Trigger For SUSY in ATLAS and CMS

Andreas Hoecker (ATLAS) <u>Maurizio Pierini</u> (CMS)

Wednesday, October 24, 12

What is a Trigger ?

The Trigger is a Function of

Event data and Apparatus Physics channel and Parameters

Look at (almost) all bunch crossings, select most interesting one, collect all detector information and store it for offline analysis (do this for a reasonable amount of money)

ATLAS and CMS Trigger Constraints

Online rate reduction to manageable level for data recording & offline analysis

- $L = 10^{34} \text{ cm}^{-2}\text{s}^{-1}$ has 1 GHz interaction rate ("interesting" rate O(300 Hz))
- The size of the RAW events is very large, O(1 MB)
- Huge number of detector channels, high multiplicity of events
- Recording and processing offline, O(400) Hz event rate with 10 s reconstruction time per event → 3000 CPUs to keep up
- Hence, only a tiny fraction $O(10^{-7})$ of proton-proton collisions can be selected

Must balance needs of maximizing coverage for a very diverse physics programme and reaching acceptable (i.e. affordable) recording rates

Trigger Signatures

Features distinguishing new physics from the bulk of the SM cross-section

- Presence of high- p_T objects from decays of heavy particles (min. bias $< p_T > ~ 0.6$ GeV)
- More specifically, the presence of isolated high- p_T leptons or photons
- The presence of known heavy particles (W, Z)
- Missing transverse energy (either from high- p_T neutrinos, or from new invisible particles)

ATLAS Trigger and DAQ System

Wednesday, October 24, 12

ATLAS Trigger and DAQ System

Three level trigger system mostly based on Region-of-Interest (RoI) concept

Nomenclature:

Chain: one full L1 ® EF selection sequence Menu: full set of chains and prescale factors

 \rightarrow Typical menu has ~500 chains

Level-1 [20 MHz ® ~75 kHz_{peak}]

- Fast, custom-build electronics finds and defines Rols
- Muon and Calorimeters only
- Coarse resolution
- Triggers readout from FE electronics

Level-2 [65 kHz ® ~6 kHz_{peak}]

- Dedicated, fast software algorithms
- Works on full-granularity Rol data (for leptons), enlarged Rol for jets, cell-based MET sum

Event Filter

- Software reused from offline
- Full event information available, but partly still Rol based

Events written out in streams based on trigger decision, followed by express stream reconstruction, calibration, offline reconstruction, and data distribution

ATLAS Level-1 Signatures

Short 2.5µs latency of L1 does not allow track reconstruction

High- p_T muons

- Identified beyond calorimeters; need p_T cut to control rate from $\pi^+/K^+ \rightarrow \mu v$ and b/c $\rightarrow \mu v$

High- p_T photons & electrons

- Identified as narrow EM calorimeter clusters; need cut on ET; cuts on isolation and hadronicenergy veto reduce rates from high- p_T jets

High- p_T taus (decaying to hadrons)

- Identified as narrow cluster in EM+hadronic calorimeters

High- p_T jets

- Identified as local cluster in EM & hadronic calorimeter — need to cut at very high p_T to control rate (jets are dominant high-pT process)

Large missing E_T or E_T sum

- Identified beyond calorimeters; need p_T cut to control rate from $\pi^+/K^+ \otimes \mu v$ and b/c $\otimes \mu v$

ATLAS main triggers in 2012 – rates

					M 🛆
Signature	Offline selection	Trigger L1	selection EF	L1 Peak (kH 2, L _{peak} = 7x10 ³³	L _{ave} = 5x10 ³³
Single leptons	Single muon p_T > 25 GeV	15 GeV	24 GeV	8	45
Single leptons	Single electron $p_T > 25$ GeV	18 GeV	24 GeV	17	70
	2 muons $p_T > 15$	2x10 GeV	2 x 13 GeV	1	5
	2 muons <i>p</i> _T > 20,10 GeV	15 GeV	18,8 GeV	8	8
Two leptons	2 electrons, each p_T > 15 GeV	2x10 GeV	2x12 GeV	6	8
	2 taus p _T > 45, 30GeV	15,11 GeV	29,20 GeV	12	12
	2 photons, each p_T > 25 GeV	2 x10 GeV	2 x 20 GeV	6	10
	2 loose photons, $p_T > 40,30$ GeV	12,16 GeV	35, 25 GeV	6	7
Single jet	Jet p_T > 360 GeV	75 GeV	360 GeV	2	5
MET	MET > 120 GeV	40 GeV	80 GeV	2	17
Multi-jets	4 jets, each p_{τ} > 85 GeV 5 jets, each p_{τ} > 60 GeV	4x15 GeV	4x80 GeV 5x55 GeV	1	8
b-jets	$b + 3$ other jets $p_T > 50$ GeV	4x15 GeV	4x45 GeV+btag	1	4
TOTAL				< 75	~ 400 (ave)
		8			

CMS Trigger & DAQ System

CMS Main Triggers

(Unprescaled) Object	Trigger Threshold (GeV)	Rate (Hz)	Physics
Single Muon	40	21	Searches
Single Isolated muon	24	43	Standard Model
Double muon	(17, 8) [13, 8 for parked data]	20 [30]	Standard Model / Higgs
Single Electron	80	8	Searches
Single Isolated Electron	27	59	Standard Model
Double Electron	(17, 8)	8	Standard Model / Higgs
Single Photon	150	5	Searches
Double Photon	(36, 22)	7	Higgs
Muon + Ele x-trigger	(17, 8), (5, 5, 8), (8, 8, 8)	3	Standard Model / Higgs
Single PFJet	320	9	Standard Model
QuadJet	80 [50 for parked data]	8[100]	Standard Model /Searches
Six Jet	(6 x 45), (4 x 60, 2 x 20)	3	Searches
MET	120	4	Searches
HT	750	6	Searches

CMS HLT

Resources Allocation

Resource Allocation

Optimal distribution of available bandwidth is critical: driven by physics requirements and priorities; most bandwidth given to most generic triggers

~						
Group	Peak L1 rate [kHz]	Peak L2 rate [kHz]	Average LF rate [Hz]	(Unprescaled) Object	Rate (Hz)	Physics
B-jets	5	0.9	45	Single/Double Muon	65/25	SM/Higgs/SUSY/EXO/Top
B-physics	7	0.05	20	Muon+Had	15	SUSY
F/gamma	30	2	140	Single/Double Electron	70/14	SM/Higgs/SUSY/EXO/Top
	50	-	110	Electron + Had	15	SUSY
Jets	3	1	35	Single/Double Photon	15/35	SM/Higgs/SUSY
MET	4	0.8	30	Photon + Had	12	SUSY
Muon	14	1.2	100	ि्ः :t::e Photon High PT	10	EXO
Tau	24	0.8	35	ສ _ຼ ງhysics+Onia	40	Flavor
Sum	65	5.5	400	45 Btag	5	Btag POG
<u>B-nhvsics</u>	7	7	0.05	20 MultiJet	25	Top/SUSY/EXO
		30	2 CMS	40 нтмнт	15	SUSY
		3	1	35 мет	16	SUSY/EXO
<u> </u>		4	0.8	30 JetHT	15	SUSY/EXO
Muon		14	1.2	100 BJet	25	Top/Exo
Tau		24	0.8 14	зим 35	500 (1000)	600 (1200) Hz @ TO
Wednesday October 24	4, 12	65	5.5	400		

Which Kind Of Triggers

Optimal distribution of available bandwidth is critical: driven by physics requirements and priorities; most bandwidth given to most generic triggers

Triggers	Example	ATLAS	CMS
Single Leptons	e, mu	50 Hz each	65 Hz each
Generic Triggers	Generic Triggers multijet, dimuon		5-25 Hz,
Specialized Triggers	Specialized Triggers long-lived, analysis specific (Razor, αT)		IHz-I0Hz
B-jets Supporting Triggers B-physics	Frescaled triggers for 7 efficien o s	45 20% 20	20-30%

E/gamma 30 2 140
 Both the experiments use an inclusive approach for leptonic triggers
 ATLAS triggers more on generic single-object triggers (one trigger, many analyses)

- CMS gives more resources to analyses-dedicated triggers
- PROS & CONS: CMS¹ fan customize the trigge¹⁰ to the analyses, but this implies a biguduplication of world (trigger design, efficiency measurements, etc) and sometimes sophilicting requests 65 ¹⁵ 400 5.5

Luminosity Challenge

LHC had extremely successful luminosity ramp up

Rapid changes in trigger to follow six orders of magnitude changes in luminosity during first years

In 2012 luminosity increased mostly from more bunch luminosity

Challenge for trigger to keep efficiency and rejection stable in high pileup conditions

Frequent menu changes complicate physics analysis. For 2011-2012 ran with just 3 base menus for *pp* coll.

Luminosity Challenge

Sophisticated methods employed for software-based triggers (e.g. PF@HLT, FASTJET PU subtraction) More problematic for hardware-based triggers (were one had to act on the thresholds and the seeds) Whenever the L1 rate was kept under control, creative solutions allowed to stay as loose as for 2011, and sometimes to get looser by being smarter

EXAMPLE: HT LI trigger (seed to many SUSY HLT paths)

- Trigger cross section diverges with number of vertices
- Effects visible at large luminosity (raised by increasing pileup)
- Situation kept under control redefining the ingredients to the trigger (e.g. jet seeds to 5 GeV)

Trigger For SUSY

ATLAS Muon and EM triggers — efficiency and turn-on

Lepton and photon triggers crucial for many SUSY analyses

•Muon efficiency in barrel ~70% due to acceptance (additional detector shielding installed for 2012)

•Electron and muon triggers require track isolation (electron only for $E_T < 60 \text{ GeV}$)

•Fiducial efficiencies precisely (< 1%) measured with Z decays (tag & probe technique)

ATLAS Jet and MET triggers - resolution and turn-on

Evolution away from RoI based jet triggers in 2012, better calibration and noise suppression:

Full scan reconstruction of L1 towers for anti-kt jets at L2
Hadronic scale for HLT jets, calibrated clusters for HLT MET
Noise thresholds adjusted for high pileup (mainly forward!)
Factor 10-20 L1 MET trigger rate reduction
Efficiencies measured with bootstrap method using prescaled lower threshold ("support") triggers

Triggers used for SUSY searches (7 / 8 TeV analyses)

References for analyses: http://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults

Inclusive searches for squarks & gluinos use simple one or two-objects triggers

Analysis	CM energy	Min. offline selection	Main EF triggers	Support triggers / comments
0 lepton + 2–6 jets + MET	8 TeV	Jet p _T > 130 GeV MET > 160 GeV	j80_xe100 (Had scale)	g120_loose, 1-lepton, single jets (prescaled — QCD seed events)
0 lepton + 6–9 jets + MET	8 TeV	Jet p_T > 80 GeV Jet p_T > 55 GeV	5j55 6j45	4j45 (prescaled) + others, 1-lepton
1 lepton + jets + MET	8 TeV	Lepton p_T > 130 GeV MET > 100 GeV	e24i mu24i	e24_xe35, e60 mu24_j65_xe40 + prescaled single-lepton triggers for QCD CR
1 soft-lepton + jets + MET	7 TeV	e (mu) p _T > 7 (6) GeV MET > 250 GeV	xe60 (EM scale, no μ)	Tuned for compressed spectrum
2 leptons (SS) + jets + MET	8 TeV	MET > 150 GeV	xe80	2e12, e12_mu8, mu18_mu8
γγ + ΜΕΤ	7 TeV	Photon $p_T > 50 \text{ GeV}$	2g20	g80 for γ + X analyses
τ + X + MET	7 TeV	Jet <i>p_T</i> > 130 GeV MET > 130/150 GeV	j75_xe45/55	dilepton triggers

Triggers used for SUSY searches (7 TeV analyses)

References for analyses: http://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults

Searches for 3rd generation squarks and EW production of gauginos & sleptons

Analysis	CM energy	Min. offline selection	Main EF triggers	Support triggers (CR, eff) / comments
3 b-jets + 1–3 LF jets + MET	7 TeV	Jet <i>p_T</i> > 130 GeV MET > 160 GeV	j75_xe55	
direct sbottom (0 lepton)	7 TeV	Jet <i>p_T</i> > 60 GeV MET > 150 GeV	xe60	mu18, j75_xe55
direct stop (0 lepton)	7 TeV	Jet <i>p_T</i> > 130 GeV MET > 150 GeV	j75_xe55	
direct stop (1/2 leptons)	7 TeV	e (mu) <i>p_T</i> > 25 (20) GeV	e22 mu18_J10 xe60 (1L)	stop ® top + LSP analyses ('heavy' stop)
EW production (2/3 leptons)	7 TeV	e (2e) p_T > 25 (17) GeV mu (2mu) p_T > 20 (12) GeV e (mu) p_T > 15 (8) GeV	e22, 2e12 mu18, 2mu10 e10_mu6	dilepton triggers

Triggers used for SUSY searches (7 TeV analyses)

References for analyses: http://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults

RPV and **LLP** searches

Analysis	CM energy	Min. offline selection	Main EF triggers	Support triggers (CR, eff) / comments
2x2 jets (scalar gluon)	7 TeV	Jet <i>p</i> _T > 80 GeV	4j45	4j30 (prescaled, low mass), e22 (reference trigger)
2x3 jets (RPV gluino)	7 TeV	Jet $p_T > 60$ GeV (resolved) Jet $p_T > 350$ GeV or $H_{T4j} > 600$ GeV (boosted)	5j30 j100_ht400 or j350	3j30, 4j30
disappearing track (AMSB)	7 TeV	Jet $p_T > 90 \text{ GeV}$ MET > 90 GeV [below $\Delta \phi > 1$ [isolated > 10 GeV track]	j55_xe55_ dphi2j30xe10	EW production with ISR jet, $\Delta \phi > 1$ cut for back-to-back topology,
R-hadrons	7 TeV	No MET cut [isolated > 10 GeV track, βγ & β requirements]	xe60 (no muon)	Exploit ISR jet production and below-plateau efficiency

Hadronic SUSY Searches

Analysis	Signature	HLT Requirement	Offline Selection	Target Model
HT/MHT	≥3jets	HT>350 MHT>110	HT>500 MHT>200	gluinos
αΤ	≥2jets	staircase HT vs αT	αT>0.55	squarks/gluinos
MT2	≥3jets	(PF)HT>650	HT>750 MET>30	gluinos
<image/> <section-header><section-header></section-header></section-header>	IµIe+≥2jets		M _R >300 R ² >0.11 Ιμ _P T>20 GeV	generic SUSY colored particles pair-produced (<i>inclusive analysis</i>) Also performed with ≥ I btag for 3rd generation
	2µ+≥2jets	Iµ pT>I2 GeV+ OR of staircase Razor cuts		
	Iµ+≥2jets			
	2e+≥2jets	Ie pT>I2 GeV+ OR of	M _R >300 R ² >0.11	
	le+≥2jets	staircase Razor cuts	Ie pT>20 GeV	
	0lep+≥2jets	staircase Razor cuts	M _R >400 R ² >0.18	

Third Generation Squarks

Analysis	Signature	HLT Requirement	Offline Selection	Target Model
HT/MHT	≥3jets+≥1btag	HT>400 MHT>250	staircase HT/MHT	stop or sbottom from gluinos
αΤ	≥2jets+btag counting	staircase HT vs αT	αT>0.55	stop/sbottom/gluinos
MT2	≥3jets+≥1btag	(PF)HT>650	HT>750 MET>30	stop or sbottom from gluinos
Razor Stop	≥6jets	≥4jets	≥6jets	direct stop or from gluino cascade
SS leptons + jets + MET	dilepton (17,8)	dilepton (17,8)	dilepton (20,20)+ ≥2jets + HT>200	direct stop or from gluinos
One Lepton	≥I lep + HT + MHT	lepton pT>15 + HT>300 + PFMHT>40	lepton pT>20 + HT>375 + PFMHT>60	CMSSM

Lepton SUSY Searches

Analysis	Signature	HLT Requirement	Offline Selection	Target Model
Charginos	multilepton	dilepton (17,8)	three lepton (20,10,10)	SUSY models with Ws, Zs, sleptons
OS Dilepton	OS leptons + jets + MET	dilepton (17,8)	dilepton (20,20)+HT>I25+MET >200	CMSSM,χ²₀ in gluino cascade
SS Dilepton	SS leptons + jets + MET	dilepton (17,8)	dilepton (20,20)+ ≥2jets + MET>30	CMSSM,leptons in gluino cascade
Multilepton	multilepton	dilepton (17,8)	three lepton (20,10,10)	coNLSP,RPV
JZB and MET template	Z(II)+ ≥2jets	dilepton (17,8)	dilepton (20,20)+JZB>50 or MET>30	Z from χ²₀ in gluino cascades
SUSY with tau	≥2 tau + MHT	PFMHT>150	PFMHT>250	tau produced in SUSY cascades
One Lepton	≥I lep + HT + MHT	HT vs lepton pT staircase	HT vs MHT regions	CMSSM
		26		

Photon SUSY Searches

Analysis	Signature	HLT Requirement	Offline Selection	Target Model
DiPhoton	$\geq 2\gamma + \geq 2jets$	DiPhoton (36,22)+ Photon ID	DiPhoton (40,25)+ Photon ID	Stealth SUSY
DiPhoton+MET	≥2γ + ≥MET	DiPhoton (36,22)+ Photon ID	DiPhoton (40,25)+ Photon ID	GMSB
JGB	≥Iγ + ≥2jets+MET	photon pT>70 and HT>400	photon pT>80 and HT>460	GMSB

"Exotic" SUSY Searches

CN

Analysis	Signature	HLT Requirement	Offline Selection	Target Model
LLP	heavy stable charged particle	PHMHT>150 or dedicate trigger (+/ I bunch crossing)		compressed spectra,
Stopping Gluinos	out-of-time high- pT jets	one jet pT>50 and no beam	one jet pT>70 and no beam	Split SUSY
Monojet	High-pT jet + MET	jet pT>80 and MET>95	jet pT>110 and MET>200	Direct DM production
RPV trijet	pair-produced X→3j	HT>750	HT>900	PRV gluino decay
Displaced photons	two long-living NLSP decaying to γ+LSP	DiPhoton (40,28)+ Photon ID	DiPhoton (45,30)+ Photon ID	GMSB

HLT vs Offline

29

Turn-on very sharp for muons (online vs offline objects very similar)

Efficiency plateau ~90%, due to an inefficiency intrinsic to the LI seed

Improved the performances with R&D during run (Run2012A vs Run2012B)

The energy resolution changes across the run, due to the change of the ECAL transparency while taking data

This effect is measured offline and the calibration is regularly updated, offline and online

This improves the efficiency in the endcap region (blue vs red)

HLT vs Offline

Turn-on very sharp for photon, due to the very small differences between online and offline

This is not the case of electrons, for which the tracking introduces a difference in the reconstruction algorithm (e.g. matching of the cluster to the track)

Tau are triggered with a set of dedicated paths, mostly designed for Higgs analyses. HT+tau cross triggers developed for SUSY

Trigger efficiency is measured with dedicated prescaled triggers

Excellent efficiency turn-on, due to the use of PF@HLT

Tau HLT R&D became beneficial for the hadronic triggers too (PF@HLT also used for HT and MET)

HLT vs Offline

In general, HT and MHT triggers in CMS were expected to suffer for the jet resolution, mainly limited by the HCAL resolution

The possibility of running the PF reconstruction online limited this effect, substantially improving the performances for both MET and HT

More dedicated analyses have then being implemented already at the HLT level (e.g. the wide-jet reconstruction for the dijet resonance curves)

New Ways of Triggering

Trigger is not the limiting factor in data taking

These days, the limitation comes in CPU resources for offline processing

We can then take more data than what we can look at

This implies new resources allocated, which will be turned into analyses next year

Moreover Triggers new triggers are introduced between 2011 and 2012 (not yet used in analyses)

Other triggers and developments (for 8 TeV data only)

'Hadronic delayed stream' collecting triggers that are not promptly reconstructed

For SUSY searches of interest:

- multijets: 4j65, 5j45 [lowest prompt trigger: 4j80, 5j55, 6j45, 7j40]

- *H_T*: j145_ht500 [j145_ht700]
- **'Fat' jet: j360 (R=1.0)** [j460]
- Single jet: j280 [j360]

'End-of-fill' triggers (not available for full luminosity, had. delayed stream is end-of-fill)

For SUSY searches of interest:

- MET triggers with lower L1 thresholds (same plateau as primary trigger, but earlier turn on)

33

Introduced during 2012 running: muon correction In MET triggers at HLT level

2011 / 2012 menus include powerful *b*-jet triggers, but not yet used in SUSY

About 150 Hz of 2012 additional *B*-physics and jet triggers recorded for later processing in 2013

Data Parking

34

LHC will stop in 2013/2014: Recording additional events to be studied at that time:

Vector Boson Fusion: $M_{jj}>650 \text{ GeV}$, $\Delta \eta_{jj}>3.5$ MultiJet: 4 Jet with $p_T>50 \text{ GeV}$ HT and MHT: For susy searches MuOnia: low $M_{\mu\mu}$ (Jpsi, Psi`, ..) DoubleMu: Mu13_Mu8 TauParked: TT (with 3prong decays) 5% of parked data are promptly reconstructed for monitoring purpose

On average 350 Hz of "core physics" is promptly reconstructed and 300 Hz of data is parked for future reconstruction

Data Scouti

Look at events not collected in main stream due to trigger constraints. Scouting approach: Trigger: H_T >250 GeV unprescaled

High rate (~1 kHz) + reduced event content (i.e. store HLT jets, no RAW data)

- Bandwidth (= rate x size) under control [a few MB/s]
- Possibility to change stream A triggers in case something interesting is seen by"scouting"

Analyses in Data Quality Monitoring-like framework for: Exotica: Dijet search SUSY: Razor, a_T

In 2012, we can benefit from almost the full integrated luminosity (>15 fb⁻¹)

Conclusions

- Despite the worse environment for 2012 run, both ATLAS and CMS managed to keep the trigger performances very high
- Similar strategies (inclusive single-object triggers) are used for the leptons, with similar allocation resources
- Different trigger strategies are used for the rest: ATLAS stays with a few general single-object triggers (one trigger many analyses) while CMS decided to be more diversified (one or more triggers for one analysis)
- Both the experiments are investigating new approaches to data taking, delaying a subset of the events, introducing looser triggers at the end of the fill, taking now data that will be looked in 2013, keeping some information of the events that are rejected at the last stage of the trigger
- With the LHC environment becoming more hostile, creativity is allowing us to survive

Backup

Staircase Triggers

- Based on the 2D kinematic plane used in the analysis (R vs MR, aT vs HT)
- Apply a rectangular cut on the plane for each trigger
- Define a set of triggers tightening the cut on one leg and loosening the other
- Typically ~4 triggers used

VarX