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gauge theory and string theory

↔
A long history ...

• Veneziano amplitude

• ’t Hooft large-N – genus diagram expansion

• Polyakov action

• Maldacena ... AdS/CFT/QCD ...

at large N , flux tubes and perhaps the whole gauge theory can be

described by a weakly-coupled string theory
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calculate the spectrum of closed flux tubes

−→ close around a spatial torus of length l :

• flux localised in ‘tubes’; long flux tubes, l
√
σ ≫ 1 look like ‘thin strings’

• at l = lc = 1/Tc there is a ‘deconfining’ phase transition: 1st order for

N ≥ 3 in D = 4 and for N ≥ 4 in D = 3

• so may have a simple string description of the closed string spectrum for

all l ≥ lc

• most plausible at N → ∞ where scattering, mixing and decay, e.g string

→ string + glueball, go away

• in both D=2+1 and D=3+1

Note: the static potential V (r) describes the transition in r between UV (Coulomb

potential) and IF (flux tubes) physics; potentially of great interest as N → ∞.
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historical aside:

for the ground state energy of a long flux tube, not only

E0(l)
l→∞
= σl

but also the leading correction is ‘universal’

E0(l) = σl − π(D − 2)

6

1

l
+O(1/l3)

the famous Luscher correction (1980/1)
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calculate the energy spectrum of a confining flux tube winding around a spatial

torus of length l, using correlators of Polyakov loops (Wilson lines):

〈l†p(τ)lp(0)〉 =
∑

n,p⊥
cn(p⊥, l)e

−En(p⊥,l)τ τ→∞∝ exp{−E0(l)τ}

in pictures

✻

❄

−→
→ t

↑
x

lp l†p

✻

❄

l

✲✛
τ

a flux tube sweeps out a cylindrical l × τ surface S · · · integrate over these world

sheets with an effective string action ∝
∫

cyl=l×τ

dSe−Seff [S]
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⇒

〈l†p(τ)lp(0)〉 =
∑

n,p⊥

cn(p⊥, l)e
−En(p⊥,l)τ =

∫

cyl=l×τ

dSe−Seff [S]

where Seff [S] is the effective string action for the surface S

⇒

the string partition function will predict the spectrum En(l) – just a

Laplace transform – but will be constrained by the Lorentz invariance

encoded in En(p⊥, l)

Luscher and Weisz; Meyer
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this can be extended from a cylinder to a torus (Aharony)

Zw=1
torus(l, τ) =

∑

n,p

e−En(p,l)τ =
∑

n,p

e−En(p,τ)l =

∫

T2=l×τ

dSe−Seff [S]

where p now includes both transverse and longitudinal momenta

↔

‘closed-closed string duality’
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Example: Gaussian approximation:

SG,eff = σlτ +
∫ τ

0
dt

∫ l

0
dx 1

2
∂αh∂αh

⇒
Zcyl(l, τ) =

∑

n e−En(τ)l =
∫

cyl=l×τ

dSe−SG,eff [S] = e−σlτ |η(q)|−(D−2) : q = e−πl/τ

in terms of the Dedekind eta function: η(q) = q
1
24

∏∞
n=1(1− qn)

⇒ open string energies and degeneracies

En(τ) = στ + π
τ

{

n− 1
24
(D − 2)

}

– the famous universal Luscher correction(1981)

Also : modular invariance of η(q) → closed string energies,

Ên(l) = σl + 4π
l
{n− 1

24
(D − 2)}+O(1/l3)
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So what do we know today?

any Seff ⇒ ground state energy

E0(l)
l→∞
= σl− π(D − 2)

6l
− {π(D − 2)}2

72

1

σl3
− {π(D − 2)}3

432

1

σ2l5
+O

(

1

l7

)

with universal terms:

◦ O
(

1
l

)

Luscher correction, ∼ 1980

◦ O
(

1
l3

)

Luscher, Weisz; Drummond, ∼ 2004

◦ O
(

1
l5

)

Aharony et al, ∼ 2009-10

and similar results for En(l), but only to O(1/l3) in D = 3 + 1

∼ simple free string theory : Nambu-Goto in flat space-time up to O(1/l7)
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Nambu-Goto free string theory
∫

DSe−κA[S]

spectrum (Arvis 1983, Luscher-Weisz 2004):

E2(l) = (σ l)2 + 8πσ
(

NL+NR

2
− D−2

24

)

+
(

2πq
l

)2
.

p = 2πq/l = total momentum along string;

NL, NR = sum left and right ‘phonon’ momentum:

NL =
∑

k>0

nL(k) k, NR =
∑

k>0

nR(k) k, NL −NR = q

so the ground state energy is:

E0(l) = σl
(

1− π(D−2)
3

1
σl2

)1/2
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state =
∏

k>0

a
nL(k)
k a

nR(k)
−k |0〉 , P = (−1)number phonons

lightest p = 0 states:

|0〉
a1a−1|0〉
a2a−2|0〉, a2a−1a−1|0〉, a1a1a−2|0〉, a1a1a−1a−1|0〉
· · ·

lightest p 6= 0 states:

a1|0〉 P = −, p = 2π/l

a2|0〉 P = −, p = 4π/l

a1a1|0〉 P = +, p = 4π/l

⇒
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⇒ lightest states with p = 0 solid lines: Nambu-Goto

l
√
σ

E√
σ

87654321
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8

6

4

2

0

gs : P=+ . ex1 : P=+. ex2: 2× P=+ and 2× P=-
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So what does one find numerically?

results here are from:

• D = 2 + 1 Athenodorou, Bringoltz, MT, arXiv:1103.5854, 0709.0693

• D = 3 + 1 Athenodorou, Bringoltz, MT, arXiv:1007.4720

• higher rep Athenodorou, MT, in progress

and we start with:

D = 2 + 1, SU(6), a
√
σ ≃ 0.086 i.e N ∼ ∞, a ∼ 0
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lightest 8 states with p = 0 P = +(•), P = −(◦)

l
√
σ

E√
σ

87654321
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solid lines: Nambu-Goto ground state → σ: only parameter
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lightest levels with p = 2πq/l, 4πq/l P = −

l
√
σ

E√
σ

654321
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0

Nambu-Goto : solid lines
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Now, when Nambu-Goto is expanded the first few terms are universal

e.g. ground state

E0(l) = σl

(

1− π(D − 2)

3σl2

) 1
2

l>l0= σl− π(D − 2)

6l
− {π(D − 2)}2

72

1

σl3
− {π(D − 2)}3

432

1

σ2l5
+O

(

1

l7

)

where l0
√
σ =

√

3/π(D − 2); and also for excited states for l
√
σ > ln

√
σ ∼

√
8πn

⇒

is the striking numerical agreement with Nambu-Goto no more than an

agreement with the sum of the known universal terms?
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NO!

universal terms: solid lines Nambu-Goto : dashed lines

l
√
σ

E√
σ
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=⇒

• NG very good down to l
√
σ ∼ 2, i.e energy

fat short flux ‘tube’ ∼ ideal thin string

• NG very good far below value of l
√
σ where the power series expansion

diverges, i.e. where all orders are important ⇒
universal terms not enough to explain this agreeement ...

• no sign of any non-stringy modes, e.g.

E(l) ≃ E0(l) + µ where e.g. µ ∼ MG/2 ∼ 2
√
σ

=⇒

... in more detail ...
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but first an ‘algorithmic’ aside – calculating energies

• deform Polyakov loops to allow non-trivial quantum numbers

• block or smear links to improve projection on physical excitations

• variational calculation of best operator for each energy eigenstate

• huge basis of loops for good overlap on a large number of states

• i.e. C(t) ≃ cne−En(l)t already for small t

for example:
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Operators in D=2+1:

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15
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nt

aEeff (nt)

20181614121086420
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0

abs gs l = 16, 24, 32, 64a (◦); es p=0 P=+ (•); gs p = 2π/l, P = − (⋆); gs, es

p = 0, P = − (⋄)
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lightest P = − states with p = 2πq/l: q = 0, 1, 2, 3, 4, 5 aq|0〉

l
√
σ

E√
σ

654321

20

18

16

14

12

10

8

6

4

2

0

Nambu-Goto : solid lines (ap)2 → 2− 2 cos(ap) : dashed lines
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ground state deviation from various ‘models’ D = 2 + 1

l
√
σ

E0−Emodel

σl

654321

0.02

0

−0.02

−0.04

−0.06

model = Nambu-Goto, •, universal to 1/l5, ◦, to 1/l3, ⋆, to 1/l, +, just σl, ×
lines = plus O(1/l7) correction
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=⇒

◦ for l
√
σ & 2 agreement with NG to . 1/1000

moreover

◦ for l
√
σ ∼ 2 contribution of NG to deviation from σl is & 99%

despite flux tube being short and fat

◦ and leading correction to NG consistent with ∝ 1/l7 as expected

from current universality results
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γ

χ2

ndf

131197531

8
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χ2 per degree of freedom for the best fit

E0(l) = ENG
0 (l) + c

lγ
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first excited q = 0, P = + state D = 2 + 1

l
√
σ

E−ENG√
σ

654321

0.2

0

−0.2

−0.4

−0.6

−0.8

−1

fits:
c

(l
√

σ)7
- dotted curve; c

(l
√
σ)7

(

1 + 25.0
l2σ

)−2.75
- solid curve
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q = 1, P = − ground state SU(6), D = 2 + 1

l
√
σ

E−ENG√
σ

654321

0.3
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0
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−0.4

−0.5

fits:
c

(l
√

σ)7
solid curve; c

(l
√

σ)7

(

1 + 25.0
l2σ

)−2.75
: dashed curve
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D = 2 + 1 : some conclusions

as a few slides earlier +

• multi-phonon states with all phonons having sij = 0 have minimal

corrections comparable to absolute ground state
?↔
derivative interactions means such phonons have zero interactions and

corrections

• other excited states have modest corrections, and only at small l
√
σ

?↔
the corrections to Nambu-Goto resum to a small correction term at small l
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D = 2 + 1 −→ D = 3 + 1

• additional rotational quantum number: phonon carries spin 1

• Nambu-Goto again remarkably good for most states

• BUT now there are some candidates for non-stringy (massive?) mode

excitations ...

however in general results are considerably less accurate
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p = 2πq/l for q = 0, 1, 2 D = 3 + 1, SU(3), lc
√
σ ∼ 1.5

l
√
σ

E√
σ

6.55.54.53.52.51.5

10

8

6

4

2

0

The four q = 2 states are: JPt = 0+(⋆), 1±(◦), 2+(✷), 2−(•).
Lines are Nambu-Goto predictions.
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for a precise comparison with Nambu-Goto, define:

∆E2(q, l) = E2(q; l)− E2
0(l)−

(

2πq

l

)2
NG
= 4πσ(NL +NR)

=⇒ lightest q = 1, 2 states:

l
√
σ

∆E2

4πσ

4.53.52.51.5

3

2

1

0
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lightest few p = 0 states

l
√
σ

∆E2

4πσ

54.543.532.521.5

4

3

2

1

0

=⇒ anomalous 0−− state
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and also for p = 2π/l states

l
√
σ

∆E2

4πσ

5.54.53.52.51.5

5

4

3

2

1

0

states: JPt = 0+(◦), 0−(•), 2+(∗), 2−(+)

=⇒ anomalous 0− state
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p = 0, 0−− : is this an extra state – is there also a stringy state?

l
√
σ

∆E2

4πσ

6.55.54.53.52.51.5

5

4

3

2

1

0

ansatz: E(l) = E0(l) +m ; m = 1.85
√
σ ∼ mG/2
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similarly for p = 1, 0− : SU(3), •; SU(5), ◦

l
√
σ

∆E2

4πσ

6.55.54.53.52.51.5

6

5

4

3

2

1

0

ansatz: E(l) = E0(l) + (m2 + p2)1/2 ; m = 1.85
√
σ ∼ mG/2
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fundamental flux −→ higher representation flux

• k-strings: f ⊗ f ⊗ ... k times, e.g.

φk=2A,S = 1
2

(

{Trfφ}2 ± Trf{φ2}
)

lightest flux tube for each k ≤ N/2 is absolutely stable if σk < kσf etc.

• binding energy ⇒ mass scale ⇒ massive modes?

• higher reps at fixed k, e.g. for k = 1 in SU(6)

f ⊗ f ⊗ f̄ → f ⊕ f ⊕ 84⊕ 120

• N → ∞ is not the ‘ideal’ limit that it is for fundamental flux:

– most ‘ground states’ are not stable (for larger l)

– typically become stable as N → ∞, but

– σk → kσf : states unbind?

−→ some D = 2 + 1, SU(6) calculations ...
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k=2A lightest p = 2πq/l states with q=0,1,2

l
√
σ2a

E(l)√
σ2a

654321
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6

4

2

0

lines are NG P=- (•), P=+ (◦)
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k=2A: versus Nambu-Goto, lightest p = 2π/l, 4π/l states

l
√
σ2a

∆E2

4πσ2a

654321

3

2

1

0

⇒ here very good evidence for NG
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k=2A: lightest p=0, P=+ states

l
√
σ2a

E√
σ2a
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⇒ large deviations from Nambu-Goto for excited states
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k=1, R=84: lightest p = 0, 2π/l states

l
√
σr84

E(p)√
σr84

87654321
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6

4

2

0

⇒ all reps come with Nambu-Goto towers of states
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Some conclusions on confining flux tubes and strings

• flux tubes are very like free Nambu-Goto strings, even when they are not much

longer than they are wide

• this is so for all light states in D = 2 + 1 and most in D = 3 + 1

• ground state and states with one ‘phonon’ show corrections to NG only at very

small l, consistent with O(1/l7)

• most other excited states show small corrections to NG consistent with a

resummed series starting with O(1/l7) and reasonable parameters

• in D = 3 + 1 we appear to see extra states consistent with the excitation of

massive modes
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• in D = 2 + 1, despite the much greater accuracy, we see no extra states

• we also find ‘towers’ of Nambu-Goto-like states for flux in other representations,

even where flux tubes are not stable, but with much larger corrections – reflecting

binding mass scale?

• theoretical analysis is complementary (in l) but moving forward rapidly, with

possibility of resummation of universal terms and of identifying universal terms

not seen in ‘static gauge’

there is indeed a great deal of simplicity in the behaviour of confining flux tubes

and in their effective string description — much more than one would have

imagined ten years ago ...

43


