Search For $H \rightarrow b\bar{b}$ at LHC

Recent LHC Results

Mode	ATLAS	CMS
VH; H → bb	ArXiv:1207.0210 5 fb ⁻¹ (7 TeV)	PAS HIG-12-025 10 fb ⁻¹ (7 & 8 TeV)
ttH; H → bb	Conf-2012-135 5 fb ⁻¹ (7 TeV)	PAS HIG-12-025 5 fb ⁻¹ (7 TeV)

Vivek Sharma, UC San Diego

Digging For Gold Under a QCD Mountain

$H \rightarrow bb At LHC$

• Production Mechanisms:

(a) $gg \rightarrow H$

No handle against overwhelming background from QCD b-jets

(b) VBF

Less background but still fully hadronic final state

Can use leptons/ MET signature and unique signal topology

(d) *ttH*

Very low rate, Large top background

A Word on LHC & Tevatron Comparision

For $M_X \approx 125$ GeV Modest rise in $q\overline{q}$ cross section at 7 TeV, pp \rightarrow VH production only x3 larger than at 2 TeV

Major backgrounds are $W/Z+b\overline{b} \& t\overline{t}$ which rises sharply due to rise in gg cross section

 \Rightarrow Small signal, worse S/N

Higgs Production in pp collisions: $\sqrt{s} = 8$ TeV

Higgs Branching Ratio At Low M_H

6

[Cross section \times Branching Ratio] Vs M_H

Significance of an observation depends on ability to restrict background processes that mimic Higgs signature

Cross Sections for Background SM Processes

Backgrounds up to 5 orders of magnitude larger than signal !

Need to measure them as we search !

Measurements Of Key Background Processes

Good agreement between theory prediction and exptal measurements Decades of precise theory effort comes to fruition !

CMS H \rightarrow bb Search In a Nutshell

- H \rightarrow bb production via gluon fusion and VBF are quite large but are buried (10⁷) under QCD production of b bbar pairs
- Most promising channel is $H \rightarrow$ bb production associated with a Vector (V=W or Z) boson

- H \rightarrow bb reconstructed as two b-tagged jets recoiling against a high P_T W/Z boson
 - Large W/Z $P_T \rightarrow$ smaller background & better di-jet mass resolution
 - Use b-jet energy regression \rightarrow improved H \rightarrow bb mass resolution
- Events separated into categories , based on S/N (5 channels x 2 $P_T(V)$ bins = 10)
- Use data control regions to constrain major backgrounds (V + jets, ttbar etc)
- Use MVA methods to discriminate between signal & background.

$pp \rightarrow VH; H \rightarrow bb$ Triggers

2011, 5 fb-1 @ 7 TeV

Mode	Lepton Trigger	Cross-Trigger (Jet, MET)
$W(\mu\nu)H$	(Isolated) muon, 17-40 GeV	-
$Z(\mu\mu)H$	(Isolated) muon, 17-40 GeV	-
$W(e\nu)H$	Isolated electron, ID cuts, $17-32$ GeV	2 jets (25-30 GeV) + MHT (15-25 GeV)
Z(ee)H	Di-electron, 17-8 GeV	-
$Z(\nu \bar{\nu})H$	-	MET (80-100 GeV) + 2 jets (20 GeV) OR MHT (150 GeV)

2012, 5 fb-1 @ 8 TeV

Mode	Lepton Trigger	Cross-Trigger (Jet, MET)
$W(\mu\nu)H$	(Isolated) muon, 24-40 GeV	-
$Z(\mu\mu)H$	(Isolated) muon, 24-40 GeV	-
$W(e\nu)H$	Isolated electron, ID cuts, 27 GeV	-
Z(ee)H	Di-electron, 17-8 GeV	-
$Z(u ar{ u})H$	-	MET (80 GeV) + 2 jets (25-60 GeV), $\Delta \phi$ cuts OR MHT (150 GeV)

Backgrounds in $H \rightarrow$ bb Search

Reducible backgrounds:

- QCD (strongly suppressed by lepton isolation and Pt)
- V+udscg,V+bb @ low p_T and mass
- W(lv)W(jj)
- ttbar and single top $(\rightarrow Wb)$

Irreducible backgrounds:

- V+bb @ high p_T and mass
- ZZ(bb), W(lv)Z(bb)

Important discriminating variables

- Mass resolution (separation of VH from VV)
- b-tagging \rightarrow suppression of V+light quarks
- Back-to-back topology
- Additional jet activity in the event (ttbar)

ā

$pp \rightarrow VH; H \rightarrow bb$ Search

To distinguish events with different S/N \rightarrow further catagorization by the p_T of the associated Vector boson

Channel	"Low " p _T (V)	"High" p _T (V)
$Z \rightarrow ll + H \rightarrow bb$	$50 < p_T < 100$	$p_{\rm T} > 100$
$Z \rightarrow vv + H \rightarrow bb$	$120 < p_T < 160$	$p_{\rm T} > 160$
$W \rightarrow l\nu + H \rightarrow bb$	$120 < p_T < 170$	p _T > 170

 \rightarrow Total of 10 catagories & 2 run periods

b-Jet Identification Crucial

- b-hadron lifetime ≈ 1.5 ps, $<\beta\gamma c\tau > \approx 1800\mu$
- Tracks from b-hadron decay have large $\tilde{P_T}$
- Average B-track multiplicity ≈ 6
- b-taggers based on
 - Large signed impact parameter significance
 - Secondary vertex with large decay length
- Mistag rate measured from "negative tags"

15

Improved b-Jet Energy Measurement

Mass resolution and bias improved using algorithm developed at CDF for b-jet energy corrections http://arxiv.org/pdf/1107.3026.pdf

A Regression trained on VH signal events using several jet variables:

- raw *p*_T transverse momentum of the jet before corrections;
- $p_{\rm T}$ transverse momentum of the jet after corrections;
- $E_{\rm T}$ transverse energy of the jet after corrections (Z($\ell \ell$)H uses *E* instead);
- *M*_T transverse mass of the jet after corrections;
- η pseudorapidity of the jet;
- ptLeadTrk transverse momentum of the leading track in the jet;
- vtx3dL 3-d flight length of the jet secondary vertex;
- vtx3deL error on the 3-d flight length of the jet secondary vertex;
- vtxMass mass of the jet secondary vertex;
- vtxPt transverse momentum of the jet secondary vertex;
- Chf fraction of jet constituents that are charged;
- Nch number of jet constituents that are charged;
- Ntot total number of jet constituents;
- ho25 energy density calculated within $|\eta|$ < 2.5;

➔ Improvements in M_{bb} mass resolution of about 20% for Z(ll)H, 15% for W(lv)H and Z(vv)

b-Jet Energy Regression Validation

Extensively validated on simulation and Data Control Regions

 \rightarrow check of data/MC agreement of variables input to the regression in all control regions

- $\rightarrow p_T$ balance in Z(\rightarrow ll)+bb
- \rightarrow full reconstruction of top mass in ttbar and Single Top samples

Background Estimate From Control Regions

- Main backgrounds are the usual suspects:
 - Reducible: W/Z + jets (light and heavy flavor jets) & ttbar
 - Irreducible : WZ, ZZ and single top (taken from simulation)
- Background yields determined from several signal-depleted control regions (CR) using kinematic selection close to signal region (SR)
- Scale factors (SF) for V+udscg, ttbar V+bb/cc determined simultaneously in each mode from likelihood fits in control regions
- Renormalize background estimate in signal region based on these SF Bkgnd(SR) = SF(CR)*Bkgnd_{MC}(SR)

Example: Zee control region definition

Example Control Regions In Data: $(Z \rightarrow ee)$ + H Mode

M_{bb} Mass Distribution : All Channels Combined

Distribution of events that pass a selection optimized for M_{bb} variable

Good agreement between data and background prediction

Further Separating Signal From Backgrounds

- A multivariate (BDT) algorithm trained at each Higgs mass hypothesis
- Several kinematic and topological variables used to separate Signal from background

Variable

 p_{T_i} : transverse momentum of each Higgs daughter

m(jj): dijet invariant mass

 $p_{\rm T}(jj)$: dijet transverse momentum

 $p_{T}(V)$: vector boson transverse momentum (or pfMET)

CSV_{max}: value of CSV for the b-tagged jet with largest CSV value

CSV_{min}: value of CSV for the b-tagged jet with second largest CSV value

 $\Delta \phi$ (V, H): azimuthal angle between V (or E_T^{miss}) and dijet

 $|\Delta \eta(jj)|$; difference in η between Higgs daughters

 $\Delta R(j1, j2)$; distance in η - ϕ between Higgs daughters (not for Z($\ell\ell$)H)

 $N_{\rm aj}$: number of additional jets ($p_{\rm T} > 30 \,{\rm GeV}$, $|\eta| < 4.5$)

 $\Delta \phi(E_T^{\text{miss}}, \text{jet})$: azimuthal angle between E_T^{miss} and the closest jet (only for $Z(\nu\nu)H$) $\Delta \theta_{\text{pull}}$: color pull angle [62] (not for $Z(\ell\ell)H$)

Shapes of Signal & Background BDT Distributions

• A Higgs signal in the mass range [110-135] GeV is searched for as an excess in MVA classifier using predicted shapes for signal & bkgnd

Systematic Uncertainties in VH Analysis

Source	Range
Luminosity	2.2-4.4%
Lepton efficiency and trigger (per lepton)	3%
$Z(\nu\nu)H$ triggers	2%
Jet energy scale	2–3%
Jet energy resolution	3–6%
Missing transverse energy	3%
b-tagging	3–15%
Signal cross section (scale and PDF)	4%
Signal cross section (p_T boost, EWK/QCD)	5-10% / 10%
Signal Monte Carlo statistics	1-5%
Backgrounds (data estimate)	$\approx 10\%$
Diboson and single-top (simulation estimate)	30%

CMS Limits: VH, H \rightarrow bb Searches (10 fb⁻¹)

Limit based on S & B shape analysis of BDT output

Approaching SM Higgs Sensitivity

What Would A $M_{H} = 125$ GeV Signal Look Like

• Inject Signal pseudo-data corresponding to SM $\sigma \times Br$

p-Value Distribution: CMS

p-value: chance of background fluctuating as high as or higher than what is observed in data at a particular mass

CMS Sensitivity With More Data & Improvements

- Further plans to improve sensitivity by $\approx 10-30\%$:
 - increase signal reconstruction efficiency, add V $\rightarrow \tau$ final states
 - improve M_{bb} mass resolution when b decays semileptonically
 - improved characterization of backgrounds

ATLAS Search For VH, $H \rightarrow bb$ (4.7 fb⁻¹ at 7 TeV)

- Each channel subdivided into bins in p_T(V) to take advantage of varying S/B and background composition → 11 subchannels
- Cut based analysis \rightarrow look for an excess in M_{bb} distribution
- M_{bb} shapes for signal and major backgrounds (V+jets, ttbar..) taken from simulation, determine scale factors from signal-free control regions in data
 - scale factors in different CRs vary between 0.8 -2.4
 - minor backgrounds (WZ, WW etc) taken from theory calc.

Signal & Control Regions

- M(bb) shape from MC, normalization of main backgrounds from data (excluding **SR**)
- $WH \rightarrow \ell \nu bb$: Top and W+jet scale factors from m(bb) sidebands + WH top control region
- $ZH \rightarrow \ell^+ \ell^- bb$: Top and Z+jet scale factors from m(bb) sidebands + ZH top control region
- $ZH \rightarrow v\bar{v}b\bar{b}$: take scale factors from other channels, after cross-checking in dedicated control regions.

Top Background Control Regions

<u>Very good agreement in m(bb) shape</u> after simultanous fit to top and W+jet backgound normalizations. Normalization for W+jet background in 3 jet bin determined independently from W+jet in 2 jet bin.

ATLAS Search For WH, $H \rightarrow bb$

ATLAS Search For $Z \rightarrow vv + H, H \rightarrow bb$

 $\begin{array}{c} \text{Data 2011} \\ \text{Signalx5} \\ \text{(m}_{H}=125 \text{ GeV)} \\ \text{Total BG} \\ \text{Top} \\ \text{ZH} \rightarrow \sqrt{v} b \overline{b} \\ \text{Homogeneous states} > 120 \text{ GeV} \\ \text{$

ATLAS Limits For VH, H \rightarrow bb Searches (4.7 fb⁻¹)

Similar sensitivity as CMS cut based 7 TeV analysis MV based analysis with better M_{bb} resolution coming soon ³³

Simultaneously sensitive to Yukawa coupling between Higgs and the top & H \rightarrow bb branching ratio

$pp \rightarrow ttH, H \rightarrow bb$ Analysis Overview:

Ideally, search for events with : • $[t \rightarrow bl^+ v + \overline{t} \rightarrow \overline{b} + W^- \rightarrow l^- \overline{v}] + H \rightarrow b\overline{b}$ \Rightarrow $(l^+l^-) + MET + 4bjets$ • $[t \rightarrow bl^+ v + \overline{t} \rightarrow \overline{b} + W^- \rightarrow q\overline{q}] + H \rightarrow b\overline{b}$ \Rightarrow (l⁺) + MET + 4bjets + 2 jets Reality \rightarrow Efficiency, Mistag, misreco Major background: $pp \rightarrow t\overline{t} + X$ – Irreducible background $t\overline{t} + bb$ Split events by type of top decay and by # of reconstructed jets and the # of tagged b-jets

Devise method to distinguish *tt* from *ttH*ATLAS & CMS search differently

$pp \rightarrow ttH, H \rightarrow bb$ Candidate Event

ttH Search in 7 TeV Data: ATLAS Approach

- Target lepton+jet events with at least 4 reconstructed jets
- Catagorized into 9 topologies based on # of jets, # of tagged b-jets
- A **single** discriminant employed to distinguish between S & B
 - Catagories with \geq 6 jets (\geq 3 b-jets) have best S/N
 - Kinematic fit to select 4/6 jets to ttbar decay in the event
 - M_{bb} of remaining two jets used to search for $H \rightarrow bb$
 - Catagories with < 6 jets (<3 b-jets) dominated by backgrounds
 - use H $_{\rm T}$ = scaler sum of jet $p_{\rm T}$
 - $-H_T$ primarily sensitive to jet reconstruction & measurement uncertainties & modeling of tt+jets backgrounds
- Perform simultaneous fit to background-dominated catagories and those with signal to get improved background prediction with reduced uncertainties → better search sensitivity

Too Many b-jets In Event A Combinetorial Problem

Reconstucted $H \rightarrow$ bb mass after kinematic fit in ttH simulation

Correct b-jet pair identified as coming from H \rightarrow bb with a probability of 26% (\geq 4 tagged b-jets) & 20%(3 tagged b-jets)

Leads to dilution in search sensitivity

Signal "Rich" Catagories

39

Expected & Observed Limits From ttH Search :ATLAS

40

CMS Approach : Think Different

- In ttH events with H → bb, presence of two additional *b-quarks* in the event creates **combinatoric issues** that prevents the reconstruction of a clear resonant peak. So don't rely on it
- Instead, employ host of **kinematic variables** that show separation between the dominant *tt+jets* background and the *ttH* signal
- These variables fall in two catagories:
 - those that discriminate between events containing four *b-quarks* from those containing fewer
 - those that distinguish between events containing top quark pairs plus an additional heavy object versus those that do not contain an additional heavy object
- Although none of these variables individually is as powerful as M_{bb} would be if the Higgs peak could be resolved, combining these variables using a MVA technique can yield sufficient separation to set sensitive limits in this channel

CMS Analysis : 5 fb⁻¹ at 7 TeV (2011)

Catagorize dilepton or lepton+ jets events by multiplicity of jets & #
 of b-tags
 total of 9 exclusive catagories

					,		P
leptons	jets	b-tags	tīH⊤	tt	others	data	\longrightarrow For $M_{\rm H}=120 {\rm GeV}$
1ℓ	4	3	3.5	981.6	60.1	1214	
16	4	\geq 4	0.5	18.6	1.4	18	
16	5	3	4.7	637.3	29.6	736	
16	5	\geq 4	1.2	30.8	1.0	37	
1ℓ	\geq 6	2	6.3	2160.3	95.4	2137	
1ይ	\geq 6	3	4.4	391.0	13.9	413	
1ይ	\geq 6	\geq 4	1.7	38.4	1.0	49	
2٤	2	2	0.7	3354.1	951.9	4401	
2٤	\ge 3	\geq 3	2.9	164.3	27.7	192	

- To further distinguish between signal & bkgnd, use ANN with input based on information in the entire event to separate S from B:
 - kinematic info of leptons, jets, MET, event shape
 - discriminant output from b-tag algorithm (average b-tag value)
 - minimal angular seperation ΔR between 2 b-jets (tt+bb Vs ttH)
 - Choice of variables optimized for each category

ttH ANN Inputs

Variable	Description
aplanarity	Event shape variable equal to $\frac{3}{2}(\lambda_3)$, where λ_3 is the third
8.	eigenvalue of the sphericity tensor as described in [15].
ave CSV (tags)	Average b-tag discriminant value for b-tagged jets
ave $\Delta R(tag, tag)$	Average ΔR between b-tagged jets
ave mass(untag, untag)	Average of the invariant mass of all pairs of jets that are not
	b-tagged
ave mass(tag,tag)	Average of the invariant mass of all pairs of jets that are
	b-tagged
best higgs mass	A minimum-chi-squared fit to event kinematics is used to
	select two b-tagged jets as top-decay products. Of the re-
	maining h-tags, the invariant mass of the two with highest
	E ₄ is saved
closest tagged dijet mass	The invariant mass of the two <i>b</i> -tagged jets that are closest
closest lagged dijet mass	in AR
dev from ave CSV (tags)	The square of the difference between the <i>h</i> -tag discriminant
det nom ave cor (lags)	value of a given h-tagged jet and the average h-tag discrim-
	inant value among h-tagged jet and the average b-tag discrimi-
	inter value antong p-tagged jets, summed over an p-tagged
highest CSV (tags)	Highest h tag diegriminant value among h tagged iste
IL IL IL IL	The first four Fox Wolfram moments [16] (ovent shane vari-
n_0, n_1, n_2, n_3	The first few Pox-womant moments [16] (event shape vari-
S. a. Gata Lantana MET)	The sum of the number of all inter lasters and MET
(pr(jets, leptons, MET)	The sum of the p _T of all jets, leptons, and MET
jet 1, 2, 3, 4 pT	The transverse momentum of a given jet, where the jet
1	numbers correspond to rank by p _T
lepton p_T	The transverse momentum of the lepton (L) channel)
lowest CSV (tags)	Lowest b-tag discriminant value among b-tagged jets
mass(lepton,jet,ME1)	The invariant mass of the 4-vector sum of all jets, leptons,
	and MEI
mass(lepton,closest tag)	The invariant mass of the lepton and the closest b-tagged
	Jet in ΔR (L] channel)
M3(1 tag)	The invariant mass of the 3-jet system with the largest
	transverse momentum where one jet is b-tagged and the
	other two are not.
MHT	Vector sum of transverse momentum for all jets with
	$p_T > 20 \text{ GeV/c}$
MET	Missing transverse energy
min $\Delta R(lepton, jet)$	The ΔR between the lepton and the closest jet (LJ channel)
min ΔR (lead lepton,jet)	The ΔR between the highest p_T lepton and the closest jet
	(DIL channel)
min $\Delta R(tag,tag)$	The ΔR between the two closest <i>b</i> -tagged jets
second-highest CSV (tags)	Second-highest b-tag discriminant value among b-tagged
	jets
sphericity	Event shape variable equal to $\frac{3}{2}(\lambda_2 + \lambda_3)$, where λ_2 and λ_3
00070 0946000700	are the second and third eigenvalues of the sphericity ten-
	sor as described in [15]

Table 9: Event variables used in ANN training and their descriptions.

ANN Distribution For Some Lepton+ Jets Catagories

Red = ttbar, Blue = ttH, (M_H) = 120 GeV, normalized to total bkgnd₄₄

CMS Limits From ttH Search

Simultaneous fit to NN output of 9 catagories to set limits on Higgs production cross section

- Search sensitivity dominated by lepton+jet mode,
- 5-10% improvement from di-lepton mode
- No excess seen, expect 4.6 x $\sigma_{\rm SM}$ at 125 GeV, observe 3.8 x $\sigma_{\rm SM}$ 45

Summary

- Search for H → bb at LHC is not just an analysis but a full research program. New ideas are adding drops in the sensitivity bucket
 - rapid progress
- With ≥ 25 fb⁻¹ data each by end of 2012, ATLAS & CMS should be sensitive to SM Higgs in the VH channel

• First attempts at search for ttH, should reach $\approx 2.5 \times \sigma_{SM}$ sensitivity with 2012 data assuming background shapes can be kept under control