1
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q2 (G
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2 )

z

q2 vs. z relation

Lattice data
extrapolation

z-expansion continued

• q2 ∈ (0,23) ⇒ z ∈ (-0.15, 0.15)

• Bs* pole corresponds to 
=0.367

• Fit f(q2) B(z) Φ(z) as a 
polynomial in z

32

f(q2) = 1
B(z)�(z)

P1
k=0 akz

k
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• Synthetic data points are selected from the chiral-continuum fit of the 
form factors.  They are multiplied by appropriate factors and fit as a 
polynomial in z.

• Only statistical errors are shown here.
33
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• Kinematic constraint on z-expansion assures f+(q2=0)=f0(q2=0)
• Only statistical errors are shown here.
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form factors from z-expansion II

• Systematic and statistical errors are shown here
• Breakdown of systematic error on next slides
• Reasonable agreement with Cambridge/W&M/Edinburgh calculation
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• Systematic and statistical errors are shown here
• Errors shown in quadrature
• Chiral extrapolation error and z-expansion are most significant
• Results preliminary 36
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• Errors shown as per cent
• For large q2, error about 5%
• Relative error is large at small q2 partially because form factor is small
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• Errors shown as per 
cent

• For large q2, error 
about 5%

• Relative error is 
large at small q2 
partially because 
form factor is small
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B→Dτν Probing New Physics
✦ B→Dτν is sensitive to a scalar current such as 

mediated by a charged Higgs boson.
✦ BABAR recently reported first observation of the decay 

at a rate about 2σ above the standard model rate for 
R(D)=BR(B→Dτν)/BR(B→Dlν).  PRL 109 (2012) 101802

✦ However, the SM prediction was not based on ab initio 
LQCD form factors using dynamical quark ensembles.

✦ BABAR: R(D)=0.440±0.058±0.042 (consistent with Belle)

✦ FNAL/MILC: R(D)=0.316±0.012±0.007  PRL 109 (2012) 
071802

✦ Previous SM: R(D)=0.297±0.017
✦ Difference reduced to 1.7σ
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Talk ended with previous slide

✦ Rest of material on B→Dτν and R(D) was prepared by 
me.

✦ Material that follows on Kaon semi-leptonic decay was 
prepared by Claude Bernard.
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Formalism
✦ Define lepton helicity in virtual W rest frame

41
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✦ We won’t need tensor coupling, but GS needed for charged Higgs
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Lattice Calculation

✦ Ab initio calculation of form factors based on two lattice 
spacings a=0.12 and 0.09 fm.

✦ Should be sufficient for ratio needed here, but we plan 
to analyze additional ensembles to improve precision of 
form factors.

✦ See J. Bailey et al. [FNAL/MILC], PRD 85 
(2012)114502, arXiv:1202.6346 [hep-lat] for all the 
details of form factor calculation

✦ See J. Bailey et al. [FNAL/MILC], PRL 109 (2012) 
071802, arXiv:1206.4992 [hep-ph] for all the details of 
application to R(D) and polarization ratio. 
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• Comparison of f+ 
with BaBar 2010 
data for light lepton 
decay

• Left part of curve 
comes from lattice 
kinematic range, 
right part from z-
parameterization

• expt’l errors large 
where LCD is more 
precise

• f0 result is prediction
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PL(D) =
�
�B!D⌧⌫
+

� �B!D⌧⌫
�

�
/�B!D⌧⌫

tot

Source R(D) PL(D)
Monte-Carlo statistics 3.7 1.2
Chiral-continuum extrapolation 1.4 0.1
z-expansion 1.5 0.1
Heavy-quark mass () tuning 0.7 0.1
Heavy-quark discretization 0.2 0.3
Current ⇢V i

cb
/⇢V 0

cb
0.4 0.7

total 4.3% 1.5%
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Error Budget

✦ Also determined PL(D) = 0.325(4)(3) where 

45
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Charged Higgs Bounds

• R(D) measurement can 
be used to constrain 
parameters of two Higgs 
doublet model

• Show are BaBar result 
(blue), bound based on 
prior form factor 
estimates (green) and 
our result (red).

• Note at LH edge of 
graph comparison of 
SM predictions with 
BaBar.
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Fermilab Lattice/MILC Collaboration
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K→π semileptonic decay 
✦ Focus at q2=0, where we can use the method 

HPQCD proposed for semileptonic D decay:
• Full matrix element of vector current Vμ is hard because 

conserved current is complicated and local current needs 
renormalization.

• Instead use ∂μ Vμ = (mb - ma) S
• S is local, and product  (mb-ma)S  not renormalized.

• This is sufficient for f+(q2=0) = f0(q2=0).
✦ Two-part program:

•  HISQ valence on 2+1 Asqtad ensembles (close to completion).
•  HISQ valence on 2+1+1 HISQ ensembles (early stage).

• ultimately to include D → K, and q2 ≠ 0
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Asqtad Ensembles
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Asqtad Ensembles

49

K→π project       
(HISQ on Asqtad)
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K→π ;  HISQ on Asqtad

• Strange HISQ valence mass tuned to its physical value [from Davies, et 
al, PRD 81 (2010) 034506, using the “ηs”].

• Light HISQ valence mass tuned to Asqtad sea by: 

• So as close to “unitary” as possible for ml in this mixed-action theory.

• Mixed-action SChPT at 1-loop has been calculated [E. Gámiz and CB], 
but still needs checking.
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K→π ;  HISQ on Asqtad
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Sample Chiral Fit
• Statistical errors:             
~0.2% -- 0.3%

• Different chiral fits tried so far 
agree within 1 stat. σ. E.g.: 

• 1-loop SChPT + 2-loop 
continuum ChPT.

• 1-loop SChPT + higher 
order analytic. 

• Need to understand the size of a2 effects better; check SChPT.
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K→π ;  HISQ on Asqtad
✦ Expected error budget:

• Statistical: 0.2--0.3%
• Chiral extrapolation, fitting function: 0.1%
• Discretization: 0.15%
• Mistuning of ms in the sea: 0.2%

✦ Total:  0.35%--0.5%, should be competitive with state 
of the art:  RBC/UKQCD.
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K→π semileptonic decay 
✦ Focus at q2=0, where we can use the method HPQCD 

proposed for semileptonic D decay:
• Full matrix element of vector current Vμ is hard because 

conserved current is complicated and local current needs 
renormalization.

• Instead use ∂μ Vμ = (mb - ma) S
• S is local, and product  (mb-ma)S  not renormalized.

• This is sufficient for f+(q2=0) = f0(q2=0).
✦ Two-part program:

•  HISQ valence on 2+1 Asqtad ensembles (close to completion).
•  HISQ valence on 2+1+1 HISQ ensembles (early stage).

• ultimately to include D → K, and q2 ≠ 0
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HISQ Ensembles
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HISQ Ensembles
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K→π :  including HISQ on HISQ
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Sample Chiral Fit

• Consistency with 
extrapolated HISQ on 
Asqtad results. 

• Stat. errors larger on 
physical mass ensemble;  
momentum needed for 
q=0 is larger. 

• Ensembles with heavier-
than-physical u,d mass 
important for reducing 
final error.

• D→K being done in parallel, but fits not analyzed yet...


