The status of alignment models at the LHC era (2012)

Gilad Perez

CERN & Weizmann Inst.

Gedalia, Mannelli & GP (10); Gedalia, Kamenik, Ligeti & GP (12) Mahbubani, Papucci, GP, Ruderman & Weiler, in prep'; Kadosh, Paradisi & GP, in progress; Grossman, Kagan, Ligeti, GP & Petrov, in prep'.

Johns Hopkins 36th Workshop Latest News on Fermi scale from LHC & DM searches

The Galileo Galilei Institute

Prologue, current status of Supersymmetry

Putting stops aside, what are the bounds on first 2generation "light" squarks?

Bounds from ATLAS & CMS:

Outline

Introduction, importance of uFCNC.

Alignment & CP violation (CPV) in D mixing.

New robust bound on standard model (SM) *D* mixing absorptive CPV & dark photon/hidden valley models.

Non-degenerate light (burried) squark @ the LHC.

Effective Field Theory (EFT) Model independent approach

microscopic dynamics above few x 100 GeV is unknown.

Can parameterize our ignorance by set of higher dim' operators suppressed by the scale of new physics (NP).

$$\mathcal{H}_{\text{eff}}^{\Delta S,C,B=2} = \sum_{i=1}^{5} \left(O_i^{sd} / \Lambda^2 + O_i^{cu} / \Lambda^2 + O_i^{b,sd} / \Lambda^2 \right)$$

(see e.g.: UTFit, 0707.03535)

 $\begin{aligned} Q_1^{q_i q_j} \ &= \ \bar{q}_{jL}^{\alpha} \gamma_{\mu} q_{iL}^{\alpha} \bar{q}_{jL}^{\beta} \gamma^{\mu} q_{iL}^{\beta} \ , \ Q_3^{q_i q_j} \ &= \ \bar{q}_{jR}^{\alpha} q_{iL}^{\beta} \bar{q}_{jR}^{\beta} q_{iL}^{\alpha} \ , \quad Q_5^{q_i q_j} \ &= \ \bar{q}_{jR}^{\alpha} q_{iL}^{\beta} \bar{q}_{jL}^{\beta} q_{iR}^{\alpha} \ . \end{aligned}$ $\begin{aligned} Q_2^{q_i q_j} \ &= \ \bar{q}_{jR}^{\alpha} q_{iL}^{\alpha} \bar{q}_{jR}^{\beta} q_{iL}^{\beta} \ , \qquad Q_4^{q_i q_j} \ &= \ \bar{q}_{jR}^{\alpha} q_{iL}^{\alpha} \bar{q}_{jL}^{\beta} q_{iR}^{\beta} \ , \end{aligned}$

Almost any NP model can be described at low *E* by this set of operators (above Op' are most dangerous & yet clean).

$\Delta F = 2$ status

Isidori, Nir & GP (10)

Operator	Bounds on	$\Lambda \text{ in TeV } (c_{ij} = 1)$	Bounds on a	$c_{ij} \ (\Lambda = 1 \text{ TeV})$	Observables
	Re	Im	Re	Im	
$(\bar{s}_L \gamma^\mu d_L)^2$	9.8×10^2	1.6×10^4	9.0×10^{-7}	3.4×10^{-9}	$\Delta m_K; \epsilon_K$
$(\bar{s}_R d_L)(\bar{s}_L d_R)$	1.8×10^4	3.2×10^5	6.9×10^{-9}	2.6×10^{-11}	$\Delta m_K; \epsilon_K$
$(\bar{c}_L \gamma^\mu u_L)^2$	1.2×10^3	2.9×10^3	5.6×10^{-7}	1.0×10^{-7}	$\Delta m_D; q/p , \phi_D$
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2×10^3	1.5×10^4	5.7×10^{-8}	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$
$(ar{b}_L\gamma^\mu d_L)^2$	5.1×10^2	$9.3 imes 10^2$	3.3×10^{-6}	$1.0 imes 10^{-6}$	$\Delta m_{B_d}; S_{\psi K_S}$
$(\bar{b}_R d_L)(\bar{b}_L d_R)$	1.9×10^3	3.6×10^3	5.6×10^{-7}	1.7×10^{-7}	$\Delta m_{B_d}; S_{\psi K_S}$
$(ar{b}_L \gamma^\mu s_L)^2$	1	1×10^2	7.6	$\times 10^{-5}$	Δm_{B_s}
$(ar{b}_Rs_L)(ar{b}_L s_R)$	<u></u>	3.7×10^2	1.3	$\times 10^{-5}$	Δm_{B_s}
$(ar{t}_L\gamma^\mu u_L)^2$				Due he h li i h e un	cion t's
	<u>.</u>		e	rodadly doun xists due to L	HCb. CMS
				indep' confir	mation?

Adding Leptons?

n Λ in TeV $(c_{ij} = 1)$	Bounds on α	$c_{ij} \ (\Lambda = 1 \text{ TeV})$	Observables
Im	Re	Im	
$1.6 imes 10^4$	9.0×10^{-7}	3.4×10^{-9}	$\Delta m_K; \epsilon_K$
3.2×10^5	6.9×10^{-9}	2.6×10^{-11}	$\Delta m_K; \epsilon_K$
2.9×10^3	5.6×10^{-7}	$1.0 imes 10^{-7}$	$\Delta m_D; q/p , \phi_D$
1.5×10^4	5.7×10^{-8}	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$
$9.3 imes 10^2$	3.3×10^{-6}	$1.0 imes 10^{-6}$	$\Delta m_{B_d}; S_{\psi K_S}$
3.6×10^3	5.6×10^{-7}	$1.7 imes 10^{-7}$	$\Delta m_{B_d}; S_{\psi K_S}$
1.1×10^2	7.6	$\times 10^{-5}$	Δm_{B_s}
$3.7 imes 10^2$	1.3	$\times 10^{-5}$	Δm_{B_s}
			same sign <i>t</i> 's
	Im Im 1.6×10^4 3.2×10^5 2.9×10^3 1.5×10^4 9.3×10^2 3.6×10^3 1.1×10^2 3.7×10^2	Im Im Re Im Re 1.6×10^4 9.0×10^{-7} 3.2×10^5 6.9×10^{-9} 2.9×10^3 5.6×10^{-7} 1.5×10^4 5.7×10^{-8} 9.3×10^2 3.3×10^{-6} 3.6×10^3 5.6×10^{-7} 1.1×10^2 7.6 3.7×10^2 1.3	Im Re Im Im Re Im 1.6×10^4 9.0×10^{-7} 3.4×10^{-9} 3.2×10^5 6.9×10^{-9} 2.6×10^{-11} 2.9×10^3 5.6×10^{-7} 1.0×10^{-7} 1.5×10^4 5.7×10^{-8} 1.1×10^{-8} 9.3×10^2 3.3×10^{-6} 1.0×10^{-6} 3.6×10^3 5.6×10^{-7} 1.7×10^{-7} 1.1×10^2 7.6×10^{-5} 3.7×10^2 1.3×10^{-5}

	1.7×10^4		$Br\left(\mu \to e\gamma\right)$
$\bar{L}_i \sigma^{\mu\nu} e_{Rj} H F_{\mu\nu}$	$3.3 imes 10^2$		$Br\left(au ightarrow \mu \gamma ight)$
	2.6×10^2		$Br\left(au ightarrow e\gamma ight)$
$(\bar{\mu}\gamma^{\mu}P_L e)(\bar{u}\gamma_{\mu}P_L u)$	1.9×10^2		$\frac{\sigma(\mu^- Ti \to e^- Ti)}{\sigma(\mu^- Ti \to capture)}$

Adding Leptons?

Operator	Bounds on .	Λ in TeV ($c_{ij} = 1$) Bounds on a	$c_{ij} \ (\Lambda = 1 \text{ TeV})$	Observables
	Re	Im	Re	Im	
$(ar{s}_L \gamma^\mu d_L)^2$	$9.8 imes 10^2$	1.6×10^4	9.0×10^{-7}	3.4×10^{-9}	$\Delta m_K; \epsilon_K$
$(\bar{s}_R d_L)(\bar{s}_L d_R)$	1.8×10^4	3.2×10^5	6.9×10^{-9}	2.6×10^{-11}	$\Delta m_K; \epsilon_K$
$(ar{c}_L\gamma^\mu u_L)^2$	1.2×10^3	$2.9 imes 10^3$	5.6×10^{-7}	$1.0 imes 10^{-7}$	$\Delta m_D; q/p , \phi_D$
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2×10^3	1.5×10^4	$5.7 imes 10^{-8}$	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$
$(ar{b}_L \gamma^\mu d_L)^2$	5.1×10^2	$9.3 imes 10^2$	$3.3 imes 10^{-6}$	1.0×10^{-6}	$\Delta m_{B_d}; S_{\psi K_S}$
$(ar{b}_R d_L) (ar{b}_L d_R)$	$1.9 imes 10^3$	$3.6 imes 10^3$	$5.6 imes 10^{-7}$	$1.7 imes 10^{-7}$	$\Delta m_{B_d}; S_{\psi K_S}$
$(ar{b}_L \gamma^\mu s_L)^2$	1	$.1 \times 10^2$	7.6	$\times 10^{-5}$	Δm_{B_s}
$(ar{b}_Rs_L)(ar{b}_L s_R)$	3	$.7 \times 10^2$			
$(ar{t}_L\gamma^\mu u_L)^2$				Very very	strong
	$1.7 \times$	$\times 10^4$			$Br\left(\mu ightarrow e\gamma ight)$
$\bar{L}_i \sigma^{\mu\nu} e_{Rj} H F_{\mu\nu}$	$3.3 \times$	$\times 10^2$			$Br\left(au ightarrow \mu\gamma ight)$
	2.6 ×	$< 10^2$			$Br\left(au ightarrow e\gamma ight)$
$(\bar{\mu}\gamma^{\mu}P_L e)(\bar{u}\gamma_{\mu}P_L$	(u) 1.9 ×	$< 10^2$			$\frac{\sigma(\mu^- Ti \to e^- Ti)}{\sigma(\mu^- Ti \to capture)}$
			·		

What do we conclude ?

Bounds are too strong to allow for NP to be directly probed.

Hint for underlying structure of microscopic laws of nature.

http://nobelprize.org/nobel_prizes/physics/laureates/2008,

Page 1 of 1

Alternatively, assume 1TeV & bound coefficients

$$\mathcal{L}_{\Delta F=2} = \frac{z_{sd}}{(1\,\mathrm{TeV})^2} (\overline{d_L}\gamma_\mu s_L)^2 + \frac{z_{cu}}{(1\,\mathrm{TeV})^2} (\overline{c_L}\gamma_\mu u_L)^2 + \frac{z_{sd}^4}{(1\,\mathrm{TeV})^2} (\overline{d_L}s_R) (\overline{d_R}s_L) + \frac{z_{cu}^4}{(1\,\mathrm{TeV})^2} (\overline{u_L}c_R) (\overline{u_R}c_L).$$

 $\mathcal{I}m(z_{sd}, z_{sd}^4) \lesssim (3.4 \times 10^{-9}, 2.6 \times 10^{-11}) (\Lambda_{\rm NP}/{\rm TeV})^2,$

Flavor structure of TeV NP is highly non-generic!

What kind of NP survives?

Flavor blind/universal NP, for sure, but very restrictive. (spoiled by RGE)

NP flavor structure is controlled by SM one, effective minimal flavor violation (MFV) = more exciting than naively guessed

Maybe NP is anarchic but aligned.

Nir-Seiberg (92).

Operator	Bounds on Λ in	n TeV $(c_{ij} = 1)$	Bounds	on c_{ij}	$(\Lambda = 1 \text{ TeV})$	Observables
	Re	Im	Re		Im	
$(ar{s}_L \gamma^\mu d_L)^2$	9.8×10^2	$1.6 imes 10^4$	9.0 imes 10)-7	3.4×10^{-9}	$\Delta m_K; \epsilon_K$
$(\bar{s}_R d_L)(\bar{s}_L d_R)$	$1.8 imes 10^4$	3.2×10^5	6.9×10^{-10}	$)^{-9}$ 2	2.6×10^{-11}	$\Delta m_K; \epsilon_K$
$(ar{c}_L \gamma^\mu u_L)^2$	1.2×10^3	$2.9 imes 10^3$	5.6×10	$)^{-7}$	1.0×10^{-7}	$\Delta m_D; q/p , \phi_D$
$(\bar{c}_R u_L)(\bar{c}_L u_R)$	$6.2 imes 10^3$	$1.5 imes 10^4$	5.7×10)-8	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$
$(ar{b}_L \gamma^\mu d_L)^2$	5.1×10^2	$9.3 imes 10^2$	3.3×10)-6	1.0×10^{-6}	$\Delta m_{B_d}; S_{\psi K_S}$
$(\bar{b}_R d_L) (\bar{b}_L d_R)$	$1.9 imes 10^3$	$3.6 imes 10^3$	5.6×10^{-10}	$)^{-7}$	1.7×10^{-7}	$\Delta m_{B_d}; S_{\psi K_S}$
$(ar{b}_L \gamma^\mu s_L)^2$	1.1 >	$< 10^{2}$		$7.6 \times$	10^{-5}	Δm_{B_s}
$(ar{b}_Rs_L)(ar{b}_L s_R)$	3.7 imes	$< 10^{2}$		$1.3 \times$	10^{-5}	Δm_{B_s}
$(\bar{t}_L \gamma^\mu u_L)^2$						same sign <i>t</i> 's
	1.7×10^4					$Br\left(\mu \to e\gamma\right)$
$\bar{L}_i \sigma^{\mu\nu} e_{Rj} H F_{\mu\nu}$	$3.3 imes 10^2$					$Br\left(au ightarrow \mu \gamma ight)$
	$2.6 imes 10^2$					$Br\left(au ightarrow e\gamma ight)$
$\bar{u}\gamma^{\mu}P_{L}e)\left(\bar{u}\gamma_{\mu}P_{L}u\right)$	1.9×10^2					$\frac{\sigma(\mu^- Ti \rightarrow e^- Ti)}{\sigma(\mu^- Ti \rightarrow capture)}$

	Operator	Bounds on Λ i	in TeV $(c_{ij} = 1)$	Bounds on a	$c_{ij} \ (\Lambda = 1 \text{ TeV})$	Observables
		Re	Im	Re	Im	
ļ	$(s_L\gamma^\mu a_L)$	102	1.6×10^4	9.0×10^{-7}	9.4. 10.0	$ \Delta m_K; \epsilon_K $
	$(S_R a_L)(S_L a_R)$	1.8×10^{4}	3.2×10^5	6.9×10^{-9}	$2.6 imes 10^{-11}$	$\Delta m_K, \sim_{\Lambda}$
ſ	$(ar{c}_L \gamma^\mu u_L)^2$	1.2×10^3	2.9×10^3	$5.6 imes 10^{-7}$	$1.0 imes 10^{-7}$	$\Delta m_D; q/p , \phi_D$
L	$(\bar{c}_R u_L)(\bar{c}_L u_R)$	$6.2 imes 10^3$	$1.5 imes 10^4$	$5.7 imes 10^{-8}$	1.1×10^{-8}	$\Delta m_D; q/p , \phi_D$
		5.1×10^{2}	$9.3 imes 10^2$	$3.3 imes 10^{-6}$	1.0×10^{-6}	$\Delta = \int_{a} \nabla \varphi K_{S}$
I	$(\overline{h} +)/\overline{h} = \overline{h}$	1.0 × 10	3.6×10^{3}	5.6×10^{-7}	1./ × 10	C
		1.1	$\times 10^2$	7.6	$\times 10^{-5}$	
	$(\overline{b} \rightarrow)(\overline{b} \rightarrow)$	J.1	× 10²	1.3	X 10	Ame
($(\bar{t}_L \gamma^\mu u_L)^2$					same sign <i>t</i> 's
		1.7×10^4				$Br\left(\mu ightarrow e\gamma ight)$
	$L_i 0$ $C_{KJ} = \mu v$	3.3×10^2				$DT(au o \mu \gamma)$
_						$Br\left(au ightarrow e\gamma ight)$
(ī	$\bar{u}\gamma^{\mu}P_{L}e)\left(\bar{u}\gamma_{\mu}P_{L}u\right)$	$1.9 imes 10^2$				$\frac{\sigma(\mu^{-}Ti \rightarrow e^{-}Ii)}{\sigma(\mu^{-}Ti \rightarrow capture)}$

	Operator	Bounds on Λ in	TeV $(c_{ij} = 1)$	Bounds on α	$c_{ij} \ (\Lambda = 1 \text{ TeV})$	Observables
		${ m Re}$	Im	Re	Im	
	$(s_L\gamma^\mu a_L)$	102	1.6×10^4	9.0×10^{-7}	9 4 10 0	$ \Delta m_K; \epsilon_K $
	(or all (slar)	$1.8 imes 10^4$	3.2×10^5	6.9×10^{-9}	$2.6 imes 10^{-11}$	$\Delta m_K, \gamma_K$
ſ	$(\bar{c}_L \gamma^\mu u_L)^2$	1.2×10^3	2.9×10^{3}	5.6×10^{-7}	1.0×10^{-7}	$\Delta m_D; q/p , \phi_D$
L	$(\bar{c}_R u_L)(\bar{c}_L u_R)$	6.2			10^{-8}	$\Delta m_D; q/p , \phi_D$
		urc.	INC rei	move	-6	$\Delta_{a}, \mathcal{S}_{\phi K_{S}}$
		in	nmunit	ies		C C
			manic		5	
	$(\overline{h} \rightarrow)(\overline{l} \rightarrow)$	э. (X	10-	1.3	X 10	Ame
C	$(\bar{t}_L \gamma^\mu u_L)^2$					same sign <i>t</i> 's
		$1.7 imes 10^4$				$Br\left(\mu ightarrow e\gamma ight)$
	$L_i 0' = c_{Rj} \dots \mu_{\nu}$	3.3×10^2				$Dr(au o \mu \gamma)$
_						$Br\left(au ightarrow e\gamma ight)$
$(\bar{\mu}$	$\gamma^{\mu}P_{L}e)\left(\bar{u}\gamma_{\mu}P_{L}u\right)$	$1.9 imes 10^2$				$\frac{\sigma(\mu^- \overline{Ti \to e^- Ii})}{\sigma(\mu^- \overline{Ti \to capture})}$

Aligning away NP & the power of the D system

The bounds from $z_{sd,cu}^4$ are much more severe.

However,
$$z_{sd}^4 \subset (1, 8, 1, 8), z_{cu}^4 \subset (8, 1, 8, 1)$$

Have singlet part which can be aligned with SM, $Y_U^{\dagger}Y_U$, $Y_D^{\dagger}Y_D$.

On the other hand assuming $SU(2)_L z_{sd,cu}$ expected to have a common origin, z_Q .

Cannot align Z_Q simultaneously with both $Y_U Y_U^{\dagger} \& Y_D Y_D^{\dagger}$.

Nir (07); Blum, Grossman, Nir, GP (09)

Combining $K - \bar{K} \& D - \bar{D}$ mixing to constrain NP flavor structure

Two generation covariant description

Gedalia, Mannelli & GP (10);

Assuming $SU(2)_L$: $\frac{1}{\Lambda_{\rm NP}^2} (\overline{Q_{Li}}(X_Q)_{ij}\gamma_\mu Q_{Lj}) (\overline{Q_{Li}}(X_Q)_{ij}\gamma^\mu Q_{Lj}),$

 X_Q is 2x2 Hermitian matrix, can be described as a vector in SU(2) 3D flavor space.

$$|\vec{A}| \equiv \sqrt{\frac{1}{2}} \operatorname{tr}(A^2), \quad \vec{A} \cdot \vec{B} \equiv \frac{1}{2} \operatorname{tr}(AB), \quad \vec{A} \times \vec{B} \equiv -\frac{i}{2} [A, B],$$
$$\cos(\theta_{AB}) \equiv \frac{\vec{A} \cdot \vec{B}}{|\vec{A}||\vec{B}|} = \frac{\operatorname{tr}(AB)}{\sqrt{\operatorname{tr}(A^2)\operatorname{tr}(B^2)}}.$$

Space can be span via SM Yukawas (useful for CPV, see later):

$$\mathcal{A}_u \equiv (Y_u Y_u^{\dagger})_{t\!/\!r} \quad \mathcal{A}_d \equiv (Y_d Y_d^{\dagger})_{t\!/\!r}$$

Two generation covariance description, cont'

$$\hat{\mathcal{A}}_{u,d} \equiv \frac{\mathcal{A}_{u,d}}{|\mathcal{A}_{u,d}|}, \quad \hat{J} \equiv \frac{\mathcal{A}_d \times \mathcal{A}_u}{|\mathcal{A}_d \times \mathcal{A}_u|}, \quad \hat{J}_{u,d} \equiv \hat{\mathcal{A}}_{u,d} \times \hat{J}.$$

The contribution of X_Q to $K^0 - \overline{K^0}$ mixing, Δm_K , given by the solid blue line. In the down mass basis, $\hat{\mathcal{A}}_d$ corresponds to σ_3 , \hat{J} is σ_2 and \hat{J}_d is σ_1 .

Assuming
$$SU(2)_L$$
: $\frac{1}{\Lambda_{NP}^2}(\overline{Q_{Li}}(X_Q)_{ij}\gamma_\mu Q_{Lj})(\overline{Q_{Li}}(X_Q)_{ij}\gamma^\mu Q_{Lj}),$

Special role of "CPV" direction

Notice that:

A 2-gen' case, 3 adjoints yield CPV: $J = \text{Tr} \left\{ X \left[Y_D Y_D^{\dagger}, Y_U Y_U^{\dagger} \right] \right\}$ Projection of X_Q onto \hat{J} is measuring the physical CPV phase. $\hat{J}_d(\sigma_1)$ X_Q $\hat{J}_d(\sigma_1)$ $\hat{J}_d(\sigma_1)$ $\hat{J}_d(\sigma_1)$ $\hat{J}_d(\sigma_1)$ $\hat{J}_d(\sigma_1)$ $\hat{J}_d(\sigma_1)$ $\hat{J}_d(\sigma_2)$ $\hat{J}_d(\sigma_1)$ $\hat{J}_d(\sigma_2)$ $\hat{J}_d(\sigma_3)$

Adding constraints from CPV

$$\frac{C_1}{\Lambda_{\rm NP}^2} O_1 = \frac{1}{\Lambda_{\rm NP}^2} \left[\overline{Q}_i(X_Q)_{ij} \gamma_\mu Q_j \right] \left[\overline{Q}_i(X_Q)_{ij} \gamma^\mu Q_j \right] ,$$

$$\left| C_1^{D,K} \right| = \left| X_Q \times \hat{A}_{Q^u,Q^d} \right|^2 \qquad (\text{Sorry } \mathcal{A}_{u,d} \equiv A_{Q^u,Q^d})$$

$$\stackrel{\hat{J}(\sigma_2)}{\underbrace{\int}_{\mathcal{A}_{Q^d}} \underbrace{\int}_{\mathcal{A}_{Q^d}} \underbrace{\int}_{\mathcal{A}_{Q^d}}$$

Finding the weakest robust bound, no CPV

$$C_{1}^{K} = L^{2} \left[\left(X^{J} \right)^{2} + \left(X^{J_{d}} \right)^{2} \right],$$

$$C_{1}^{D} = \frac{L^{2}}{2} \left[2 \left(X^{J} \right)^{2} + \left(X^{d} \right)^{2} + \left(X^{J_{d}} \right)^{2} + \left(\left(X^{J_{d}} \right)^{2} - \left(X^{d} \right)^{2} \right) \cos(4\theta_{\rm C}) + 2X^{d} X^{J_{d}} \sin(4\theta_{\rm C}) \right]$$

 $L = |X_Q| = (X_Q^2 - X_Q^1)/2$, a flavor diagonal quantity.

Finding the weakest robust bound, with CPV

The weakest upper bound on L coming from flavor and CPV in the K and D systems, as a function of the CP violating parameter X^J , assuming $\Lambda_{\rm NP} = 1$ TeV.

SUSY implications, naively looks like alignment is dead!!

What is
$$X_Q$$
 in the SUSY case?

$$\frac{m_{\tilde{Q}_2} - m_{\tilde{Q}_1}}{m_{\tilde{Q}_2} + m_{\tilde{Q}_1}} \le \begin{cases} 0.034 & \text{maximal phases} \\ 0.27 & \text{vanishing phases} \end{cases}$$

(squark doublets, 1TeV)

Blum-Grossman-Nir-Perez (09)

With phases, first 2 gen' squark need to have almost equal masses. Looks like squark anarchy/alignment is dead!

How do successful alignment models look like?

- The maximal phase case does not correspond to an alignment model.
- Alignment makes both real and imaginary parts small.

Imaginary part is universal => successful alignment models =>
small physical CP phase!
Gedalia, Kamenik, Ligeti & GP (12)

CP conserving constraints count => weaker cleases for the second secon

from electroweak vacaum stat y motivates is to find a mechanism that would acco for the electroweak vacaum stat of the totate heavy dinake the best of the tradition of a motivate of the state of the s

(eternal inflation, string landscape).

(non) Degeneracy of Squarks

- No strong degeneracy required!
- Ex.: $m_{\tilde{g}}$ =1.3 TeV, $m_{\tilde{Q}_1}$ =550 GeV, $m_{\tilde{Q}_2}$ =950 GeV
- This can be generated by*: Dine, Kagan & Samuel (90); Nir & Raz (02).
 - Anarchy at the SUSY breaking mediation scale
 - SUSY renormalization group flow to the TeV scale
 - Can lead to modest level of degeneracy

Back to $D - \bar{D}$ mixing

Two questions on CPV in D mixing (3 slides)

So within successful alignment models can we say something

generic on CPV in D mixing? (& how to go beyond LO in δ_Q^{12})

Kadosh, Paradisi & GP, in progress.

\diamond Can we robustly bound the SM CPV in D mixing?

Grossman, Kagan, Ligeti, GP & Petrov, in prep'.

Alignment: upper bound on CPV in D mixing

Kadosh, Paradisi & GP, in progress.

In complete alignment limit no CPV: $[\tilde{m}_Q^2, Y_d Y_d^{\dagger}] = 0$

 \diamond Min' alignment with Y_d just to saturate ϵ_K , Δm_D : (switching to MIA)

 $\epsilon_K \propto \Im \left(\delta^d_{LL} \right)_{12} \Re \left(\delta^d_{LL} \right)_{12}$, in alignment: $\Im \left(\delta^d_{LL} \right)_{12} \sim \Re \left(\delta^d_{LL} \right)_{12} \equiv \delta_{\epsilon_K} \sim 1\%$

Im part of
$$D - \bar{D} \propto 2\lambda_{\rm C} \, \delta_Q^{12} \Im \left(\delta_{LL}^d \right)_{12} \approx 2\lambda_{\rm C} \, \delta_Q^{12} \, \delta_{\epsilon_K}$$

 $\Delta m_D \propto 4\lambda_{\rm C}^2 \, \left(\delta_Q^{12} \right)^2 \qquad \text{(both for } 2\lambda_{\rm C} \delta_Q^{12} \gg \delta_{\epsilon_K} \text{)}$
 \mathbf{I}

CPV in $D - \bar{D}$: $\delta_{\epsilon_K} / 2\lambda_C \, \delta_Q^{12} \lesssim 10\% \times \left(0.3/\delta_Q^{12}\right)$

LHCb soon (HCP?) will start testing alignment paradigm! ATLAS+CMS implications discussed below.

SM: upper bound on absorptive CPV in D mixing

are used to
$$\phi_{12}^{\Gamma} \equiv \operatorname{Im}\left(\frac{\delta\Gamma_{12}}{\Gamma_{12}^{0}}\right) = \frac{1}{2}\operatorname{arg}\left[\frac{\Gamma_{12}}{\Gamma_{12}^{*}}\left(\frac{A_{f}}{\overline{A}_{f}}\right)^{2}\right] \qquad \qquad \phi_{12}^{\Gamma} = 2 |\lambda_{b}\lambda_{s}| \sin\gamma \frac{\Gamma_{sd}}{\Gamma_{12}^{0}} \frac{\Gamma_{sd} - \Gamma_{dd}}{\Gamma_{sd}} + O(\lambda_{b}^{2}),$$

t.

 $|\phi_{12}^{\Gamma}| = 0.008 \times y_{sd} \times |\epsilon_d^{\Gamma}|, \quad \epsilon_d^{\Gamma} \equiv \frac{\Gamma_{dd} - \Gamma_{sd}}{\Gamma_{sd}}, \quad \text{SU(3) breaking } \epsilon_d^{\Gamma} \lesssim 1 \qquad y_{xy} \equiv |\Gamma_{xy}/\Gamma|,$

Unitarity: $y_{sd} \leq 1 \quad \Longrightarrow \quad \left(|\phi_{12}^{\Gamma}| \lesssim 0.008 \times |\epsilon_d^{\Gamma}| \right).$

SM: upper bound on absorptive CPV in D mixing

Grossman, Kagan, Ligeti, GP & Petrov, in prep'.

are

t.

D mixing absorptive CPV, measured? affected by NP?

Grossman, Kagan, Ligeti, GP & Petrov, in prep'. $\cong d$ $\simeq 1$

 $\phi \& \phi_{12}^{\Gamma}$: quasi-universal CP phases, related to final states without CP in decay, $\left|\frac{\bar{A}_f}{A_f}\right| \simeq 1$

$$\left|\frac{q}{p}\right|^{2}e^{-2i\phi} = \frac{(x_{12}/y_{12})e^{-i\phi_{12}} - i}{(x_{12}/y_{12})e^{i\phi_{12}} - i}e^{-2i\phi_{12}^{\Gamma}} \qquad y_{12} \equiv \frac{|\Gamma_{12}|}{\Gamma}, \ x_{12} \equiv \frac{2|M_{12}|}{\Gamma}, \ \phi_{12} \equiv \arg\left(\frac{M_{12}}{\Gamma_{12}}\right)e^{-i\phi_{12}} = \frac{1}{\Gamma}e^{-2i\phi_{12}}$$

• Modified model indep' bound:

$$\tan(\phi - \phi_{12}^{\Gamma}) = -A_m x/y$$
 $A_m = (|q/p|^2 - 1)/(|q/p|^2 + 1)$
LHCb precisely measure x, y, ϕ, A_m & test for presence of ϕ_{12}^{Γ}

 CPV light hidden sector that couples to D & decay to SM => quasi universal absorptive phase, can be observed as above.

However is this consistence 0.10° LHC data?? Mahbubani, Papucci, GP, Ruderman & Weller, to appear.

 $m_{\tilde{g}}=1.3\,\mathrm{TeV},\,m_{\tilde{Q}_1}=550\,\mathrm{GeV},\,m_{\tilde{Q}_2}=950\,\mathrm{GeV}$

Limits affected by:

- squark multiplicity
- signal efficiencies

PDFs

How do limits change?

200

300

400

600

00 500 6 $m_{
m squark}[
m GeV]$ 700

800

Cross-sections vs. mass $\sigma(pp \rightarrow \tilde{u}_R \tilde{u}_R^*) \propto \frac{1}{m^6}$ (roughly) $\int_{\frac{1}{2}}^{\frac{1}{2}} \int_{0,1}^{0,0} \int_{0,01}^{6} pb$ NLO xsec (Prospino)

 $8/m^6 = 6/m_H^6 + 2/m_L^6$ $(m_L/m_H) = (1/4)^{1/6} \sim 0.8$

Efficiencies

Signal efficiency falls very rapidly with decreasing squark mass

meff is the scalar sum of transverse momenta of the leading N jets with E^{miss}.

Below \sim 600 GeV $\epsilon\sigma=1$

In fact, all 4 flavor "sea" squarks can be rather light!

Conclusions

Minimalism: up flavor & CPV might hold the key.

Alignment: non degeneracy is viable: testable at LHC(b).

SM: new (preliminary) robust bound on absorptive D-D CPV; sensitive to "dark photon / hidden valley" models. (The holy grail being the dispersive remains unconstrained)

Light (non-"sups") squarks maybe buried (regardless of alignment).