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Prologue, current status of Supersymmetry
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Figure 7: 95% CLs exclusion limits obtained by using the signal region with the best expected sensitiv-
ity at each point in a simplified MSSM scenario with only strong production of gluinos and first- and
second-generation squarks, and direct decays to jets and neutralinos (left); and in the (m0 ; m1/2) plane of
MSUGRA/CMSSM for tan � = 10, A0 = 0 and µ > 0 (right). The red lines show the observed limits, the
dashed-blue lines the median expected limits, and the dotted blue lines the ±1� variation on the expected
limits. ATLAS EPS 2011 limits are from [17] and LEP results from [59].

7 Summary

This note reports a search for new physics in final states containing high-pT jets, missing transverse
momentum and no electrons or muons, based on the full dataset (4.7 fb�1) recorded by the ATLAS
experiment at the LHC in 2011. Good agreement is seen between the numbers of events observed in the
data and the numbers of events expected from SM processes.

The results are interpreted in both a simplified model containing only squarks of the first two genera-
tions, a gluino octet and a massless neutralino, as well as in MSUGRA/CMSSM models with tan � = 10,
A0 = 0 and µ > 0. In the simplified model, gluino masses below 940 GeV and squark masses be-
low 1380 GeV are excluded at the 95% confidence level. In the MSUGRA/CMSSM models, values of
m1/2 < 300 GeV are excluded for all values of m0, and m1/2 < 680 GeV for low m0. Equal mass squarks
and gluinos are excluded below 1400 GeV in both scenarios.
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Light squarks > 1.4 TeV?

Assumptions?

What is driving the limit?

Holes in the net?
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Light squarks > 1.4 TeV?

Assumptions?

What is driving the limit?

Holes in the net?

Bounds from ATLAS & CMS: 

Putting stops aside, what are the bounds on first 2-
generation “light” squarks?         

See later: this bound is prejudiced, relaxing assumption may 
open window to SUSY & non-trivial flavor info’.
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♦ Non-degenerate light (burried) squark @ the LHC.

Outline

♦ Introduction, importance of uFCNC.

♦ Alignment & CP violation (CPV) in D mixing.

♦ New robust bound on standard model (SM) D mixing  

     absorptive CPV & dark photon/hidden valley models. 

♦ Conclusions.
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Effective Field Theory (EFT)
Model independent approach

 microscopic dynamics above few x 100 GeV is unknown.

Can parameterize our ignorance by set of higher dim’ 
operators suppressed by the scale of new physics (NP).

Almost any NP model can be described  at low E by this set 
of operators (above Op’ are most dangerous & yet clean).

H�S,C,B=2
e⇥ =

5⇤

i=1

�
Osd

i /�2 + Ocu
i /�2 + Ob,sd

i /�2
⇥

(see e.g.: UTFit, 0707.03535)
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�F = 2 status
Isidori, Nir & GP (10) 

Operator Bounds on ⇥ in TeV (cij = 1) Bounds on cij (⇥ = 1 TeV) Observables

Re Im Re Im

(s̄L�µdL)2 9.8� 102 1.6� 104 9.0� 10�7 3.4� 10�9 �mK ; ⇥K

(s̄R dL)(s̄LdR) 1.8� 104 3.2� 105 6.9� 10�9 2.6� 10�11 �mK ; ⇥K

(c̄L�µuL)2 1.2� 103 2.9� 103 5.6� 10�7 1.0� 10�7 �mD; |q/p|, ⇧D

(c̄R uL)(c̄LuR) 6.2� 103 1.5� 104 5.7� 10�8 1.1� 10�8 �mD; |q/p|, ⇧D

(b̄L�µdL)2 5.1� 102 9.3� 102 3.3� 10�6 1.0� 10�6 �mBd ; S�KS

(b̄R dL)(b̄LdR) 1.9� 103 3.6� 103 5.6� 10�7 1.7� 10�7 �mBd ; S�KS

(b̄L�µsL)2 1.1� 102 7.6� 10�5 �mBs

(b̄R sL)(b̄LsR) 3.7� 102 1.3� 10�5 �mBs

(t̄L�µuL)2

TABLE I: Bounds on representative dimension-six �F = 2 operators. Bounds on ⇥ are quoted assuming an

e⇤ective coupling 1/⇥2, or, alternatively, the bounds on the respective cij ’s assuming ⇥ = 1 TeV. Observables

related to CPV are separated from the CP conserving ones with semicolons. In the Bs system we only quote

a bound on the modulo of the NP amplitude derived from �mBs (see text). For the definition of the CPV

observables in the D system see Ref. [15].

(3.4) where there is an independent constraint on the level of degeneracy [16]. We here briefly

explain this point.

Consider operators of the form

1
⇥2

NP

(QLi(XQ)ij�µQLj)(QLi(XQ)ij�
µQLj), (3.6)

where XQ is an hermitian matrix. Without loss of generality, we can choose to work in the basis

defined in Eq. (2.10):

Y d = ⌅d, Y u = V †⌅u, XQ = V †
d ⌅QVd, (3.7)

where ⌅Q is a diagonal real matrix, and Vd is a unitary matrix which parametrizes the misalignment

of the operator (3.6) with the down mass basis.

The experimental constraints that are most relevant to our study come from K0–K0 and D0–D0

mixing, which involve only the first two generation quarks. When studying new physics e⇤ects,

ignoring the third generation is often a good approximation to the physics at hand. Indeed, even

when the third generation does play a role, our two generation analysis is applicable as long as there

are no strong cancellations with contributions related to the third generation. In a two generation

framework, V depends on a single mixing angle (the Cabibbo angle ⇤c), while Vd depends on a

9

same sign t’s
Probably bound already 

exists due to LHCb, CMS 
indep’ confirmation?
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Adding Leptons?

Flavor anecdotes

Daniel Grossman, Yonit Hochberg, Gilad Perez and Yotam Soreq

I. BOUNDS ON EFFECTIVE OPERATORS

Operator cij = 1 [TeV] LMFV [TeV] GMFV [TeV] Observables

Re Im Re Im

(s̄LγµdL)2 9.8 × 102 1.6 × 104 4.0 × 10−1 5.6 4.0 × 10−1 5.6 ∆mK ; εK

(s̄RdL)2 7.7 × 103 1.3 × 105 1.3 × 10−3 3.0 × 10−2 3.6 × 10−2 6.9 × 10−1 ∆mK ; εK

(s̄R dL)(s̄LdR) 1.7 × 104 3.0 × 105 < GeV 8.8 × 10−2 1.3 × 10−2 2.5 × 10−1 ∆mK ; εK

(c̄LγµuL)2 1.2 × 103 2.8 × 103 < GeV < GeV 2.4 × 10−1 < GeV ∆mD; |q/p|, φD

(c̄R uL)2 3.2 × 103 7.4 × 103 − − − − ∆mD; |q/p|, φD

(c̄R uL)(c̄LuR) 6.2 × 103 1.5 × 104 − − − − ∆mD; |q/p|, φD

(b̄LγµdL)2 5.1 × 102 9.3 × 102 4.8 4.6 × 10−1 4.8 8.7 ∆mBd
; SψKS

(b̄R dL)2 1.0 × 103 1.8 × 103 3.6 × 10−1 6.7 × 10−1 7.9 15 ∆mBd
; SψKS

(b̄R dL)(b̄LdR) 1.9 × 103 3.5 × 103 1.3 × 10−2 < GeV 3.5 × 10−1 6.7 × 10−1 ∆mBd
; SψKS

(b̄LγµsL)2 1.1 × 102 4.6 5 ∆mBs

(b̄R sL)2 2.1 × 102 5.2 × 10−3 1.3 × 10−1 ∆mBs

(b̄R sL)(b̄LsR) 4.0 × 102 6.9 × 10−2 1.7 ∆mBs

L̄iσµνeRjHFµν

1.7 × 104 Br (µ → eγ)

3.3 × 102 Br (τ → µγ)

2.6 × 102 Br (τ → eγ)

(µ̄γµPLe) (ūγµPLu) 1.9 × 102 σ(µ−Ti→e−Ti)
σ(µ−Ti→capture)

TABLE I: Bounds on the scale Λ of representative dimension-six ∆F = 2 operators in the quark and lepton

sectors. Bounds on Λ are quoted assuming an effective coupling cij/Λ2, where the coefficients are either

generic or structured via linear MFV (LMFV) or GMFV. Observables related to CPV are separated from

the CP conserving ones with semicolons. In the Bs system we only quote a bound on the modulo of the NP

amplitude derived from ∆mBs
. For the definition of the CPV observables in the D system see Ref. [1]. The

bounds in the lepton sector are on the modulo of the NP amplitude.

The effects of new physics at a high energy scale (Λ $ mW ) on the various meson mixing

systems can be studied in an effective operator language. A complete set of four quark operators

1

Operator Bounds on ⇥ in TeV (cij = 1) Bounds on cij (⇥ = 1 TeV) Observables

Re Im Re Im

(s̄L�µdL)2 9.8� 102 1.6� 104 9.0� 10�7 3.4� 10�9 �mK ; ⇥K

(s̄R dL)(s̄LdR) 1.8� 104 3.2� 105 6.9� 10�9 2.6� 10�11 �mK ; ⇥K

(c̄L�µuL)2 1.2� 103 2.9� 103 5.6� 10�7 1.0� 10�7 �mD; |q/p|, ⇧D

(c̄R uL)(c̄LuR) 6.2� 103 1.5� 104 5.7� 10�8 1.1� 10�8 �mD; |q/p|, ⇧D

(b̄L�µdL)2 5.1� 102 9.3� 102 3.3� 10�6 1.0� 10�6 �mBd ; S�KS

(b̄R dL)(b̄LdR) 1.9� 103 3.6� 103 5.6� 10�7 1.7� 10�7 �mBd ; S�KS

(b̄L�µsL)2 1.1� 102 7.6� 10�5 �mBs

(b̄R sL)(b̄LsR) 3.7� 102 1.3� 10�5 �mBs

(t̄L�µuL)2

TABLE I: Bounds on representative dimension-six �F = 2 operators. Bounds on ⇥ are quoted assuming an

e⇤ective coupling 1/⇥2, or, alternatively, the bounds on the respective cij ’s assuming ⇥ = 1 TeV. Observables

related to CPV are separated from the CP conserving ones with semicolons. In the Bs system we only quote

a bound on the modulo of the NP amplitude derived from �mBs (see text). For the definition of the CPV

observables in the D system see Ref. [15].

(3.4) where there is an independent constraint on the level of degeneracy [16]. We here briefly

explain this point.

Consider operators of the form

1
⇥2

NP

(QLi(XQ)ij�µQLj)(QLi(XQ)ij�
µQLj), (3.6)

where XQ is an hermitian matrix. Without loss of generality, we can choose to work in the basis

defined in Eq. (2.10):

Y d = ⌅d, Y u = V †⌅u, XQ = V †
d ⌅QVd, (3.7)

where ⌅Q is a diagonal real matrix, and Vd is a unitary matrix which parametrizes the misalignment

of the operator (3.6) with the down mass basis.

The experimental constraints that are most relevant to our study come from K0–K0 and D0–D0

mixing, which involve only the first two generation quarks. When studying new physics e⇤ects,

ignoring the third generation is often a good approximation to the physics at hand. Indeed, even

when the third generation does play a role, our two generation analysis is applicable as long as there

are no strong cancellations with contributions related to the third generation. In a two generation

framework, V depends on a single mixing angle (the Cabibbo angle ⇤c), while Vd depends on a

9

same sign t’s
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ignoring the third generation is often a good approximation to the physics at hand. Indeed, even
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�F = 2 status
Isidori, Nir & GP, Ann. Rev. Nucl. Part. Sci.  (10) 

Operator
Bounds on ⇥ in TeV (cij

= 1) Bounds on cij
(⇥ = 1 TeV) Observab

les

Re
Im

Re
Im

(s̄L�µdL)2 9.8� 102
1.6� 104

9.0� 10�
7 3.4� 10�

9
�mK; ⇥K

(s̄R dL)(s̄LdR) 1.8� 104
3.2� 105

6.9� 10�
9 2.6� 10�

11
�mK; ⇥K

(c̄L�µuL)2 1.2� 103
2.9� 103

5.6� 10�
7 1.0� 10�

7 �mD; |q/p|,⇧D

(c̄R uL)(c̄LuR) 6.2� 103
1.5� 104

5.7� 10�
8 1.1� 10�

8 �mD; |q/p|,⇧D

(̄bL�µdL)2 5.1� 102
9.3� 102

3.3� 10�
6 1.0� 10�

6 �mBd
; S�KS

(̄bR dL)(̄bLdR) 1.9� 103
3.6� 103

5.6� 10�
7 1.7� 10�

7 �mBd
; S�KS

(̄bL�µ sL)2
1.1� 102

7.6� 10�
5

�mBs

(̄bR sL)(̄bLsR)
3.7� 102

1.3� 10�
5

�mBs

(t̄L�µuL)2

TABLE I: Bounds on representative
dimension-six �F = 2 operator

s. Bounds on ⇥ are quoted assuming an

e⇤ective
coupling 1/⇥

2 , or, altern
atively

, the bounds on the respective
cij’s assuming ⇥ = 1 TeV. Observab

les

related
to CPV are separated

from the CP conserving ones with semicolon
s. In the Bs system we only quote

a bound on the modulo of the NP amplitude derived
from �mBs

(see text). For the definition of the CPV

observab
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ons with contributions related
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n. In a two generatio
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What do we conclude ?
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♦ SM mechanism to induce flavor & CPV 

is successful.

♦ Hint for underlying structure of microscopic laws of nature.

♦ Bounds are too strong to allow for NP to be directly probed.

X
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Alternatively, assume 1TeV & bound coefficients
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What kind of NP survives?

(spoiled by RGE)

♦ Flavor blind/universal NP, for sure, but very restrictive.

♦ NP flavor structure is controlled by SM one, effective minimal 

flavor violation (MFV) => more exciting than naively guessed

♦ Maybe NP is anarchic but aligned. Nir-Seiberg (92).

9



The importance of up-type FCNC
What if down/lepton alignment is at work ?

10



Operator Bounds on ⇥ in TeV (cij = 1) Bounds on cij (⇥ = 1 TeV) Observables

Re Im Re Im

(s̄L�µdL)2 9.8� 102 1.6� 104 9.0� 10�7 3.4� 10�9 �mK ; ⇥K

(s̄R dL)(s̄LdR) 1.8� 104 3.2� 105 6.9� 10�9 2.6� 10�11 �mK ; ⇥K

(c̄L�µuL)2 1.2� 103 2.9� 103 5.6� 10�7 1.0� 10�7 �mD; |q/p|, ⇧D

(c̄R uL)(c̄LuR) 6.2� 103 1.5� 104 5.7� 10�8 1.1� 10�8 �mD; |q/p|, ⇧D

(b̄L�µdL)2 5.1� 102 9.3� 102 3.3� 10�6 1.0� 10�6 �mBd ; S�KS

(b̄R dL)(b̄LdR) 1.9� 103 3.6� 103 5.6� 10�7 1.7� 10�7 �mBd ; S�KS

(b̄L�µsL)2 1.1� 102 7.6� 10�5 �mBs

(b̄R sL)(b̄LsR) 3.7� 102 1.3� 10�5 �mBs

(t̄L�µuL)2

TABLE I: Bounds on representative dimension-six �F = 2 operators. Bounds on ⇥ are quoted assuming an

e⇤ective coupling 1/⇥2, or, alternatively, the bounds on the respective cij ’s assuming ⇥ = 1 TeV. Observables

related to CPV are separated from the CP conserving ones with semicolons. In the Bs system we only quote

a bound on the modulo of the NP amplitude derived from �mBs (see text). For the definition of the CPV

observables in the D system see Ref. [15].

(3.4) where there is an independent constraint on the level of degeneracy [16]. We here briefly

explain this point.

Consider operators of the form

1
⇥2

NP

(QLi(XQ)ij�µQLj)(QLi(XQ)ij�
µQLj), (3.6)

where XQ is an hermitian matrix. Without loss of generality, we can choose to work in the basis

defined in Eq. (2.10):

Y d = ⌅d, Y u = V †⌅u, XQ = V †
d ⌅QVd, (3.7)

where ⌅Q is a diagonal real matrix, and Vd is a unitary matrix which parametrizes the misalignment

of the operator (3.6) with the down mass basis.

The experimental constraints that are most relevant to our study come from K0–K0 and D0–D0

mixing, which involve only the first two generation quarks. When studying new physics e⇤ects,

ignoring the third generation is often a good approximation to the physics at hand. Indeed, even

when the third generation does play a role, our two generation analysis is applicable as long as there

are no strong cancellations with contributions related to the third generation. In a two generation

framework, V depends on a single mixing angle (the Cabibbo angle ⇤c), while Vd depends on a

9

Flavor anecdotes

Daniel Grossman, Yonit Hochberg, Gilad Perez and Yotam Soreq

I. BOUNDS ON EFFECTIVE OPERATORS

Operator cij = 1 [TeV] LMFV [TeV] GMFV [TeV] Observables

Re Im Re Im

(s̄LγµdL)2 9.8 × 102 1.6 × 104 4.0 × 10−1 5.6 4.0 × 10−1 5.6 ∆mK ; εK

(s̄RdL)2 7.7 × 103 1.3 × 105 1.3 × 10−3 3.0 × 10−2 3.6 × 10−2 6.9 × 10−1 ∆mK ; εK

(s̄R dL)(s̄LdR) 1.7 × 104 3.0 × 105 < GeV 8.8 × 10−2 1.3 × 10−2 2.5 × 10−1 ∆mK ; εK

(c̄LγµuL)2 1.2 × 103 2.8 × 103 < GeV < GeV 2.4 × 10−1 < GeV ∆mD; |q/p|, φD

(c̄R uL)2 3.2 × 103 7.4 × 103 − − − − ∆mD; |q/p|, φD

(c̄R uL)(c̄LuR) 6.2 × 103 1.5 × 104 − − − − ∆mD; |q/p|, φD

(b̄LγµdL)2 5.1 × 102 9.3 × 102 4.8 4.6 × 10−1 4.8 8.7 ∆mBd
; SψKS

(b̄R dL)2 1.0 × 103 1.8 × 103 3.6 × 10−1 6.7 × 10−1 7.9 15 ∆mBd
; SψKS

(b̄R dL)(b̄LdR) 1.9 × 103 3.5 × 103 1.3 × 10−2 < GeV 3.5 × 10−1 6.7 × 10−1 ∆mBd
; SψKS

(b̄LγµsL)2 1.1 × 102 4.6 5 ∆mBs

(b̄R sL)2 2.1 × 102 5.2 × 10−3 1.3 × 10−1 ∆mBs

(b̄R sL)(b̄LsR) 4.0 × 102 6.9 × 10−2 1.7 ∆mBs

L̄iσµνeRjHFµν

1.7 × 104 Br (µ → eγ)

3.3 × 102 Br (τ → µγ)

2.6 × 102 Br (τ → eγ)

(µ̄γµPLe) (ūγµPLu) 1.9 × 102 σ(µ−Ti→e−Ti)
σ(µ−Ti→capture)

TABLE I: Bounds on the scale Λ of representative dimension-six ∆F = 2 operators in the quark and lepton

sectors. Bounds on Λ are quoted assuming an effective coupling cij/Λ2, where the coefficients are either

generic or structured via linear MFV (LMFV) or GMFV. Observables related to CPV are separated from

the CP conserving ones with semicolons. In the Bs system we only quote a bound on the modulo of the NP

amplitude derived from ∆mBs
. For the definition of the CPV observables in the D system see Ref. [1]. The

bounds in the lepton sector are on the modulo of the NP amplitude.

The effects of new physics at a high energy scale (Λ $ mW ) on the various meson mixing

systems can be studied in an effective operator language. A complete set of four quark operators

1

same sign t’s

The importance of up-type FCNC
What if down/lepton alignment is at work ?

10



Operator Bounds on ⇥ in TeV (cij = 1) Bounds on cij (⇥ = 1 TeV) Observables

Re Im Re Im

(s̄L�µdL)2 9.8� 102 1.6� 104 9.0� 10�7 3.4� 10�9 �mK ; ⇥K

(s̄R dL)(s̄LdR) 1.8� 104 3.2� 105 6.9� 10�9 2.6� 10�11 �mK ; ⇥K

(c̄L�µuL)2 1.2� 103 2.9� 103 5.6� 10�7 1.0� 10�7 �mD; |q/p|, ⇧D

(c̄R uL)(c̄LuR) 6.2� 103 1.5� 104 5.7� 10�8 1.1� 10�8 �mD; |q/p|, ⇧D

(b̄L�µdL)2 5.1� 102 9.3� 102 3.3� 10�6 1.0� 10�6 �mBd ; S�KS

(b̄R dL)(b̄LdR) 1.9� 103 3.6� 103 5.6� 10�7 1.7� 10�7 �mBd ; S�KS

(b̄L�µsL)2 1.1� 102 7.6� 10�5 �mBs

(b̄R sL)(b̄LsR) 3.7� 102 1.3� 10�5 �mBs

(t̄L�µuL)2

TABLE I: Bounds on representative dimension-six �F = 2 operators. Bounds on ⇥ are quoted assuming an

e⇤ective coupling 1/⇥2, or, alternatively, the bounds on the respective cij ’s assuming ⇥ = 1 TeV. Observables

related to CPV are separated from the CP conserving ones with semicolons. In the Bs system we only quote

a bound on the modulo of the NP amplitude derived from �mBs (see text). For the definition of the CPV

observables in the D system see Ref. [15].

(3.4) where there is an independent constraint on the level of degeneracy [16]. We here briefly

explain this point.

Consider operators of the form

1
⇥2

NP

(QLi(XQ)ij�µQLj)(QLi(XQ)ij�
µQLj), (3.6)

where XQ is an hermitian matrix. Without loss of generality, we can choose to work in the basis

defined in Eq. (2.10):

Y d = ⌅d, Y u = V †⌅u, XQ = V †
d ⌅QVd, (3.7)

where ⌅Q is a diagonal real matrix, and Vd is a unitary matrix which parametrizes the misalignment

of the operator (3.6) with the down mass basis.

The experimental constraints that are most relevant to our study come from K0–K0 and D0–D0

mixing, which involve only the first two generation quarks. When studying new physics e⇤ects,

ignoring the third generation is often a good approximation to the physics at hand. Indeed, even

when the third generation does play a role, our two generation analysis is applicable as long as there

are no strong cancellations with contributions related to the third generation. In a two generation

framework, V depends on a single mixing angle (the Cabibbo angle ⇤c), while Vd depends on a

9

Flavor anecdotes

Daniel Grossman, Yonit Hochberg, Gilad Perez and Yotam Soreq

I. BOUNDS ON EFFECTIVE OPERATORS

Operator cij = 1 [TeV] LMFV [TeV] GMFV [TeV] Observables

Re Im Re Im

(s̄LγµdL)2 9.8 × 102 1.6 × 104 4.0 × 10−1 5.6 4.0 × 10−1 5.6 ∆mK ; εK

(s̄RdL)2 7.7 × 103 1.3 × 105 1.3 × 10−3 3.0 × 10−2 3.6 × 10−2 6.9 × 10−1 ∆mK ; εK

(s̄R dL)(s̄LdR) 1.7 × 104 3.0 × 105 < GeV 8.8 × 10−2 1.3 × 10−2 2.5 × 10−1 ∆mK ; εK

(c̄LγµuL)2 1.2 × 103 2.8 × 103 < GeV < GeV 2.4 × 10−1 < GeV ∆mD; |q/p|, φD

(c̄R uL)2 3.2 × 103 7.4 × 103 − − − − ∆mD; |q/p|, φD

(c̄R uL)(c̄LuR) 6.2 × 103 1.5 × 104 − − − − ∆mD; |q/p|, φD

(b̄LγµdL)2 5.1 × 102 9.3 × 102 4.8 4.6 × 10−1 4.8 8.7 ∆mBd
; SψKS

(b̄R dL)2 1.0 × 103 1.8 × 103 3.6 × 10−1 6.7 × 10−1 7.9 15 ∆mBd
; SψKS

(b̄R dL)(b̄LdR) 1.9 × 103 3.5 × 103 1.3 × 10−2 < GeV 3.5 × 10−1 6.7 × 10−1 ∆mBd
; SψKS

(b̄LγµsL)2 1.1 × 102 4.6 5 ∆mBs

(b̄R sL)2 2.1 × 102 5.2 × 10−3 1.3 × 10−1 ∆mBs

(b̄R sL)(b̄LsR) 4.0 × 102 6.9 × 10−2 1.7 ∆mBs

L̄iσµνeRjHFµν

1.7 × 104 Br (µ → eγ)

3.3 × 102 Br (τ → µγ)

2.6 × 102 Br (τ → eγ)
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ignoring the third generation is often a good approximation to the physics at hand. Indeed, even

when the third generation does play a role, our two generation analysis is applicable as long as there

are no strong cancellations with contributions related to the third generation. In a two generation

framework, V depends on a single mixing angle (the Cabibbo angle ⇤c), while Vd depends on a
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I. BOUNDS ON EFFECTIVE OPERATORS

Operator cij = 1 [TeV] LMFV [TeV] GMFV [TeV] Observables

Re Im Re Im

(s̄LγµdL)2 9.8 × 102 1.6 × 104 4.0 × 10−1 5.6 4.0 × 10−1 5.6 ∆mK ; εK

(s̄RdL)2 7.7 × 103 1.3 × 105 1.3 × 10−3 3.0 × 10−2 3.6 × 10−2 6.9 × 10−1 ∆mK ; εK

(s̄R dL)(s̄LdR) 1.7 × 104 3.0 × 105 < GeV 8.8 × 10−2 1.3 × 10−2 2.5 × 10−1 ∆mK ; εK

(c̄LγµuL)2 1.2 × 103 2.8 × 103 < GeV < GeV 2.4 × 10−1 < GeV ∆mD; |q/p|, φD

(c̄R uL)2 3.2 × 103 7.4 × 103 − − − − ∆mD; |q/p|, φD

(c̄R uL)(c̄LuR) 6.2 × 103 1.5 × 104 − − − − ∆mD; |q/p|, φD

(b̄LγµdL)2 5.1 × 102 9.3 × 102 4.8 4.6 × 10−1 4.8 8.7 ∆mBd
; SψKS

(b̄R dL)2 1.0 × 103 1.8 × 103 3.6 × 10−1 6.7 × 10−1 7.9 15 ∆mBd
; SψKS

(b̄R dL)(b̄LdR) 1.9 × 103 3.5 × 103 1.3 × 10−2 < GeV 3.5 × 10−1 6.7 × 10−1 ∆mBd
; SψKS

(b̄LγµsL)2 1.1 × 102 4.6 5 ∆mBs

(b̄R sL)2 2.1 × 102 5.2 × 10−3 1.3 × 10−1 ∆mBs

(b̄R sL)(b̄LsR) 4.0 × 102 6.9 × 10−2 1.7 ∆mBs

L̄iσµνeRjHFµν

1.7 × 104 Br (µ → eγ)

3.3 × 102 Br (τ → µγ)

2.6 × 102 Br (τ → eγ)

(µ̄γµPLe) (ūγµPLu) 1.9 × 102 σ(µ−Ti→e−Ti)
σ(µ−Ti→capture)

TABLE I: Bounds on the scale Λ of representative dimension-six ∆F = 2 operators in the quark and lepton

sectors. Bounds on Λ are quoted assuming an effective coupling cij/Λ2, where the coefficients are either

generic or structured via linear MFV (LMFV) or GMFV. Observables related to CPV are separated from

the CP conserving ones with semicolons. In the Bs system we only quote a bound on the modulo of the NP

amplitude derived from ∆mBs
. For the definition of the CPV observables in the D system see Ref. [1]. The

bounds in the lepton sector are on the modulo of the NP amplitude.

The effects of new physics at a high energy scale (Λ $ mW ) on the various meson mixing

systems can be studied in an effective operator language. A complete set of four quark operators

1
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♦Down & lepton flavor violation 

[Nir & Seiberg (93);
Crappy: Fitzpatrick, GP & Randall (08);  
Csaki, GP, Surujon, & Weiler  (09)].

maybe removed via alignment, 
anarchic NP is diagonal in down/
charged-lepton mass basis.

♦General: dominant NP constraints coming from extended strong 
sector, need not “talk” to down & charged lepton sector: 
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Figure 12: Diagrams which cause flavor violation in models with arbitrary soft masses.

Fig. 5g and eq. (3.72)]. There are similar diagrams if the left-handed slepton mass matrix
m2

L has arbitrary off-diagonal entries. If m2
L or m2

e were “random”, with all entries of
comparable size, then the contributions to BR(µ → eγ) would be about 5 or 6 orders of
magnitude larger than the current experimental upper limit of 5×10−11, even if the sleptons
are as heavy as 1 TeV. Therefore the form of the slepton mass matrices must be severely
constrained.

There are also important experimental constraints on the squark (mass)2 matrices. The
strongest of these come from the neutral kaon system. The effective hamiltonian for K0 ↔
K

0 mixing gets contributions from the diagram in Fig. 12b, among others, if LMSSM
soft contains

(mass)2 terms which mix down squarks and strange squarks. The gluino-squark-quark
vertices in Fig. 12b are all fixed by supersymmetry to be of strong interaction strength;
there are similar diagrams in which the bino and winos are exchanged.54 If the squark and
gaugino masses are of order 1 TeV or less, one finds that limits on the parameters ∆mK and
εK appearing in the neutral kaon system effective hamiltonian severely restrict the amount
of down-strange squark mixing and CP-violating complex phases that one can tolerate in
the soft parameters.55 Considerably weaker, but still interesting, constraints come from
the D0, D

0 and B0, B
0 neutral meson systems, and the decay b → sγ.56 After the Higgs

scalar fields get VEVs, the au, ad, ae matrices contribute off-diagonal squark and slepton
(mass)2 terms [for example, d̃adQ̃Hd + c.c. → (ad)12〈H0

d〉s̃Ld̃∗R + c.c., etc.], so their form
is also strongly constrained by flavor-changing neutral current (FCNC) limits. There are
other significant constraints on CP-violating phases in the gaugino masses and (scalar)3 soft
couplings following from limits on the electric dipole moments of the neutron and electron.57

All of these potentially dangerous FCNC and CP-violating effects in the MSSM can be
evaded if one assumes (or can explain!) that supersymmetry breaking should be suitably
“universal”. In particular, one can suppose that the squark and slepton (mass)2 matrices
are flavor-blind. This means that they should each be proportional to the 3 × 3 identity
matrix in family space:

m2
Q = m2

Q1; m2
u = m2

u1; m2
d

= m2
d
1; m2

L = m2
L1; m2

e = m2
e1. (5.14)

If so, then all squark and slepton mixing angles are rendered trivial, because squarks and
sleptons with the same electroweak quantum numbers will be degenerate in mass and can
be rotated into each other at will. Supersymmetric contributions to FCNC processes will
therefore be very small in such an idealized limit, modulo the mixing due to au, ad, ae.
One can make the further assumption that the (scalar)3 couplings are each proportional to
the corresponding Yukawa coupling matrix:

au = Au0 yu; ad = Ad0 yd; ae = Ae0 ye. (5.15)
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there are similar diagrams in which the bino and winos are exchanged.54 If the squark and
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εK appearing in the neutral kaon system effective hamiltonian severely restrict the amount
of down-strange squark mixing and CP-violating complex phases that one can tolerate in
the soft parameters.55 Considerably weaker, but still interesting, constraints come from
the D0, D

0 and B0, B
0 neutral meson systems, and the decay b → sγ.56 After the Higgs

scalar fields get VEVs, the au, ad, ae matrices contribute off-diagonal squark and slepton
(mass)2 terms [for example, d̃adQ̃Hd + c.c. → (ad)12〈H0

d〉s̃Ld̃∗R + c.c., etc.], so their form
is also strongly constrained by flavor-changing neutral current (FCNC) limits. There are
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evaded if one assumes (or can explain!) that supersymmetry breaking should be suitably
“universal”. In particular, one can suppose that the squark and slepton (mass)2 matrices
are flavor-blind. This means that they should each be proportional to the 3 × 3 identity
matrix in family space:

m2
Q = m2

Q1; m2
u = m2

u1; m2
d

= m2
d
1; m2

L = m2
L1; m2

e = m2
e1. (5.14)
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Fig. 5g and eq. (3.72)]. There are similar diagrams if the left-handed slepton mass matrix
m2

L has arbitrary off-diagonal entries. If m2
L or m2

e were “random”, with all entries of
comparable size, then the contributions to BR(µ → eγ) would be about 5 or 6 orders of
magnitude larger than the current experimental upper limit of 5×10−11, even if the sleptons
are as heavy as 1 TeV. Therefore the form of the slepton mass matrices must be severely
constrained.

There are also important experimental constraints on the squark (mass)2 matrices. The
strongest of these come from the neutral kaon system. The effective hamiltonian for K0 ↔
K

0 mixing gets contributions from the diagram in Fig. 12b, among others, if LMSSM
soft contains

(mass)2 terms which mix down squarks and strange squarks. The gluino-squark-quark
vertices in Fig. 12b are all fixed by supersymmetry to be of strong interaction strength;
there are similar diagrams in which the bino and winos are exchanged.54 If the squark and
gaugino masses are of order 1 TeV or less, one finds that limits on the parameters ∆mK and
εK appearing in the neutral kaon system effective hamiltonian severely restrict the amount
of down-strange squark mixing and CP-violating complex phases that one can tolerate in
the soft parameters.55 Considerably weaker, but still interesting, constraints come from
the D0, D

0 and B0, B
0 neutral meson systems, and the decay b → sγ.56 After the Higgs

scalar fields get VEVs, the au, ad, ae matrices contribute off-diagonal squark and slepton
(mass)2 terms [for example, d̃adQ̃Hd + c.c. → (ad)12〈H0

d〉s̃Ld̃∗R + c.c., etc.], so their form
is also strongly constrained by flavor-changing neutral current (FCNC) limits. There are
other significant constraints on CP-violating phases in the gaugino masses and (scalar)3 soft
couplings following from limits on the electric dipole moments of the neutron and electron.57

All of these potentially dangerous FCNC and CP-violating effects in the MSSM can be
evaded if one assumes (or can explain!) that supersymmetry breaking should be suitably
“universal”. In particular, one can suppose that the squark and slepton (mass)2 matrices
are flavor-blind. This means that they should each be proportional to the 3 × 3 identity
matrix in family space:

m2
Q = m2

Q1; m2
u = m2

u1; m2
d

= m2
d
1; m2

L = m2
L1; m2

e = m2
e1. (5.14)

If so, then all squark and slepton mixing angles are rendered trivial, because squarks and
sleptons with the same electroweak quantum numbers will be degenerate in mass and can
be rotated into each other at will. Supersymmetric contributions to FCNC processes will
therefore be very small in such an idealized limit, modulo the mixing due to au, ad, ae.
One can make the further assumption that the (scalar)3 couplings are each proportional to
the corresponding Yukawa coupling matrix:

au = Au0 yu; ad = Ad0 yd; ae = Ae0 ye. (5.15)
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Fig. 5g and eq. (3.72)]. There are similar diagrams if the left-handed slepton mass matrix
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L has arbitrary off-diagonal entries. If m2
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e were “random”, with all entries of
comparable size, then the contributions to BR(µ → eγ) would be about 5 or 6 orders of
magnitude larger than the current experimental upper limit of 5×10−11, even if the sleptons
are as heavy as 1 TeV. Therefore the form of the slepton mass matrices must be severely
constrained.

There are also important experimental constraints on the squark (mass)2 matrices. The
strongest of these come from the neutral kaon system. The effective hamiltonian for K0 ↔
K

0 mixing gets contributions from the diagram in Fig. 12b, among others, if LMSSM
soft contains

(mass)2 terms which mix down squarks and strange squarks. The gluino-squark-quark
vertices in Fig. 12b are all fixed by supersymmetry to be of strong interaction strength;
there are similar diagrams in which the bino and winos are exchanged.54 If the squark and
gaugino masses are of order 1 TeV or less, one finds that limits on the parameters ∆mK and
εK appearing in the neutral kaon system effective hamiltonian severely restrict the amount
of down-strange squark mixing and CP-violating complex phases that one can tolerate in
the soft parameters.55 Considerably weaker, but still interesting, constraints come from
the D0, D

0 and B0, B
0 neutral meson systems, and the decay b → sγ.56 After the Higgs

scalar fields get VEVs, the au, ad, ae matrices contribute off-diagonal squark and slepton
(mass)2 terms [for example, d̃adQ̃Hd + c.c. → (ad)12〈H0

d〉s̃Ld̃∗R + c.c., etc.], so their form
is also strongly constrained by flavor-changing neutral current (FCNC) limits. There are
other significant constraints on CP-violating phases in the gaugino masses and (scalar)3 soft
couplings following from limits on the electric dipole moments of the neutron and electron.57

All of these potentially dangerous FCNC and CP-violating effects in the MSSM can be
evaded if one assumes (or can explain!) that supersymmetry breaking should be suitably
“universal”. In particular, one can suppose that the squark and slepton (mass)2 matrices
are flavor-blind. This means that they should each be proportional to the 3 × 3 identity
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If so, then all squark and slepton mixing angles are rendered trivial, because squarks and
sleptons with the same electroweak quantum numbers will be degenerate in mass and can
be rotated into each other at will. Supersymmetric contributions to FCNC processes will
therefore be very small in such an idealized limit, modulo the mixing due to au, ad, ae.
One can make the further assumption that the (scalar)3 couplings are each proportional to
the corresponding Yukawa coupling matrix:

au = Au0 yu; ad = Ad0 yd; ae = Ae0 ye. (5.15)
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♦Down & lepton flavor violation 

[Nir & Seiberg (93);
Crappy: Fitzpatrick, GP & Randall (08);  
Csaki, GP, Surujon, & Weiler  (09)].

maybe removed via alignment, 
anarchic NP is diagonal in down/
charged-lepton mass basis.

♦General: dominant NP constraints coming from extended strong 
sector, need not “talk” to down & charged lepton sector: 
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Figure 12: Diagrams which cause flavor violation in models with arbitrary soft masses.

Fig. 5g and eq. (3.72)]. There are similar diagrams if the left-handed slepton mass matrix
m2

L has arbitrary off-diagonal entries. If m2
L or m2

e were “random”, with all entries of
comparable size, then the contributions to BR(µ → eγ) would be about 5 or 6 orders of
magnitude larger than the current experimental upper limit of 5×10−11, even if the sleptons
are as heavy as 1 TeV. Therefore the form of the slepton mass matrices must be severely
constrained.

There are also important experimental constraints on the squark (mass)2 matrices. The
strongest of these come from the neutral kaon system. The effective hamiltonian for K0 ↔
K

0 mixing gets contributions from the diagram in Fig. 12b, among others, if LMSSM
soft contains

(mass)2 terms which mix down squarks and strange squarks. The gluino-squark-quark
vertices in Fig. 12b are all fixed by supersymmetry to be of strong interaction strength;
there are similar diagrams in which the bino and winos are exchanged.54 If the squark and
gaugino masses are of order 1 TeV or less, one finds that limits on the parameters ∆mK and
εK appearing in the neutral kaon system effective hamiltonian severely restrict the amount
of down-strange squark mixing and CP-violating complex phases that one can tolerate in
the soft parameters.55 Considerably weaker, but still interesting, constraints come from
the D0, D

0 and B0, B
0 neutral meson systems, and the decay b → sγ.56 After the Higgs

scalar fields get VEVs, the au, ad, ae matrices contribute off-diagonal squark and slepton
(mass)2 terms [for example, d̃adQ̃Hd + c.c. → (ad)12〈H0

d〉s̃Ld̃∗R + c.c., etc.], so their form
is also strongly constrained by flavor-changing neutral current (FCNC) limits. There are
other significant constraints on CP-violating phases in the gaugino masses and (scalar)3 soft
couplings following from limits on the electric dipole moments of the neutron and electron.57

All of these potentially dangerous FCNC and CP-violating effects in the MSSM can be
evaded if one assumes (or can explain!) that supersymmetry breaking should be suitably
“universal”. In particular, one can suppose that the squark and slepton (mass)2 matrices
are flavor-blind. This means that they should each be proportional to the 3 × 3 identity
matrix in family space:

m2
Q = m2

Q1; m2
u = m2

u1; m2
d

= m2
d
1; m2

L = m2
L1; m2

e = m2
e1. (5.14)

If so, then all squark and slepton mixing angles are rendered trivial, because squarks and
sleptons with the same electroweak quantum numbers will be degenerate in mass and can
be rotated into each other at will. Supersymmetric contributions to FCNC processes will
therefore be very small in such an idealized limit, modulo the mixing due to au, ad, ae.
One can make the further assumption that the (scalar)3 couplings are each proportional to
the corresponding Yukawa coupling matrix:

au = Au0 yu; ad = Ad0 yd; ae = Ae0 ye. (5.15)
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(mass)2 terms [for example, d̃adQ̃Hd + c.c. → (ad)12〈H0

d〉s̃Ld̃∗R + c.c., etc.], so their form
is also strongly constrained by flavor-changing neutral current (FCNC) limits. There are
other significant constraints on CP-violating phases in the gaugino masses and (scalar)3 soft
couplings following from limits on the electric dipole moments of the neutron and electron.57

All of these potentially dangerous FCNC and CP-violating effects in the MSSM can be
evaded if one assumes (or can explain!) that supersymmetry breaking should be suitably
“universal”. In particular, one can suppose that the squark and slepton (mass)2 matrices
are flavor-blind. This means that they should each be proportional to the 3 × 3 identity
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be rotated into each other at will. Supersymmetric contributions to FCNC processes will
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One can make the further assumption that the (scalar)3 couplings are each proportional to
the corresponding Yukawa coupling matrix:
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there are similar diagrams in which the bino and winos are exchanged.54 If the squark and
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couplings following from limits on the electric dipole moments of the neutron and electron.57
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evaded if one assumes (or can explain!) that supersymmetry breaking should be suitably
“universal”. In particular, one can suppose that the squark and slepton (mass)2 matrices
are flavor-blind. This means that they should each be proportional to the 3 × 3 identity
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be rotated into each other at will. Supersymmetric contributions to FCNC processes will
therefore be very small in such an idealized limit, modulo the mixing due to au, ad, ae.
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the corresponding Yukawa coupling matrix:
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couplings following from limits on the electric dipole moments of the neutron and electron.57
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magnitude larger than the current experimental upper limit of 5×10−11, even if the sleptons
are as heavy as 1 TeV. Therefore the form of the slepton mass matrices must be severely
constrained.

There are also important experimental constraints on the squark (mass)2 matrices. The
strongest of these come from the neutral kaon system. The effective hamiltonian for K0 ↔
K

0 mixing gets contributions from the diagram in Fig. 12b, among others, if LMSSM
soft contains

(mass)2 terms which mix down squarks and strange squarks. The gluino-squark-quark
vertices in Fig. 12b are all fixed by supersymmetry to be of strong interaction strength;
there are similar diagrams in which the bino and winos are exchanged.54 If the squark and
gaugino masses are of order 1 TeV or less, one finds that limits on the parameters ∆mK and
εK appearing in the neutral kaon system effective hamiltonian severely restrict the amount
of down-strange squark mixing and CP-violating complex phases that one can tolerate in
the soft parameters.55 Considerably weaker, but still interesting, constraints come from
the D0, D

0 and B0, B
0 neutral meson systems, and the decay b → sγ.56 After the Higgs

scalar fields get VEVs, the au, ad, ae matrices contribute off-diagonal squark and slepton
(mass)2 terms [for example, d̃adQ̃Hd + c.c. → (ad)12〈H0

d〉s̃Ld̃∗R + c.c., etc.], so their form
is also strongly constrained by flavor-changing neutral current (FCNC) limits. There are
other significant constraints on CP-violating phases in the gaugino masses and (scalar)3 soft
couplings following from limits on the electric dipole moments of the neutron and electron.57

All of these potentially dangerous FCNC and CP-violating effects in the MSSM can be
evaded if one assumes (or can explain!) that supersymmetry breaking should be suitably
“universal”. In particular, one can suppose that the squark and slepton (mass)2 matrices
are flavor-blind. This means that they should each be proportional to the 3 × 3 identity
matrix in family space:

m2
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u1; m2
d

= m2
d
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L = m2
L1; m2

e = m2
e1. (5.14)

If so, then all squark and slepton mixing angles are rendered trivial, because squarks and
sleptons with the same electroweak quantum numbers will be degenerate in mass and can
be rotated into each other at will. Supersymmetric contributions to FCNC processes will
therefore be very small in such an idealized limit, modulo the mixing due to au, ad, ae.
One can make the further assumption that the (scalar)3 couplings are each proportional to
the corresponding Yukawa coupling matrix:

au = Au0 yu; ad = Ad0 yd; ae = Ae0 ye. (5.15)
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Fig. 5g and eq. (3.72)]. There are similar diagrams if the left-handed slepton mass matrix
m2

L has arbitrary off-diagonal entries. If m2
L or m2

e were “random”, with all entries of
comparable size, then the contributions to BR(µ → eγ) would be about 5 or 6 orders of
magnitude larger than the current experimental upper limit of 5×10−11, even if the sleptons
are as heavy as 1 TeV. Therefore the form of the slepton mass matrices must be severely
constrained.

There are also important experimental constraints on the squark (mass)2 matrices. The
strongest of these come from the neutral kaon system. The effective hamiltonian for K0 ↔
K

0 mixing gets contributions from the diagram in Fig. 12b, among others, if LMSSM
soft contains

(mass)2 terms which mix down squarks and strange squarks. The gluino-squark-quark
vertices in Fig. 12b are all fixed by supersymmetry to be of strong interaction strength;
there are similar diagrams in which the bino and winos are exchanged.54 If the squark and
gaugino masses are of order 1 TeV or less, one finds that limits on the parameters ∆mK and
εK appearing in the neutral kaon system effective hamiltonian severely restrict the amount
of down-strange squark mixing and CP-violating complex phases that one can tolerate in
the soft parameters.55 Considerably weaker, but still interesting, constraints come from
the D0, D

0 and B0, B
0 neutral meson systems, and the decay b → sγ.56 After the Higgs

scalar fields get VEVs, the au, ad, ae matrices contribute off-diagonal squark and slepton
(mass)2 terms [for example, d̃adQ̃Hd + c.c. → (ad)12〈H0

d〉s̃Ld̃∗R + c.c., etc.], so their form
is also strongly constrained by flavor-changing neutral current (FCNC) limits. There are
other significant constraints on CP-violating phases in the gaugino masses and (scalar)3 soft
couplings following from limits on the electric dipole moments of the neutron and electron.57

All of these potentially dangerous FCNC and CP-violating effects in the MSSM can be
evaded if one assumes (or can explain!) that supersymmetry breaking should be suitably
“universal”. In particular, one can suppose that the squark and slepton (mass)2 matrices
are flavor-blind. This means that they should each be proportional to the 3 × 3 identity
matrix in family space:

m2
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u1; m2
d

= m2
d
1; m2

L = m2
L1; m2

e = m2
e1. (5.14)

If so, then all squark and slepton mixing angles are rendered trivial, because squarks and
sleptons with the same electroweak quantum numbers will be degenerate in mass and can
be rotated into each other at will. Supersymmetric contributions to FCNC processes will
therefore be very small in such an idealized limit, modulo the mixing due to au, ad, ae.
One can make the further assumption that the (scalar)3 couplings are each proportional to
the corresponding Yukawa coupling matrix:

au = Au0 yu; ad = Ad0 yd; ae = Ae0 ye. (5.15)
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are as heavy as 1 TeV. Therefore the form of the slepton mass matrices must be severely
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strongest of these come from the neutral kaon system. The effective hamiltonian for K0 ↔
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the soft parameters.55 Considerably weaker, but still interesting, constraints come from
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scalar fields get VEVs, the au, ad, ae matrices contribute off-diagonal squark and slepton
(mass)2 terms [for example, d̃adQ̃Hd + c.c. → (ad)12〈H0

d〉s̃Ld̃∗R + c.c., etc.], so their form
is also strongly constrained by flavor-changing neutral current (FCNC) limits. There are
other significant constraints on CP-violating phases in the gaugino masses and (scalar)3 soft
couplings following from limits on the electric dipole moments of the neutron and electron.57

All of these potentially dangerous FCNC and CP-violating effects in the MSSM can be
evaded if one assumes (or can explain!) that supersymmetry breaking should be suitably
“universal”. In particular, one can suppose that the squark and slepton (mass)2 matrices
are flavor-blind. This means that they should each be proportional to the 3 × 3 identity
matrix in family space:
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be rotated into each other at will. Supersymmetric contributions to FCNC processes will
therefore be very small in such an idealized limit, modulo the mixing due to au, ad, ae.
One can make the further assumption that the (scalar)3 couplings are each proportional to
the corresponding Yukawa coupling matrix:
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L or m2

e were “random”, with all entries of
comparable size, then the contributions to BR(µ → eγ) would be about 5 or 6 orders of
magnitude larger than the current experimental upper limit of 5×10−11, even if the sleptons
are as heavy as 1 TeV. Therefore the form of the slepton mass matrices must be severely
constrained.

There are also important experimental constraints on the squark (mass)2 matrices. The
strongest of these come from the neutral kaon system. The effective hamiltonian for K0 ↔
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0 mixing gets contributions from the diagram in Fig. 12b, among others, if LMSSM
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(mass)2 terms which mix down squarks and strange squarks. The gluino-squark-quark
vertices in Fig. 12b are all fixed by supersymmetry to be of strong interaction strength;
there are similar diagrams in which the bino and winos are exchanged.54 If the squark and
gaugino masses are of order 1 TeV or less, one finds that limits on the parameters ∆mK and
εK appearing in the neutral kaon system effective hamiltonian severely restrict the amount
of down-strange squark mixing and CP-violating complex phases that one can tolerate in
the soft parameters.55 Considerably weaker, but still interesting, constraints come from
the D0, D

0 and B0, B
0 neutral meson systems, and the decay b → sγ.56 After the Higgs

scalar fields get VEVs, the au, ad, ae matrices contribute off-diagonal squark and slepton
(mass)2 terms [for example, d̃adQ̃Hd + c.c. → (ad)12〈H0

d〉s̃Ld̃∗R + c.c., etc.], so their form
is also strongly constrained by flavor-changing neutral current (FCNC) limits. There are
other significant constraints on CP-violating phases in the gaugino masses and (scalar)3 soft
couplings following from limits on the electric dipole moments of the neutron and electron.57

All of these potentially dangerous FCNC and CP-violating effects in the MSSM can be
evaded if one assumes (or can explain!) that supersymmetry breaking should be suitably
“universal”. In particular, one can suppose that the squark and slepton (mass)2 matrices
are flavor-blind. This means that they should each be proportional to the 3 × 3 identity
matrix in family space:
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If so, then all squark and slepton mixing angles are rendered trivial, because squarks and
sleptons with the same electroweak quantum numbers will be degenerate in mass and can
be rotated into each other at will. Supersymmetric contributions to FCNC processes will
therefore be very small in such an idealized limit, modulo the mixing due to au, ad, ae.
One can make the further assumption that the (scalar)3 couplings are each proportional to
the corresponding Yukawa coupling matrix:

au = Au0 yu; ad = Ad0 yd; ae = Ae0 ye. (5.15)
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Fig. 5g and eq. (3.72)]. There are similar diagrams if the left-handed slepton mass matrix
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L has arbitrary off-diagonal entries. If m2
L or m2

e were “random”, with all entries of
comparable size, then the contributions to BR(µ → eγ) would be about 5 or 6 orders of
magnitude larger than the current experimental upper limit of 5×10−11, even if the sleptons
are as heavy as 1 TeV. Therefore the form of the slepton mass matrices must be severely
constrained.

There are also important experimental constraints on the squark (mass)2 matrices. The
strongest of these come from the neutral kaon system. The effective hamiltonian for K0 ↔
K

0 mixing gets contributions from the diagram in Fig. 12b, among others, if LMSSM
soft contains

(mass)2 terms which mix down squarks and strange squarks. The gluino-squark-quark
vertices in Fig. 12b are all fixed by supersymmetry to be of strong interaction strength;
there are similar diagrams in which the bino and winos are exchanged.54 If the squark and
gaugino masses are of order 1 TeV or less, one finds that limits on the parameters ∆mK and
εK appearing in the neutral kaon system effective hamiltonian severely restrict the amount
of down-strange squark mixing and CP-violating complex phases that one can tolerate in
the soft parameters.55 Considerably weaker, but still interesting, constraints come from
the D0, D

0 and B0, B
0 neutral meson systems, and the decay b → sγ.56 After the Higgs

scalar fields get VEVs, the au, ad, ae matrices contribute off-diagonal squark and slepton
(mass)2 terms [for example, d̃adQ̃Hd + c.c. → (ad)12〈H0

d〉s̃Ld̃∗R + c.c., etc.], so their form
is also strongly constrained by flavor-changing neutral current (FCNC) limits. There are
other significant constraints on CP-violating phases in the gaugino masses and (scalar)3 soft
couplings following from limits on the electric dipole moments of the neutron and electron.57

All of these potentially dangerous FCNC and CP-violating effects in the MSSM can be
evaded if one assumes (or can explain!) that supersymmetry breaking should be suitably
“universal”. In particular, one can suppose that the squark and slepton (mass)2 matrices
are flavor-blind. This means that they should each be proportional to the 3 × 3 identity
matrix in family space:
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If so, then all squark and slepton mixing angles are rendered trivial, because squarks and
sleptons with the same electroweak quantum numbers will be degenerate in mass and can
be rotated into each other at will. Supersymmetric contributions to FCNC processes will
therefore be very small in such an idealized limit, modulo the mixing due to au, ad, ae.
One can make the further assumption that the (scalar)3 couplings are each proportional to
the corresponding Yukawa coupling matrix:

au = Au0 yu; ad = Ad0 yd; ae = Ae0 ye. (5.15)
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Fig. 5g and eq. (3.72)]. There are similar diagrams if the left-handed slepton mass matrix
m2

L has arbitrary off-diagonal entries. If m2
L or m2

e were “random”, with all entries of
comparable size, then the contributions to BR(µ → eγ) would be about 5 or 6 orders of
magnitude larger than the current experimental upper limit of 5×10−11, even if the sleptons
are as heavy as 1 TeV. Therefore the form of the slepton mass matrices must be severely
constrained.

There are also important experimental constraints on the squark (mass)2 matrices. The
strongest of these come from the neutral kaon system. The effective hamiltonian for K0 ↔
K

0 mixing gets contributions from the diagram in Fig. 12b, among others, if LMSSM
soft contains

(mass)2 terms which mix down squarks and strange squarks. The gluino-squark-quark
vertices in Fig. 12b are all fixed by supersymmetry to be of strong interaction strength;
there are similar diagrams in which the bino and winos are exchanged.54 If the squark and
gaugino masses are of order 1 TeV or less, one finds that limits on the parameters ∆mK and
εK appearing in the neutral kaon system effective hamiltonian severely restrict the amount
of down-strange squark mixing and CP-violating complex phases that one can tolerate in
the soft parameters.55 Considerably weaker, but still interesting, constraints come from
the D0, D

0 and B0, B
0 neutral meson systems, and the decay b → sγ.56 After the Higgs

scalar fields get VEVs, the au, ad, ae matrices contribute off-diagonal squark and slepton
(mass)2 terms [for example, d̃adQ̃Hd + c.c. → (ad)12〈H0

d〉s̃Ld̃∗R + c.c., etc.], so their form
is also strongly constrained by flavor-changing neutral current (FCNC) limits. There are
other significant constraints on CP-violating phases in the gaugino masses and (scalar)3 soft
couplings following from limits on the electric dipole moments of the neutron and electron.57

All of these potentially dangerous FCNC and CP-violating effects in the MSSM can be
evaded if one assumes (or can explain!) that supersymmetry breaking should be suitably
“universal”. In particular, one can suppose that the squark and slepton (mass)2 matrices
are flavor-blind. This means that they should each be proportional to the 3 × 3 identity
matrix in family space:
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If so, then all squark and slepton mixing angles are rendered trivial, because squarks and
sleptons with the same electroweak quantum numbers will be degenerate in mass and can
be rotated into each other at will. Supersymmetric contributions to FCNC processes will
therefore be very small in such an idealized limit, modulo the mixing due to au, ad, ae.
One can make the further assumption that the (scalar)3 couplings are each proportional to
the corresponding Yukawa coupling matrix:

au = Au0 yu; ad = Ad0 yd; ae = Ae0 ye. (5.15)
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Fig. 5g and eq. (3.72)]. There are similar diagrams if the left-handed slepton mass matrix
m2

L has arbitrary off-diagonal entries. If m2
L or m2

e were “random”, with all entries of
comparable size, then the contributions to BR(µ → eγ) would be about 5 or 6 orders of
magnitude larger than the current experimental upper limit of 5×10−11, even if the sleptons
are as heavy as 1 TeV. Therefore the form of the slepton mass matrices must be severely
constrained.

There are also important experimental constraints on the squark (mass)2 matrices. The
strongest of these come from the neutral kaon system. The effective hamiltonian for K0 ↔
K

0 mixing gets contributions from the diagram in Fig. 12b, among others, if LMSSM
soft contains

(mass)2 terms which mix down squarks and strange squarks. The gluino-squark-quark
vertices in Fig. 12b are all fixed by supersymmetry to be of strong interaction strength;
there are similar diagrams in which the bino and winos are exchanged.54 If the squark and
gaugino masses are of order 1 TeV or less, one finds that limits on the parameters ∆mK and
εK appearing in the neutral kaon system effective hamiltonian severely restrict the amount
of down-strange squark mixing and CP-violating complex phases that one can tolerate in
the soft parameters.55 Considerably weaker, but still interesting, constraints come from
the D0, D

0 and B0, B
0 neutral meson systems, and the decay b → sγ.56 After the Higgs

scalar fields get VEVs, the au, ad, ae matrices contribute off-diagonal squark and slepton
(mass)2 terms [for example, d̃adQ̃Hd + c.c. → (ad)12〈H0

d〉s̃Ld̃∗R + c.c., etc.], so their form
is also strongly constrained by flavor-changing neutral current (FCNC) limits. There are
other significant constraints on CP-violating phases in the gaugino masses and (scalar)3 soft
couplings following from limits on the electric dipole moments of the neutron and electron.57

All of these potentially dangerous FCNC and CP-violating effects in the MSSM can be
evaded if one assumes (or can explain!) that supersymmetry breaking should be suitably
“universal”. In particular, one can suppose that the squark and slepton (mass)2 matrices
are flavor-blind. This means that they should each be proportional to the 3 × 3 identity
matrix in family space:

m2
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L = m2
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If so, then all squark and slepton mixing angles are rendered trivial, because squarks and
sleptons with the same electroweak quantum numbers will be degenerate in mass and can
be rotated into each other at will. Supersymmetric contributions to FCNC processes will
therefore be very small in such an idealized limit, modulo the mixing due to au, ad, ae.
One can make the further assumption that the (scalar)3 couplings are each proportional to
the corresponding Yukawa coupling matrix:

au = Au0 yu; ad = Ad0 yd; ae = Ae0 ye. (5.15)
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L has arbitrary off-diagonal entries. If m2
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e were “random”, with all entries of
comparable size, then the contributions to BR(µ → eγ) would be about 5 or 6 orders of
magnitude larger than the current experimental upper limit of 5×10−11, even if the sleptons
are as heavy as 1 TeV. Therefore the form of the slepton mass matrices must be severely
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There are also important experimental constraints on the squark (mass)2 matrices. The
strongest of these come from the neutral kaon system. The effective hamiltonian for K0 ↔
K

0 mixing gets contributions from the diagram in Fig. 12b, among others, if LMSSM
soft contains

(mass)2 terms which mix down squarks and strange squarks. The gluino-squark-quark
vertices in Fig. 12b are all fixed by supersymmetry to be of strong interaction strength;
there are similar diagrams in which the bino and winos are exchanged.54 If the squark and
gaugino masses are of order 1 TeV or less, one finds that limits on the parameters ∆mK and
εK appearing in the neutral kaon system effective hamiltonian severely restrict the amount
of down-strange squark mixing and CP-violating complex phases that one can tolerate in
the soft parameters.55 Considerably weaker, but still interesting, constraints come from
the D0, D

0 and B0, B
0 neutral meson systems, and the decay b → sγ.56 After the Higgs

scalar fields get VEVs, the au, ad, ae matrices contribute off-diagonal squark and slepton
(mass)2 terms [for example, d̃adQ̃Hd + c.c. → (ad)12〈H0

d〉s̃Ld̃∗R + c.c., etc.], so their form
is also strongly constrained by flavor-changing neutral current (FCNC) limits. There are
other significant constraints on CP-violating phases in the gaugino masses and (scalar)3 soft
couplings following from limits on the electric dipole moments of the neutron and electron.57

All of these potentially dangerous FCNC and CP-violating effects in the MSSM can be
evaded if one assumes (or can explain!) that supersymmetry breaking should be suitably
“universal”. In particular, one can suppose that the squark and slepton (mass)2 matrices
are flavor-blind. This means that they should each be proportional to the 3 × 3 identity
matrix in family space:
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e = m2
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If so, then all squark and slepton mixing angles are rendered trivial, because squarks and
sleptons with the same electroweak quantum numbers will be degenerate in mass and can
be rotated into each other at will. Supersymmetric contributions to FCNC processes will
therefore be very small in such an idealized limit, modulo the mixing due to au, ad, ae.
One can make the further assumption that the (scalar)3 couplings are each proportional to
the corresponding Yukawa coupling matrix:

au = Au0 yu; ad = Ad0 yd; ae = Ae0 ye. (5.15)
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Aligning away NP & the power of the D system

The bounds from            are much more severe.
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Introduction. Precision flavor and CP violation measurements provide very strong constraints on models of new
physics (NP) beyond the Standard Model (SM). For instance, ⇥K constrains the scale of maximally flavor violating
NP to be >⇤ 104 TeV. Therefore, TeV scale NP which stabilizes the electroweak scale and is accessible at the LHC has
to have a highly non generic flavor structure.

The tension with precision flavor tests is relaxed if the SM Yukawa matrices are the only source of flavor breaking,
even in the presence of new particles and interactions [1–3]. This hypothesis goes under the name of Minimal Flavor
Violation (MFV). Sometimes additional assumptions are made — that the SM Yukawa couplings are also the only
source of CP violation (CPV ), e.g. in [1], or that NP does not change the Lorentz structure of the e⇥ective weak
hamiltonian [4]. We will not make these assumptions, but will discuss their consequences below.

A useful language for discussing MFV was introduced in [1]. It relies on the observation that for vanishing Yukawa
couplings the SM has an enhanced global symmetry. Focusing on the quark sector this is

GSM = U(3)Q � U(3)u � U(3)d, (3)

where Q, u, d stand for quark doublets and up and down type quark singlets respectively. The SM Yukawa couplings

HuQ̄LYuuR + HdQ̄LYddR, (4)

are formally invariant under GSM, if the Yukawa matrices are promoted to spurions that transform as Y �
u,d =

VQYu,dV
†
u,d, while the quark fields are in the fundamental representations, (Q�, u�, d�) = VQ,u,d(Q, u, d). Weak scale NP

models are then of the MFV class if they are formally invariant under GSM, when treating the SM Yukawa couplings
as spurions. Similarly, the low energy flavor observables are formally invariant under GSM. Practically, this means
that only certain insertions of Yukawa couplings are allowed in the quark bilinears. For example, in Q̄Q bilinears
insertions such as Q̄(YuY †

u )nQ are allowed, while Q̄Y †
d (YuY †

u )nQ are not.
The above definition of MFV is only useful if flavor invariant operators such as Q̄f(⇥uYu, ⇥dYd)Q can be expanded

in powers of Yu,d. In the large tan� limit both Yu and Yd have O(1) eigenvalues yt,b. The convergence radius is then
given by the size of ⇥u,d. We distinguish between two limiting cases

• Linear MFV (LMFV): ⇥u,d ⌅ 1 and the dominant flavor breaking e⇥ects are captured by the lowest order
polynomials of Yu,d.

• Non-linear MFV (NLMFV): ⇥u,d ⇤ O(1), higher powers of Yu,d are important, and a truncated expansion in yt,b

is not possible.

Examples of NLMFV are: low energy supersymmetric models in which large tan� e⇥ects need to be resummed (large
⇥d), and models obeying MFV at a UV scale �F ⇧ µW , where large ⇥u,d ⌥ log(µW /�F ) are generated from sizable
anomalous dimensions in the renormalization group running [5]. Another example is warped extra dimension models
with alignment [6], in cases where right handed up-quark currents are subdominant.

In this letter we show that even in NLMFV there is a systematic expansion in small quantities, Vtd, Vts, and light
quark masses, while resumming in yt, yb ⇤ O(1). This is achieved via a non-linear ⌅-model–like parametrization.
Namely, in the limit of vanishing weak gauge coupling (or mW ⌃�), U(3)Q is enhanced to U(3)Qu � U(3)Qd . The

2

⇤3,8 =
1�
2

diag(1,�1, 0),
1�
6

diag(1, 1,�2)

L�F=2 =
zsd

(1 TeV)2
(dL�µsL)2 +

zcu

(1 TeV)2
(cL�µuL)2

+
z4
sd

(1 TeV)2
(dLsR)(dRsL) +

z4
cu

(1 TeV)2
(uLcR)(uRcL).

Im(zsd, z
4
sd) <⇧ (3.4⇤ 10�9, 2.6⇤ 10�11) (�NP/TeV)2, (1)

Im(zcu, z4
cu) <⇧ (1.0⇤ 10�7, 1.1⇤ 10�8) (�NP/TeV)2,

zsd ⌃ (1,8, 1, 1)⇤ (1,8, 1, 1), zcu ⌃ (8, 1, 1, 1)⇤ (8, 1, 1, 1)

z4
sd ⌃ (1,8, 1,8), z4

cu ⌃ (8, 1,8, 1)

z4
sd,cu

zsd,cu

zQ

cos ⇥ud ⌅
A · B

| A| | B|
=

tr
⇤�

YUY †
U

⇥

tr/

�
YDY †

D

⇥

tr/

⌅

⌦

tr
⇤�

YUY †
U

⇥2

tr/

⌅
tr
⇤�

YDY †
D

⇥2

tr/

⌅ ⇧ 1� c ⇤4 ⌥ ⇥ud = O(⇤2)

(YUY †
U )down = V †

CKM(YUY †
U )diagVCKM ⇧ y2

t V ti
CKMV ⇥ tj

CKM

⇧ y2
t�
3

⇤
1�
3

13 �
�

2 ⇤8 + c13 ⇤x
13 + c23 ⇤x

23

⌅
(2)

YUY †
U , YDY †

D ⇧
y2

t,b�
3

⌥
1�
3

13 �
 

1
2

⇧
2�

m2
c,s

m2
t,b

⌃
⇤8 �

 
3
2

m2
c,s

m2
t,b

⇤3

�

[YUY †
U , YDY †

D] ⇧ 0

U(2)D ⇤ U(2)U ⇤ U(1)B

Cannot align      simultaneously with both                      .
 Nir (07); Blum, Grossman, Nir, GP (09)
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New physics at high energy scale often contributes to K0�K0 and D0�D0 mixings in an approxi-
mately SU(2)L invariant way. In such a case, the combination of measurements in these two systems
is particularly powerful. The resulting constraints can be expressed in terms of misalignments and
flavor splittings.

Introduction. Measurements of flavor changing
neutral current processes put strong constraints on new
physics at the TeV scale and provide a crucial guide for
model building. In particular, measurements of the mass
splitting and CP violation in the neutral K system [1],

�mK/mK = (7.01 ± 0.01)⇥ 10�15,

⇥K = (2.23 ± 0.01)⇥ 10�3, (1)

require a highly non-generic flavor structure to any such
theory. Recently, huge progress has been made in mea-
surements of the mass splitting and in the search for CP
violation in the neutral D system [2]:

�mD/mD = (8.6 ± 2.1)⇥ 10�15,

A� = (1.2 ± 2.5)⇥ 10�3. (2)

These measurements are particularly useful in constrain-
ing models where the main flavor changing e⇤ects occur
in the up sector [3].

By ‘non-generic flavor structure’ we mean either align-
ment or degeneracies or both. Each of the set of con-
straints (1) and (2) can be satisfied by aligning the new
physics contributions with specific directions in flavor
space. However, contributions that involve only quark
doublets cannot be simultaneously aligned in both the
down and the up sectors. Thus, the combination of the
measurements related to K0 � K0 mixing (1) and to
D0�D0 mixing (2) leads to unavoidable bounds on new
physics degeneracies.

In this work, we develop the formalism that is nec-
essary to obtain these unavoidable bounds, explain the
qualitative implications and derive the actual quantita-
tive constraints from the present experimental bounds.

Theoretical and experimental background. The
e⇤ects of new physics at a high scale ⇥NP ⇧ mW on low
energy phenomena can be expressed in terms of an ef-
fective Hamiltonian, composed of Standard Model (SM)
fields and obeying the SM symmetries. In particular,
four-quark operators contribute to �S = 2 and �C = 2
processes. We are interested in the operators that involve

only quark doublets:

1
⇥2

NP

�
zsd(dL�µsL)(dL�µsL) + zcu(uL�µcL)(uL�µcL)

⇥
.

(3)
We constrain new physics by requiring that contributions
of the form (3) do not exceed the experimental value
of �mK and the one-sigma upper bounds on �mD and
on CP violation in D0 � D0 mixing. As concerns ⇥K ,
since the SM contribution has only little uncertainties
and should be taken into account, we require that the new
physics is smaller than 0.6 times the experimental bound
[4]. We update the calculations of Ref. [5] (the details are
presented in [3]) and obtain the following upper bounds
on |zsd| and |zcu|:

|zsd| ⌅ zK
exp = 8.8⇥ 10�7

⇤
⇥NP

1 TeV

⌅2

,

|zcu| ⌅ zD
exp = 5.9⇥ 10�7

⇤
⇥NP

1 TeV

⌅2

, (4)

and on Im(zsd) and Im(zcu):

Im(zsd) ⌅ zIK
exp = 3.3⇥ 10�9

⇤
⇥NP

1 TeV

⌅2

,

Im(zcu) ⌅ zID
exp = 1.0⇥ 10�7

⇤
⇥NP

1 TeV

⌅2

. (5)

When e⇤ects of SU(2)L breaking are small, the terms
that lead to zsd and zcu have the form

1
⇥2

NP

(QLi(XQ)ij�µQLj)(QLi(XQ)ij�
µQLj), (6)

where XQ is an hermitian matrix. The matrix XQ pro-
vides a source of flavor violation beyond the Yukawa ma-
trices of the SM, Yd and Yu:

QLi(Yd)ijdj⇧d + QLi(Yu)ijuj⇧u. (7)

Here ⇧d,u are Higgs doublets of opposite hypercharges.
(Within the SM, ⇧u = ⌅2⇧

†
d.) Without loss of generality,

we can choose to work in a basis where

Yd = ⇤d, Yu = V †⇤u, XQ = V †
d ⇤QVd, (8)

Assuming SU(2)L  :

3

where

v̂⇥ =

⌃

⌦�
cos 2⌅c 0 � sin 2⌅c

0 1 0
sin 2⌅c 0 cos 2⌅c

⌥

↵ v̂. (20)

Our formalism is motivated by the fact that it puts all
CPV in v̂2. The v̂2 parameter is the projection of XQ

onto the direction perpendicular to the 1�3 plane where,
without loss of generality, YDY †

D and YUY †
U reside. This

can be clearly seen from the expression for the Jarlskog
invariant for our framework:

J = Tr
�

X
�
YDY †

D, YUY †
U

�✏
(21)

= i(y2
s � Y 2

D)(y2
c � Y 2

U )�12 sin 2⌅c v̂2.

Using this parametrization, we obtain

zsd = �2
12(v̂1 � iv̂2)2, (22)

zcu = �2
12(cos 2⌅cv̂1 � sin 2⌅cv̂3 � iv̂2)2. (23)

Note that, among the three v̂i, there are only two inde-
pendent parameters. We thus study the constraints as a
function of

sin ⇥ ⇤ v̂2 ⌥ [0, 1], (24)

sin � ⇤ v̂1⇣
v̂2
1 + v̂2

3

⌥ [�1, 1].

In terms of � and ⇥, we obtain

|zsd| = �2
12

�
cos2 ⇥ sin2 � + sin2 ⇥

⇥
, (25)

|zcu| = �2
12

�
cos2 ⇥ sin2(�� 2⌅c) + sin2 ⇥

⇥
,

Im(zsd) = ��2
12 sin� sin 2⇥,

Im(zcu) = ��2
12 sin(�� 2⌅c) sin 2⇥.

As a first check of our results, note that when we take
⇥ = 0, we reproduce Eq. (13). (The identification of �
with 2⌅d is correct only in the CPC case.) The bound
(17) remains the weakest bound on the flavor degeneracy.
In the presence of a CPV phase in Vd, the bound becomes
stronger. The weakest �12-bound as a function of sin ⇥
is presented in Fig. 1.

At 0.03 ⇧< | sin ⇥| ⇧< 0.98, the constraints from the CPV
observables are dominant, and the combination of zIK

exp

and zID
exp is responsible for the unavoidable bound on �12.

Defining

rI
KD ⇤ zIK

exp/zID
exp, (26)

the weakest bound on �12 corresponds to

tan� =
rI
KD sin 2⌅c

1 + rI
KD cos 2⌅c

, (27)

and is given by

�2
12 ⌅

zID
exp

sin 2⌅c sin 2⇥

⌘
1 + rI2

KD + 2rI
KD cos 2⌅c. (28)

Using Eq. (5), we find that the weakest bound occurs at
sin� ⌃ 0.014 and it is given by

�12 ⌅
4.8⇥ 10�4

↵
sin 2⇥

⇤
�NP

1 TeV

⌅
. (29)

Eq. (29) explains the sin ⇥ dependence of the curve in
Fig. 1 in the relevant range.

Comparison with Eq. (17) reveals the power of the
upper bound on CPV in D0�D0 mixing in constraining
the flavor structure of new physics. For maximal phases
(sin 2⇥ = 1), it implies degeneracy stronger by a fac-
tor of 8 compared to the bound from CPC observables.
For �NP ⌅ 1 TeV and large phases, the flavor-diagonal
and flavor-degeneracy factors should provide a suppres-
sion stronger than O(10�3). With loop suppression of
order ⇧12 ⇧ �2, the degeneracy should be stronger than
0.02.

Supersymmetry. An explicit example of the con-
straints on new physics parameters obtained by combin-
ing measurements of K0 � K0 mixing and of D0 � D0

mixing is provided by supersymmetry. Any supersym-
metric model generates the operator (6) via box diagrams
with intermediate gluinos and squark-doublets. The var-
ious factors that enter zsd and zcu can be identified as
follows:

�NP = m̃Q ⇤ (mQ̃1
+ mQ̃2

)/2,

⇧2
12 =

�2
s

54
g(m2

g̃/m̃2
Q),

⇤12 = (mQ̃2
�mQ̃1

)/(mQ̃1
+ mQ̃2

), (30)

where mQ̃i
is the squark-doublet mass, mg̃ is the gluino

mass, and g(m2
g̃/m̃2

Q) is a known function (see e.g. [6])
with, for example g(1) = 1. Taking m̃Q ⌅ 1 TeV, and
mg̃ ⌃ m̃Q (which gives ⇧12 ⌃ 0.014), leads to

mQ̃2
�mQ̃2

mQ̃1
+ mQ̃2

⌅
⇧

0.034 maximal phases
0.27 vanishing phases

(31)

FIG. 1: The weakest �12-bound as function of sin �.

Two generation covariant description

XQ  is 2x2 Hermitian matrix, can be described as a 
vector in SU(2) 3D flavor space.

Space can be span via SM Yukawas (useful for CPV, see later):

violation is given in Sec. 3. In Sec. 4 we use our formalism to constrain NP models in an
assumption-free manner, based on third generation ¢F = 1 decays. Sec. 5 similarly deals with
¢F = 2 processes involving the third generation quarks. For the latter two sections, current
experimental data is used for the down sector constraints, while the up sector bounds are mostly
based on LHC prospects. Secs. 6 and 7 present concrete examples for the application of the
analysis to supersymmetry and warped extra dimension, respectively. Finally, we conclude in
Sec. 8.

2 Two Generations

We start with the simpler two generations case, which is actually very useful in constraining
new physics, as a result of the richer experimental data. Any hermitian traceless 2£ 2 matrix
can be expressed as a linear combination of the Pauli matrices æ

i

. This combination can be
naturally interpreted as a vector in three dimensional real space, which applies to A

d

and A
u

.
We can then define a length of such a vector, a scalar product, a cross product and an angle
between two vectors, all of which are basis-independent2:

| ~A| ¥
r

1

2
tr(A2) , ~A · ~B ¥ 1

2
tr(AB) , ~A£ ~B ¥ ° i

2
[A,B] ,

cos(µ
AB

) ¥
~A · ~B

| ~A|| ~B| =
tr(AB)

p

tr(A2)tr(B2)
.

(3)

These definitions allow for an intuitive understanding of the flavor and CP violation induced
by a new physics source. Consider a dimension six SU(2)

L

-invariant operator, involving only
quark doublets,

z1

§2
NP

O1 =
1

§2
NP

°

Q
i

(X
Q

)
ij

∞
µ

Q
j

¢ °

Q
i

(X
Q

)
ij

∞µQ
j

¢

, (4)

where §NP is some high energy scale and z1 is the Wilson coe±cient. X
Q

is a traceless hermitian
matrix, transforming as an adjoint of SU(3)

Q

(or SU(2)
Q

for two generations), so it “lives” in
the same space as A

d

and A
u

.3 In the down sector for example, the operator above is relevant
for flavor violation through K0°K0 mixing. To analyze its contribution, we define a covariant
basis for each sector, with the following unit vectors

Â
u,d

¥ A
u,d

|A
u,d

| , Ĵ ¥ A
d

£A
u

|A
d

£A
u

| , Ĵ
u,d

¥ Â
u,d

£ Ĵ . (5)

Then the contribution of the operator in Eq. (4) to ¢c, s = 2 processes is given by the mis-
alignment between X

Q

and A
u,d

, which is equal to

Ø

Ø

Ø

zD,K

1

Ø

Ø

Ø

=
Ø

Ø

Ø

X
Q

£ Â
u,d

Ø

Ø

Ø

2
. (6)

This result is manifestly invariant under a change of basis. The meaning of Eq. (6) can be
understood as follows: We can choose an explicit basis, for example the down mass basis,
where A

d

is proportional to æ3. ¢s = 2 transitions are induced by the oÆ-diagonal element of
X

Q

, so that
Ø

ØzK

1

Ø

Ø = |(X
Q

)12|2. Furthermore, |(X
Q

)12| is simply the combined size of the æ1 and
æ2 components of X

Q

. Its size is given by the length of X
Q

times the sine of the angle between
X

Q

and A
d

(see Fig 1). This is exactly what Eq. (6) describes.

2The factor of °i/2 in the cross product is required in order to have the standard geometrical interpretation
Ø

Ø

Ø

~A£ ~B
Ø

Ø

Ø

= | ~A|| ~B| sin µAB , with µAB defined through the scalar product as in Eq. (3).
3This operator can always be written as a product of two identical adjoints, as explained in Appendix A.
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New physics at high energy scale often contributes to K0�K0 and D0�D0 mixings in an approxi-
mately SU(2)L invariant way. In such a case, the combination of measurements in these two systems
is particularly powerful. The resulting constraints can be expressed in terms of misalignments and
flavor splittings.

Introduction. Measurements of flavor changing
neutral current processes put strong constraints on new
physics at the TeV scale and provide a crucial guide for
model building. In particular, measurements of the mass
splitting and CP violation in the neutral K system [1],

�mK/mK = (7.01 ± 0.01)⇥ 10�15,

⇥K = (2.23 ± 0.01)⇥ 10�3, (1)

require a highly non-generic flavor structure to any such
theory. Recently, huge progress has been made in mea-
surements of the mass splitting and in the search for CP
violation in the neutral D system [2]:

�mD/mD = (8.6 ± 2.1)⇥ 10�15,

A� = (1.2 ± 2.5)⇥ 10�3. (2)

These measurements are particularly useful in constrain-
ing models where the main flavor changing e⇤ects occur
in the up sector [3].

By ‘non-generic flavor structure’ we mean either align-
ment or degeneracies or both. Each of the set of con-
straints (1) and (2) can be satisfied by aligning the new
physics contributions with specific directions in flavor
space. However, contributions that involve only quark
doublets cannot be simultaneously aligned in both the
down and the up sectors. Thus, the combination of the
measurements related to K0 � K0 mixing (1) and to
D0�D0 mixing (2) leads to unavoidable bounds on new
physics degeneracies.

In this work, we develop the formalism that is nec-
essary to obtain these unavoidable bounds, explain the
qualitative implications and derive the actual quantita-
tive constraints from the present experimental bounds.

Theoretical and experimental background. The
e⇤ects of new physics at a high scale ⇥NP ⇧ mW on low
energy phenomena can be expressed in terms of an ef-
fective Hamiltonian, composed of Standard Model (SM)
fields and obeying the SM symmetries. In particular,
four-quark operators contribute to �S = 2 and �C = 2
processes. We are interested in the operators that involve

only quark doublets:

1
⇥2

NP

�
zsd(dL�µsL)(dL�µsL) + zcu(uL�µcL)(uL�µcL)

⇥
.

(3)
We constrain new physics by requiring that contributions
of the form (3) do not exceed the experimental value
of �mK and the one-sigma upper bounds on �mD and
on CP violation in D0 � D0 mixing. As concerns ⇥K ,
since the SM contribution has only little uncertainties
and should be taken into account, we require that the new
physics is smaller than 0.6 times the experimental bound
[4]. We update the calculations of Ref. [5] (the details are
presented in [3]) and obtain the following upper bounds
on |zsd| and |zcu|:

|zsd| ⌅ zK
exp = 8.8⇥ 10�7

⇤
⇥NP

1 TeV

⌅2

,

|zcu| ⌅ zD
exp = 5.9⇥ 10�7

⇤
⇥NP

1 TeV

⌅2

, (4)

and on Im(zsd) and Im(zcu):

Im(zsd) ⌅ zIK
exp = 3.3⇥ 10�9

⇤
⇥NP

1 TeV

⌅2

,

Im(zcu) ⌅ zID
exp = 1.0⇥ 10�7

⇤
⇥NP

1 TeV

⌅2

. (5)

When e⇤ects of SU(2)L breaking are small, the terms
that lead to zsd and zcu have the form

1
⇥2

NP

(QLi(XQ)ij�µQLj)(QLi(XQ)ij�
µQLj), (6)

where XQ is an hermitian matrix. The matrix XQ pro-
vides a source of flavor violation beyond the Yukawa ma-
trices of the SM, Yd and Yu:

QLi(Yd)ijdj⇧d + QLi(Yu)ijuj⇧u. (7)

Here ⇧d,u are Higgs doublets of opposite hypercharges.
(Within the SM, ⇧u = ⌅2⇧

†
d.) Without loss of generality,

we can choose to work in a basis where

Yd = ⇤d, Yu = V †⇤u, XQ = V †
d ⇤QVd, (8)

Assuming SU(2)L  :

3

where

v̂⇥ =

⌃

⌦�
cos 2⌅c 0 � sin 2⌅c

0 1 0
sin 2⌅c 0 cos 2⌅c

⌥

↵ v̂. (20)

Our formalism is motivated by the fact that it puts all
CPV in v̂2. The v̂2 parameter is the projection of XQ

onto the direction perpendicular to the 1�3 plane where,
without loss of generality, YDY †

D and YUY †
U reside. This

can be clearly seen from the expression for the Jarlskog
invariant for our framework:

J = Tr
�

X
�
YDY †

D, YUY †
U

�✏
(21)

= i(y2
s � Y 2

D)(y2
c � Y 2

U )�12 sin 2⌅c v̂2.

Using this parametrization, we obtain

zsd = �2
12(v̂1 � iv̂2)2, (22)

zcu = �2
12(cos 2⌅cv̂1 � sin 2⌅cv̂3 � iv̂2)2. (23)

Note that, among the three v̂i, there are only two inde-
pendent parameters. We thus study the constraints as a
function of

sin ⇥ ⇤ v̂2 ⌥ [0, 1], (24)

sin � ⇤ v̂1⇣
v̂2
1 + v̂2

3

⌥ [�1, 1].

In terms of � and ⇥, we obtain

|zsd| = �2
12

�
cos2 ⇥ sin2 � + sin2 ⇥

⇥
, (25)

|zcu| = �2
12

�
cos2 ⇥ sin2(�� 2⌅c) + sin2 ⇥

⇥
,

Im(zsd) = ��2
12 sin� sin 2⇥,

Im(zcu) = ��2
12 sin(�� 2⌅c) sin 2⇥.

As a first check of our results, note that when we take
⇥ = 0, we reproduce Eq. (13). (The identification of �
with 2⌅d is correct only in the CPC case.) The bound
(17) remains the weakest bound on the flavor degeneracy.
In the presence of a CPV phase in Vd, the bound becomes
stronger. The weakest �12-bound as a function of sin ⇥
is presented in Fig. 1.

At 0.03 ⇧< | sin ⇥| ⇧< 0.98, the constraints from the CPV
observables are dominant, and the combination of zIK

exp

and zID
exp is responsible for the unavoidable bound on �12.

Defining

rI
KD ⇤ zIK

exp/zID
exp, (26)

the weakest bound on �12 corresponds to

tan� =
rI
KD sin 2⌅c

1 + rI
KD cos 2⌅c

, (27)

and is given by

�2
12 ⌅

zID
exp

sin 2⌅c sin 2⇥

⌘
1 + rI2

KD + 2rI
KD cos 2⌅c. (28)

Using Eq. (5), we find that the weakest bound occurs at
sin� ⌃ 0.014 and it is given by

�12 ⌅
4.8⇥ 10�4

↵
sin 2⇥

⇤
�NP

1 TeV

⌅
. (29)

Eq. (29) explains the sin ⇥ dependence of the curve in
Fig. 1 in the relevant range.

Comparison with Eq. (17) reveals the power of the
upper bound on CPV in D0�D0 mixing in constraining
the flavor structure of new physics. For maximal phases
(sin 2⇥ = 1), it implies degeneracy stronger by a fac-
tor of 8 compared to the bound from CPC observables.
For �NP ⌅ 1 TeV and large phases, the flavor-diagonal
and flavor-degeneracy factors should provide a suppres-
sion stronger than O(10�3). With loop suppression of
order ⇧12 ⇧ �2, the degeneracy should be stronger than
0.02.

Supersymmetry. An explicit example of the con-
straints on new physics parameters obtained by combin-
ing measurements of K0 � K0 mixing and of D0 � D0

mixing is provided by supersymmetry. Any supersym-
metric model generates the operator (6) via box diagrams
with intermediate gluinos and squark-doublets. The var-
ious factors that enter zsd and zcu can be identified as
follows:

�NP = m̃Q ⇤ (mQ̃1
+ mQ̃2

)/2,

⇧2
12 =

�2
s

54
g(m2

g̃/m̃2
Q),

⇤12 = (mQ̃2
�mQ̃1

)/(mQ̃1
+ mQ̃2

), (30)

where mQ̃i
is the squark-doublet mass, mg̃ is the gluino

mass, and g(m2
g̃/m̃2

Q) is a known function (see e.g. [6])
with, for example g(1) = 1. Taking m̃Q ⌅ 1 TeV, and
mg̃ ⌃ m̃Q (which gives ⇧12 ⌃ 0.014), leads to

mQ̃2
�mQ̃2

mQ̃1
+ mQ̃2

⌅
⇧

0.034 maximal phases
0.27 vanishing phases

(31)

FIG. 1: The weakest �12-bound as function of sin �.

Two generation covariance description, cont’

violation is given in Sec. 3. In Sec. 4 we use our formalism to constrain NP models in an
assumption-free manner, based on third generation ¢F = 1 decays. Sec. 5 similarly deals with
¢F = 2 processes involving the third generation quarks. For the latter two sections, current
experimental data is used for the down sector constraints, while the up sector bounds are mostly
based on LHC prospects. Secs. 6 and 7 present concrete examples for the application of the
analysis to supersymmetry and warped extra dimension, respectively. Finally, we conclude in
Sec. 8.

2 Two Generations

We start with the simpler two generations case, which is actually very useful in constraining
new physics, as a result of the richer experimental data. Any hermitian traceless 2£ 2 matrix
can be expressed as a linear combination of the Pauli matrices æ

i

. This combination can be
naturally interpreted as a vector in three dimensional real space, which applies to A

d

and A
u

.
We can then define a length of such a vector, a scalar product, a cross product and an angle
between two vectors, all of which are basis-independent2:

| ~A| ¥
r

1

2
tr(A2) , ~A · ~B ¥ 1

2
tr(AB) , ~A£ ~B ¥ ° i

2
[A,B] ,

cos(µ
AB

) ¥
~A · ~B

| ~A|| ~B| =
tr(AB)

p

tr(A2)tr(B2)
.

(3)

These definitions allow for an intuitive understanding of the flavor and CP violation induced
by a new physics source. Consider a dimension six SU(2)

L

-invariant operator, involving only
quark doublets,

z1

§2
NP

O1 =
1

§2
NP

°

Q
i

(X
Q

)
ij

∞
µ

Q
j

¢ °

Q
i

(X
Q

)
ij

∞µQ
j

¢

, (4)

where §NP is some high energy scale and z1 is the Wilson coe±cient. X
Q

is a traceless hermitian
matrix, transforming as an adjoint of SU(3)

Q

(or SU(2)
Q

for two generations), so it “lives” in
the same space as A

d

and A
u

.3 In the down sector for example, the operator above is relevant
for flavor violation through K0°K0 mixing. To analyze its contribution, we define a covariant
basis for each sector, with the following unit vectors

Â
u,d

¥ A
u,d

|A
u,d

| , Ĵ ¥ A
d

£A
u

|A
d

£A
u

| , Ĵ
u,d

¥ Â
u,d

£ Ĵ . (5)

Then the contribution of the operator in Eq. (4) to ¢c, s = 2 processes is given by the mis-
alignment between X

Q

and A
u,d

, which is equal to

Ø

Ø

Ø

zD,K

1

Ø

Ø

Ø

=
Ø

Ø

Ø

X
Q

£ Â
u,d

Ø

Ø

Ø

2
. (6)

This result is manifestly invariant under a change of basis. The meaning of Eq. (6) can be
understood as follows: We can choose an explicit basis, for example the down mass basis,
where A

d

is proportional to æ3. ¢s = 2 transitions are induced by the oÆ-diagonal element of
X

Q

, so that
Ø

ØzK

1

Ø

Ø = |(X
Q

)12|2. Furthermore, |(X
Q

)12| is simply the combined size of the æ1 and
æ2 components of X

Q

. Its size is given by the length of X
Q

times the sine of the angle between
X

Q

and A
d

(see Fig 1). This is exactly what Eq. (6) describes.

2The factor of °i/2 in the cross product is required in order to have the standard geometrical interpretation
Ø

Ø

Ø

~A£ ~B
Ø

Ø

Ø

= | ~A|| ~B| sin µAB , with µAB defined through the scalar product as in Eq. (3).
3This operator can always be written as a product of two identical adjoints, as explained in Appendix A.
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Figure 1: The contribution of X
Q

to K0 °K0 mixing, ¢m
K

, given by the solid blue line. In
the down mass basis, Â

d

corresponds to æ3, Ĵ is æ2 and Ĵ
d

is æ1.

Next we discuss CPV, which is given by

Im
≥

zK,D

1

¥

= 2
≥

X
Q

· Ĵ
¥≥

X
Q

· Ĵ
u,d

¥

. (7)

The above expression is easy to understand in the down basis, for instance. In addition to
diagonalizing A

d

, we can also choose A
u

to reside in the æ1 ° æ3 plane (Fig. 2) without loss of
generality, since there is no CPV in the SM for two generations. As a result, all of the potential
CPV originates from X

Q

in this basis. zK

1 is the square of the oÆ-diagonal element in X
Q

,
(X

Q

)12, thus Im
°

zK

1

¢

is simply twice the real part (æ1 component) times the imaginary part

(æ2 component). In this basis we have Ĵ / æ1 and Ĵ
d

/ æ2, this proves the validity of Eq. (7).

Figure 2: CP violation in the Kaon system induced by X
Q

. Im(zK

1 ) is twice the product of the
two solid orange lines, which are the projections of X

Q

on the Ĵ and Ĵ
d

axes. Note that the
angle between A

d

and A
u

is twice the Cabibbo angle, µ
C

.

The weakest unavoidable bound coming from measurements in the K and D systems was
derived in [6] using a specific parameterization of X

Q

. In the covariant bases defined in Eq. (5),
X

Q

can be written as
X

Q

= Xu,dÂ
u,d

+ XJ Ĵ + XJu,d Ĵ
u,d

, (8)

and the two bases are related through

Xu = cos 2µCXd ° sin 2µCXJd , XJu = ° sin 2µCXd ° cos 2µCXJd , (9)

while XJ remains invariant. Plugging Eqs. (8) and (9) into Eqs. (6) and (7), we obtain explicit
results. It is then easy to see that in the parameterization employed in [6], §12 sin ∞ is equal to
XJ , §12 sin Æ cos ∞ is equal to XJd etc., therefore their results coincide with ours.

4
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New physics at high energy scale often contributes to K0�K0 and D0�D0 mixings in an approxi-
mately SU(2)L invariant way. In such a case, the combination of measurements in these two systems
is particularly powerful. The resulting constraints can be expressed in terms of misalignments and
flavor splittings.

Introduction. Measurements of flavor changing
neutral current processes put strong constraints on new
physics at the TeV scale and provide a crucial guide for
model building. In particular, measurements of the mass
splitting and CP violation in the neutral K system [1],

�mK/mK = (7.01 ± 0.01)⇥ 10�15,

⇥K = (2.23 ± 0.01)⇥ 10�3, (1)

require a highly non-generic flavor structure to any such
theory. Recently, huge progress has been made in mea-
surements of the mass splitting and in the search for CP
violation in the neutral D system [2]:

�mD/mD = (8.6 ± 2.1)⇥ 10�15,

A� = (1.2 ± 2.5)⇥ 10�3. (2)

These measurements are particularly useful in constrain-
ing models where the main flavor changing e⇤ects occur
in the up sector [3].

By ‘non-generic flavor structure’ we mean either align-
ment or degeneracies or both. Each of the set of con-
straints (1) and (2) can be satisfied by aligning the new
physics contributions with specific directions in flavor
space. However, contributions that involve only quark
doublets cannot be simultaneously aligned in both the
down and the up sectors. Thus, the combination of the
measurements related to K0 � K0 mixing (1) and to
D0�D0 mixing (2) leads to unavoidable bounds on new
physics degeneracies.

In this work, we develop the formalism that is nec-
essary to obtain these unavoidable bounds, explain the
qualitative implications and derive the actual quantita-
tive constraints from the present experimental bounds.

Theoretical and experimental background. The
e⇤ects of new physics at a high scale ⇥NP ⇧ mW on low
energy phenomena can be expressed in terms of an ef-
fective Hamiltonian, composed of Standard Model (SM)
fields and obeying the SM symmetries. In particular,
four-quark operators contribute to �S = 2 and �C = 2
processes. We are interested in the operators that involve

only quark doublets:

1
⇥2

NP

�
zsd(dL�µsL)(dL�µsL) + zcu(uL�µcL)(uL�µcL)

⇥
.

(3)
We constrain new physics by requiring that contributions
of the form (3) do not exceed the experimental value
of �mK and the one-sigma upper bounds on �mD and
on CP violation in D0 � D0 mixing. As concerns ⇥K ,
since the SM contribution has only little uncertainties
and should be taken into account, we require that the new
physics is smaller than 0.6 times the experimental bound
[4]. We update the calculations of Ref. [5] (the details are
presented in [3]) and obtain the following upper bounds
on |zsd| and |zcu|:

|zsd| ⌅ zK
exp = 8.8⇥ 10�7

⇤
⇥NP

1 TeV

⌅2

,

|zcu| ⌅ zD
exp = 5.9⇥ 10�7

⇤
⇥NP

1 TeV

⌅2

, (4)

and on Im(zsd) and Im(zcu):

Im(zsd) ⌅ zIK
exp = 3.3⇥ 10�9

⇤
⇥NP

1 TeV

⌅2

,

Im(zcu) ⌅ zID
exp = 1.0⇥ 10�7

⇤
⇥NP

1 TeV

⌅2

. (5)

When e⇤ects of SU(2)L breaking are small, the terms
that lead to zsd and zcu have the form

1
⇥2

NP

(QLi(XQ)ij�µQLj)(QLi(XQ)ij�
µQLj), (6)

where XQ is an hermitian matrix. The matrix XQ pro-
vides a source of flavor violation beyond the Yukawa ma-
trices of the SM, Yd and Yu:

QLi(Yd)ijdj⇧d + QLi(Yu)ijuj⇧u. (7)

Here ⇧d,u are Higgs doublets of opposite hypercharges.
(Within the SM, ⇧u = ⌅2⇧

†
d.) Without loss of generality,

we can choose to work in a basis where

Yd = ⇤d, Yu = V †⇤u, XQ = V †
d ⇤QVd, (8)

Assuming SU(2)L  :

A 2-gen’ case, 3 adjoints yield CPV:

3

where

v̂⇥ =

⌃

⌦�
cos 2⌅c 0 � sin 2⌅c

0 1 0
sin 2⌅c 0 cos 2⌅c

⌥

↵ v̂. (20)

Our formalism is motivated by the fact that it puts all
CPV in v̂2. The v̂2 parameter is the projection of XQ

onto the direction perpendicular to the 1�3 plane where,
without loss of generality, YDY †

D and YUY †
U reside. This

can be clearly seen from the expression for the Jarlskog
invariant for our framework:

J = Tr
�

X
�
YDY †

D, YUY †
U

�✏
(21)

= i(y2
s � Y 2

D)(y2
c � Y 2

U )�12 sin 2⌅c v̂2.

Using this parametrization, we obtain

zsd = �2
12(v̂1 � iv̂2)2, (22)

zcu = �2
12(cos 2⌅cv̂1 � sin 2⌅cv̂3 � iv̂2)2. (23)

Note that, among the three v̂i, there are only two inde-
pendent parameters. We thus study the constraints as a
function of

sin ⇥ ⇤ v̂2 ⌥ [0, 1], (24)

sin � ⇤ v̂1⇣
v̂2
1 + v̂2

3

⌥ [�1, 1].

In terms of � and ⇥, we obtain

|zsd| = �2
12

�
cos2 ⇥ sin2 � + sin2 ⇥

⇥
, (25)

|zcu| = �2
12

�
cos2 ⇥ sin2(�� 2⌅c) + sin2 ⇥

⇥
,

Im(zsd) = ��2
12 sin� sin 2⇥,

Im(zcu) = ��2
12 sin(�� 2⌅c) sin 2⇥.

As a first check of our results, note that when we take
⇥ = 0, we reproduce Eq. (13). (The identification of �
with 2⌅d is correct only in the CPC case.) The bound
(17) remains the weakest bound on the flavor degeneracy.
In the presence of a CPV phase in Vd, the bound becomes
stronger. The weakest �12-bound as a function of sin ⇥
is presented in Fig. 1.

At 0.03 ⇧< | sin ⇥| ⇧< 0.98, the constraints from the CPV
observables are dominant, and the combination of zIK

exp

and zID
exp is responsible for the unavoidable bound on �12.

Defining

rI
KD ⇤ zIK

exp/zID
exp, (26)

the weakest bound on �12 corresponds to

tan� =
rI
KD sin 2⌅c

1 + rI
KD cos 2⌅c

, (27)

and is given by

�2
12 ⌅

zID
exp

sin 2⌅c sin 2⇥

⌘
1 + rI2

KD + 2rI
KD cos 2⌅c. (28)

Using Eq. (5), we find that the weakest bound occurs at
sin� ⌃ 0.014 and it is given by

�12 ⌅
4.8⇥ 10�4

↵
sin 2⇥

⇤
�NP

1 TeV

⌅
. (29)

Eq. (29) explains the sin ⇥ dependence of the curve in
Fig. 1 in the relevant range.

Comparison with Eq. (17) reveals the power of the
upper bound on CPV in D0�D0 mixing in constraining
the flavor structure of new physics. For maximal phases
(sin 2⇥ = 1), it implies degeneracy stronger by a fac-
tor of 8 compared to the bound from CPC observables.
For �NP ⌅ 1 TeV and large phases, the flavor-diagonal
and flavor-degeneracy factors should provide a suppres-
sion stronger than O(10�3). With loop suppression of
order ⇧12 ⇧ �2, the degeneracy should be stronger than
0.02.

Supersymmetry. An explicit example of the con-
straints on new physics parameters obtained by combin-
ing measurements of K0 � K0 mixing and of D0 � D0

mixing is provided by supersymmetry. Any supersym-
metric model generates the operator (6) via box diagrams
with intermediate gluinos and squark-doublets. The var-
ious factors that enter zsd and zcu can be identified as
follows:

�NP = m̃Q ⇤ (mQ̃1
+ mQ̃2

)/2,

⇧2
12 =

�2
s

54
g(m2

g̃/m̃2
Q),

⇤12 = (mQ̃2
�mQ̃1

)/(mQ̃1
+ mQ̃2

), (30)

where mQ̃i
is the squark-doublet mass, mg̃ is the gluino

mass, and g(m2
g̃/m̃2

Q) is a known function (see e.g. [6])
with, for example g(1) = 1. Taking m̃Q ⌅ 1 TeV, and
mg̃ ⌃ m̃Q (which gives ⇧12 ⌃ 0.014), leads to

mQ̃2
�mQ̃2

mQ̃1
+ mQ̃2

⌅
⇧

0.034 maximal phases
0.27 vanishing phases

(31)

FIG. 1: The weakest �12-bound as function of sin �.

Notice that:

Figure 1: The contribution of X
Q

to K0 °K0 mixing, ¢m
K

, given by the solid blue line. In
the down mass basis, Â

d

corresponds to æ3, Ĵ is æ2 and Ĵ
d

is æ1.

Next we discuss CPV, which is given by

Im
≥

zK,D

1

¥

= 2
≥

X
Q

· Ĵ
¥≥

X
Q

· Ĵ
u,d

¥

. (7)

The above expression is easy to understand in the down basis, for instance. In addition to
diagonalizing A

d

, we can also choose A
u

to reside in the æ1 ° æ3 plane (Fig. 2) without loss of
generality, since there is no CPV in the SM for two generations. As a result, all of the potential
CPV originates from X

Q

in this basis. zK

1 is the square of the oÆ-diagonal element in X
Q

,
(X

Q

)12, thus Im
°

zK

1

¢

is simply twice the real part (æ1 component) times the imaginary part

(æ2 component). In this basis we have Ĵ / æ1 and Ĵ
d

/ æ2, this proves the validity of Eq. (7).

Figure 2: CP violation in the Kaon system induced by X
Q

. Im(zK

1 ) is twice the product of the
two solid orange lines, which are the projections of X

Q

on the Ĵ and Ĵ
d

axes. Note that the
angle between A

d

and A
u

is twice the Cabibbo angle, µ
C

.

The weakest unavoidable bound coming from measurements in the K and D systems was
derived in [6] using a specific parameterization of X

Q

. In the covariant bases defined in Eq. (5),
X

Q

can be written as
X

Q

= Xu,dÂ
u,d

+ XJ Ĵ + XJu,d Ĵ
u,d

, (8)

and the two bases are related through

Xu = cos 2µCXd ° sin 2µCXJd , XJu = ° sin 2µCXd ° cos 2µCXJd , (9)

while XJ remains invariant. Plugging Eqs. (8) and (9) into Eqs. (6) and (7), we obtain explicit
results. It is then easy to see that in the parameterization employed in [6], §12 sin ∞ is equal to
XJ , §12 sin Æ cos ∞ is equal to XJd etc., therefore their results coincide with ours.

4

Projection of XQ onto

ˆJ is measuring the physical CPV phase.

Special role of “CPV” direction
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a cross product and an angle between two vectors, all of which are basis
independent‡:

| ~A| ⌘
r

1
2
tr(A2) , ~A · ~B ⌘ 1

2
tr(A B) , ~A⇥ ~B ⌘ � i

2
[A, B] ,

cos(✓AB) ⌘
~A · ~B

| ~A|| ~B|
=

tr(A B)
p

tr(A2)tr(B2)
.

(38)

These definitions allow for an intuitive understanding of the flavor and
CP violation induced by a new physics source, based on simple geometric
terms. Consider a dimension six SU(2)L-invariant operator, involving only
quark doublets,

C
1

⇤2

NP

O
1

=
1

⇤2

NP

⇥

Qi(XQ)ij�µQj

⇤ ⇥

Qi(XQ)ij�
µQj

⇤

, (39)

where ⇤
NP

is some high energy scale.§ XQ is a traceless hermitian matrix,
transforming as an adjoint of SU(3)Q (or SU(2)Q for two generations), so it
“lives” in the same space as AQd and AQu . In the down sector for example,
the operator above is relevant for flavor violation through K�K mixing. To
analyze its contribution, we define a covariant orthonormal basis for each
sector, with the following unit vectors

ÂQu,Qd ⌘
AQu,Qd

�

�AQu,Qd

�

�

, Ĵ ⌘ AQd ⇥AQu

�

�AQd ⇥AQu

�

�

, Ĵu,d ⌘ ÂQu,Qd ⇥ Ĵ . (40)

Then the contribution of the operator in Eq. (39) to �c, s = 2 processes is
given by the misalignment between XQ and AQu,Qd , which is equal to

�

�

�

CD,K
1

�

�

�

=
�

�

�

XQ ⇥ ÂQu,Qd

�

�

�

2

. (41)

This result is manifestly invariant under a change of basis. The meaning
of Eq. (41) can be understood as follows: We can choose an explicit basis,
for example the down mass basis, where AQd is proportional to �

3

. �s = 2
transitions are induced by the o↵-diagonal element of XQ, so that

�

�CK
1

�

� =
|(XQ)

12

|2. Furthermore, |(XQ)
12

| is simply the combined size of the �
1

and
�

2

components of XQ. Its size is given by the length of XQ times the sine of

‡The factor of �i/2 in the cross product is required in order to have the standard

geometrical interpretation
˛̨
˛ ~

A⇥ ~

B

˛̨
˛ = | ~

A|| ~B| sin ✓AB , with ✓AB defined through the scalar

product as in Eq. (38).
§This use of e↵ective field theory to describe NP contributions will be explained in detail
in the next section. Note also that we employ here a slightly di↵erent notation, more
suitable for the current needs, than in the next section.
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the angle between XQ and AQd (see Fig. 6). This is exactly what Eq. (41)
describes.

Fig. 6. The contribution of XQ to K

0�K

0 mixing, �mK , given by the solid blue line.

In the down mass basis, ÂQd

corresponds to �3, Ĵ is �2 and Ĵd is �1. The figure is taken

from.59

Fig. 6. The contribution of XQ to K

0 �K

0 mixing, �mK , given by the solid blue line. In the down mass basis, ÂQd

corresponds to �3, Ĵ is �2 and Ĵd is �1. The figure is taken from.59

Next we discuss CPV, which is given by

Im
⇣

CK,D
1

⌘

= 2
⇣

XQ · Ĵ
⌘ ⇣

XQ · Ĵu,d

⌘

. (42)

The above expression is easy to understand in the down basis, for instance.
In addition to diagonalizing AQd , we can also choose AQu to reside in the
�

1

� �
3

plane (Fig. 7) without loss of generality, since there is no CPV in
the SM for two generations. As a result, all of the potential CPV originates
from XQ in this basis. CK

1

is the square of the o↵-diagonal element in XQ,
(XQ)

12

, thus Im
�

CK
1

�

is simply twice the real part (�
1

component) times
the imaginary part (�

2

component). In this basis we have Ĵ / �
1

and
Ĵd / �

2

, this proves the validity of Eq. (42).
An interesting conclusion can be inferred from the analysis above: In

addition to the known necessary condition for CPV in two generation23

XJ / tr
�

XQ

⇥

AQd , AQu

⇤�

6= 0 , (43)

we identify a second necessary condition, exclusive for �F = 2 processes:

XJ
u,d / tr

�

XQ

⇥

AQu,Qd ,
⇥

AQd , AQu

⇤⇤�

6= 0 , (44)
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a cross product and an angle between two vectors, all of which are basis
independent‡:

| ~A| ⌘
r

1
2
tr(A2) , ~A · ~B ⌘ 1

2
tr(A B) , ~A⇥ ~B ⌘ � i

2
[A, B] ,

cos(✓AB) ⌘
~A · ~B

| ~A|| ~B|
=

tr(A B)
p

tr(A2)tr(B2)
.

(38)

These definitions allow for an intuitive understanding of the flavor and
CP violation induced by a new physics source, based on simple geometric
terms. Consider a dimension six SU(2)L-invariant operator, involving only
quark doublets,

C
1

⇤2

NP

O
1

=
1

⇤2

NP

⇥

Qi(XQ)ij�µQj

⇤ ⇥

Qi(XQ)ij�
µQj

⇤

, (39)

where ⇤
NP

is some high energy scale.§ XQ is a traceless hermitian matrix,
transforming as an adjoint of SU(3)Q (or SU(2)Q for two generations), so it
“lives” in the same space as AQd and AQu . In the down sector for example,
the operator above is relevant for flavor violation through K�K mixing. To
analyze its contribution, we define a covariant orthonormal basis for each
sector, with the following unit vectors

ÂQu,Qd ⌘
AQu,Qd

�

�AQu,Qd

�

�

, Ĵ ⌘ AQd ⇥AQu

�

�AQd ⇥AQu

�

�

, Ĵu,d ⌘ ÂQu,Qd ⇥ Ĵ . (40)

Then the contribution of the operator in Eq. (39) to �c, s = 2 processes is
given by the misalignment between XQ and AQu,Qd , which is equal to

�

�

�

CD,K
1

�

�

�

=
�

�

�

XQ ⇥ ÂQu,Qd

�

�

�

2

. (41)

This result is manifestly invariant under a change of basis. The meaning
of Eq. (41) can be understood as follows: We can choose an explicit basis,
for example the down mass basis, where AQd is proportional to �

3

. �s = 2
transitions are induced by the o↵-diagonal element of XQ, so that

�

�CK
1

�

� =
|(XQ)

12

|2. Furthermore, |(XQ)
12

| is simply the combined size of the �
1

and
�

2

components of XQ. Its size is given by the length of XQ times the sine of

‡The factor of �i/2 in the cross product is required in order to have the standard

geometrical interpretation
˛̨
˛ ~

A⇥ ~

B

˛̨
˛ = | ~

A|| ~B| sin ✓AB , with ✓AB defined through the scalar

product as in Eq. (38).
§This use of e↵ective field theory to describe NP contributions will be explained in detail
in the next section. Note also that we employ here a slightly di↵erent notation, more
suitable for the current needs, than in the next section.
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the angle between XQ and AQd (see Fig. 6). This is exactly what Eq. (41)
describes.

Fig. 6. The contribution of XQ to K

0�K

0 mixing, �mK , given by the solid blue line.

In the down mass basis, ÂQd

corresponds to �3, Ĵ is �2 and Ĵd is �1. The figure is taken

from.59

Fig. 6. The contribution of XQ to K

0 �K

0 mixing, �mK , given by the solid blue line. In the down mass basis, ÂQd

corresponds to �3, Ĵ is �2 and Ĵd is �1. The figure is taken from.59

Next we discuss CPV, which is given by

Im
⇣

CK,D
1

⌘

= 2
⇣

XQ · Ĵ
⌘ ⇣

XQ · Ĵu,d

⌘

. (42)

The above expression is easy to understand in the down basis, for instance.
In addition to diagonalizing AQd , we can also choose AQu to reside in the
�

1

� �
3

plane (Fig. 7) without loss of generality, since there is no CPV in
the SM for two generations. As a result, all of the potential CPV originates
from XQ in this basis. CK

1

is the square of the o↵-diagonal element in XQ,
(XQ)

12

, thus Im
�

CK
1

�

is simply twice the real part (�
1

component) times
the imaginary part (�

2

component). In this basis we have Ĵ / �
1

and
Ĵd / �

2

, this proves the validity of Eq. (42).
An interesting conclusion can be inferred from the analysis above: In

addition to the known necessary condition for CPV in two generation23

XJ / tr
�

XQ

⇥

AQd , AQu

⇤�

6= 0 , (43)

we identify a second necessary condition, exclusive for �F = 2 processes:

XJ
u,d / tr

�

XQ

⇥

AQu,Qd ,
⇥

AQd , AQu

⇤⇤�

6= 0 , (44)

(Sorry Au,d ⌘ AQu,Qd)

Adding constraints from CPV 
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Plugging Eqs. (78) and (79) into Eq. (41), we obtain expressions for the
contribution of XQ to �mK and �mD, without CPV,

CK
1

= L2

h

�

XJ
�

2

+
�

XJ
d

�

2

i

,

CD
1

=
L2

2

h

2
�

XJ
�

2

+
�

Xd
�

2

+
�

XJ
d

�

2

+
⇣

�

XJ
d

�

2 �
�

Xd
�

2

⌘

cos(4✓
C

) + 2XdXJ
d sin(4✓

C

)
i

.

(82)

In order to minimize both contributions, we first need to set XJ = 0. Next
we define

tan↵ ⌘ XJ
d

Xd
, rKD ⌘

v

u

u

t

�

CK
1

�

exp

�

CD
1

�

exp

, (83)

where the experimental constraints
�

CK
1

�

exp

and
�

CD
1

�

exp

can be extracted
from Table ??. Then the weakest bound is obtained for

tan↵ =
rKD sin(2✓

C

)
1 + rKD cos(2✓

C

)
, (84)

and is given by

L  3.8⇥ 10�3

✓

⇤
NP

1 TeV

◆

. (85)

A similar process can be carried out for the CPV in K and D mixing,
by plugging Eqs. (78) and (79) into Eq (42). Now we do not set XJ = 0,
otherwise there would be no CPV (since XQ would reside in the same plane
as AQd and AQu). Moreover, there are many types of models in which we
can tweak the alignment, but we do not control the phase (we do not expect
the NP to be CP-invariant), hence they might give rise to CPV. The weakest
bound in this case, as a function of XJ , is given by

L  3.4⇥ 10�4

h

(XJ)2 � (XJ)4
i

1/4

✓

⇤
NP

1 TeV

◆

. (86)

The combination of the above two bounds is presented in Fig. 10.
We should note that L is simply the di↵erence between the eigenvalues

of XQ (see Eq. (81)), thus the bounds above put limits on the degeneracy
of the NP contribution.

.
YdY

†
d

.
YuY †

u

)
.
2�C

.
XQ

)
.
2�d

ÂQd

Ĵd

May 18, 2010 22:30 WSPC - Proceedings Trim Size: 9in x 6in TASI˙flavor˙final˙ws

35

mass basis. In general, low energy measurements can only constrain the
product of these two factors. An interesting exception occurs, however, for
the left-left (LL) operators of the type defined in Eq. (39), where there is
an independent constraint on the level of degeneracy.23 The crucial point
is that operators involving only quark doublets cannot be simultaneously
aligned with both the down and the up mass bases. For example, we can
take XQ from Eq. (39) to be proportional to AQd . Then it would be diagonal
in the down mass basis, but it would induce flavor violation in the up sector.
Hence, these types of theories can still be constrained by measurements. The
“best” alignment is obtained by choosing the NP contribution such that it
would minimize the bounds from both sectors. The strength of the resulting
constraint, which is the weakest possible one, is that it is unavoidable in
the context of theories with only one set of quark doublets. Here we briefly
discuss this issue, and demonstrate how to obtain such bounds.

5.2.1. Two generation �F = 2 transitions

As mentioned before, the strongest experimental constraints involve transi-
tions between the first two generations. When studying NP e↵ects, ignoring
the third generation is often a good approximation to the physics at hand.
Indeed, even when the third generation does play a role, a two generations
framework is applicable, as long as there are no strong cancelations with
contributions related to the third generation. Hence, for this analysis we
can use the formalism of Sec. (4.1).

The operator defined in Eq. (39), when restricted to the first two gen-
erations, induces mixing in the K and D systems, and possibly also CP
violation. We can use the covariant bases defined in Eq. (40) to parameter-
ize XQ,

XQ = L
⇣

Xu,dÂQu,Qd + XJ Ĵ + XJ
u,d Ĵu,d

⌘

, (78)

and the two bases are related through

Xu = cos 2✓
C

Xd� sin 2✓
C

XJ
d , XJ

u = � sin 2✓
C

Xd� cos 2✓
C

XJ
d , (79)

while XJ remains invariant. We choose the Xi coe�cients to be normalized,
�

Xd
�

2

+
�

XJ
�

2

+
�

XJ
d

�

2

= (Xu)2 +
�

XJ
�

2

+
�

XJ
u

�

2

= 1 , (80)

such that L signifies the “length” of XQ under the definitions in Eq. (38),

L = |XQ| =
�

X2

Q �X1

Q

�

/2 , (81)

where X1,2
Q are the eigenvalues of XQ before removing the trace.

a flavor diagonal quantity.
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Plugging Eqs. (78) and (79) into Eq. (41), we obtain expressions for the
contribution of XQ to �mK and �mD, without CPV,

CK
1

= L2

h
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2

+
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XJ
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2

i

,

CD
1

=
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2

h

2
�
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�

2

+
�
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2

+
�

XJ
d

�

2

+
⇣
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XJ
d

�

2 �
�

Xd
�

2

⌘

cos(4✓
C

) + 2XdXJ
d sin(4✓

C

)
i

.

(82)

In order to minimize both contributions, we first need to set XJ = 0. Next
we define

tan↵ ⌘ XJ
d

Xd
, rKD ⌘

v

u

u

t

�

CK
1

�

exp

�

CD
1

�

exp

, (83)

where the experimental constraints
�

CK
1

�

exp

and
�

CD
1

�

exp

can be extracted
from Table ??. Then the weakest bound is obtained for

tan↵ =
rKD sin(2✓

C

)
1 + rKD cos(2✓

C

)
, (84)

and is given by

L  3.8⇥ 10�3

✓

⇤
NP

1 TeV

◆

. (85)

A similar process can be carried out for the CPV in K and D mixing,
by plugging Eqs. (78) and (79) into Eq (42). Now we do not set XJ = 0,
otherwise there would be no CPV (since XQ would reside in the same plane
as AQd and AQu). Moreover, there are many types of models in which we
can tweak the alignment, but we do not control the phase (we do not expect
the NP to be CP-invariant), hence they might give rise to CPV. The weakest
bound in this case, as a function of XJ , is given by

L  3.4⇥ 10�4

h

(XJ)2 � (XJ)4
i

1/4

✓

⇤
NP

1 TeV

◆

. (86)

The combination of the above two bounds is presented in Fig. 10.
We should note that L is simply the di↵erence between the eigenvalues

of XQ (see Eq. (81)), thus the bounds above put limits on the degeneracy
of the NP contribution.
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Fig. 10. The weakest upper bound on L coming from flavor and CPV in the K and D

systems, as a function of the CP violating parameter X

J , assuming ⇤NP = 1 TeV. The
figure is taken from.23

Fig. 10. The weakest upper bound on L coming from flavor and CPV in the K and D systems, as a function of the CP violating parameter X

J , assuming ⇤NP = 1 TeV. The figure is taken from.23

5.2.2. Third generation �F = 1 transitions

Similar to the analysis of the previous subsection, we can use other types of
processes to obtain model independent constrains on new physics. Here we
consider flavor violating decays of third generation quarks in both sectors,
utilizing the three generations framework discussed in Sec. 4.2. Since the
existing bound on top decay is rather weak, we use the projection for the
LHC bound, assuming that no positive signal is obtained.

We focus on the following operator

Oh
LL = i

⇥

Qi�
µ(XQ)ijQj

⇤

h

H†

 !
D µH

i

+ h.c. , (87)

which contributes at tree level to both top and bottom decays.83 We omit
an additional operator for quark doublets, Ou

LL = i
h

Q
3

H̃
i h

�

D/H̃
�

†

Q
2

i

�

i
h

Q
3

�

D/H̃
�

i h

H̃†Q
2

i

, which induces bottom decays only at one loop, but in
principle it should be included in a more detailed analysis.

Blum-Grossman-Nir-Perez (09)
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q ij (⇥q
ij)MM ⌃⇥q

ij⌥
d 12 0.03 0.002
d 13 0.2 0.07
d 23 0.6 0.2
u 12 0.1 0.008

Table 4: The phenomenological upper bounds on (⇥q
ij)MM and on ⌃⇥q

ij⌥, where q = u, d and
M = L, R. The constraints are given for m̃q = 1 TeV and x ⇤ m2

g̃/m̃
2
q = 1. We assume that

the phases could suppress the imaginary parts by a factor ⇧ 0.3. The bound on (⇥d
23)RR is about

3 times weaker than that on (⇥d
23)LL (given in table). The constraints on (⇥d

12,13)MM , (⇥u
12)MM

and (⇥d
23)MM are based on, respectively, Refs. [143], [17] and [144].

q ij (⇥q
ij)LR

d 12 2⇥ 10�4

d 13 0.08
d 23 0.01
d 11 4.7⇥ 10�6

u 11 9.3⇥ 10�6

u 12 0.02

Table 5: The phenomenological upper bounds on chirality-mixing (⇥q
ij)LR, where q = u, d. The

constraints are given for m̃q = 1 TeV and x ⇤ m2
g̃/m̃

2
q = 1. The constraints on ⇥d

12,13, ⇥u
12, ⇥d

23

and ⇥q
ii are based on, respectively, Refs. [143], [17], [144] and [147] (with the relation between

the neutron and quark EDMs as in [148]).

For large tan �, some constraints are modified from those in Table 4. For instance, the
e⇥ects of neutral Higgs exchange in Bs and Bd mixing give, for tan � = 30 and x = 1 (see [140,
145, 146] and refs. therein for details):

⌃⇥d
13⌥ < 0.01

�
MA0

200 GeV

⇥
, ⌃⇥d

23⌥ < 0.04

�
MA0

200 GeV

⇥
, (132)

where MA0 denotes the pseudoscalar Higgs mass, and the above bounds scale roughly as
(30/ tan �)2.

The experimental constraints on the (⇥q
ij)LR parameters in the quark-squark sector are

presented in Table 5. The bounds are the same for (⇥q
ij)LR and (⇥q

ij)RL, except for (⇥d
12)MN ,

where the bound for MN = LR is 10 times weaker. Very strong constraints apply for the
phase of (⇥q

11)LR from EDMs. For x = 4 and a phase smaller than 0.1, the EDM constraints on
(⇥u,d,�

11 )LR are weakened by a factor ⇧ 6.
While, in general, the low energy flavor measurements constrain only the combinations of

the suppression factors from degeneracy and from alignment, such as Eq. (130), an interesting
exception occurs when combining the measurements of K0–K0 and D0–D0 mixing to test the
first two generation squark doublets (based on the analysis in Sec. 5.2.1). Here, for masses
below the TeV scale, some level of degeneracy is unavoidable [23]:

m eQ2
�m eQ1

m eQ2
+ m eQ1

⌅
⇤

0.034 maximal phases

0.27 vanishing phases
(133)

Similarly, using �F = 1 processes involving the third generation (Sec. 5.2.2), the following

42

Taking [29] m̃Q = 1
2(m̃Q1 + m̃Q2) and similarly for the SU(2)-singlet squarks, we find that

we thus have an upper bound on the splitting between the first two squark generations:

mQ̃2
�mQ̃1

mQ̃2
+ mQ̃1

⇥< 0.05� 0.14,

mũ2 �mũ1

mũ2 + mũ1
⇥< 0.02� 0.04. (6.12)

The first bound applies to the up squark doublets, while the second to the average of the

doublet mass splitting and the singlet mass splitting. The range in each of the bounds

corresponds to values of the phase between zero and maximal. We can thus make the

following conclusions concerning models of alignment:

1. The mass splitting between the first two squark doublet generations should be below

14%. For phases of order one, the bound is about 2� 3 times stronger.

2. In the simplest models of alignment, the mass splitting between the first two squark

generations should be smaller than about four percent.

3. The second (stronger) bound can be avoided in more complicated models of alignment,

where holomorphic zeros suppress the mixing in the singlet sector.

4. While RGE e⇥ects can provide some level of universality, even for anarchical boundary

conditions, the upper bound (6.12) requires not only a high scale of mediation [30] but

also that, at the scale of mediation, the gluino mass is considerably higher than the

squark masses.

In any model where the splitting between the first two squark doublet generations is larger

than O(y2
c ), |K

uL
21 �KdL

21 | = sin ⇥c = 0.23. Given the constraints from �mK and �K on |KdL
12 |,

one arrives at a constraint very similar to the first bound in Eq. (6.12). We conclude that

the constraints on the level of degeneracy between the squark doublets (stronger than five

to fourteen percent) applies to any supersymmetric model where the mass of the first two

squark doublet generations is below TeV. It is suggestive that the mechanism that mediates

supersymmetry breaking is flavor-universal, as in gauge mediation.

13

(squark doublets, 1TeV)                                                

SUSY implications, naively looks like alignment is dead!!

However ...  

With phases, first 2 gen’ squark need to have 
almost equal masses.

Looks like squark anarchy/alignment is dead!

What is XQ in the SUSY case?

Blum-Grossman-Nir-Perez (09)
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Degeneracy of Squarks 

NPKI workshop 17 

How do successful alignment models look like?

• The	
  maximal	
  phase	
  case	
  does	
  not	
  correspond	
  to	
  an	
  
alignment	
  model.
• Alignment	
  makes	
  both	
  real	
  and	
  imaginary	
  parts	
  small.

wrong                          correct

Gedalia, Kamenik, Ligeti & GP (12)  

Imaginary part is universal => successful alignment models => 
small physical CP phase!
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FIG. 1: The bound on �

12
Q as a function of the angle ↵ (see text). The angle ↵ is plotted on a log scale in the basis �C = 0.23,

so that a value of 1 on the x axis corresponds to ↵ = �C (large angle), while a value of 5 gives ↵ = �

5
C (small angle — down

alignment). The vertical doted line shows the angle of optimal alignment (weakest bound). The red (blue) shaded region
corresponds to a gluino mass mg̃ of 1 (1.5) TeV, and inside each region the average squark mass m̄Q̃ is varied in the range
[0.8mg̃, 1.2mg̃]. The upper edge of each region (weakest bound) comes from the lowest m̄Q̃ . The two dashed lines correspond
to m̄Q̃ = mg̃ .

is shown in Fig. 1 as a function of the angle ↵, for various ranges of the relevant SUSY parameters (see the caption).
It can be seen that on the right-hand side of the plot, where the angle is very small (down alignment), the strongest
constraint comes from �mD , while on the left hand side, where the angle is large, ✏K is the dominant constraint.
The vertical dashed line marks the transition point, where the alignment is optimal, yet as evident from the plot,
making the angle smaller only mildly a↵ects the bound on �12Q . For the case where the gluino mass and the average
squark mass are both 1 TeV, the weakest bound is �12Q . 0.13. This occurs around log� ↵ ⇠ 2.5, so the universal CP

violating phase is of order �2.5
C . This implies an upper bound on CP violation in D �D mixing of order 0.2, around

the current experimental limit on
��|q/p|� 1

�� [32], which is expected to be improved significantly in the near future.
It is interesting that a modest level of degeneracy can be obtained only from the renormalization group equation

(RGE) flow, when starting from anarchy at the SUSY breaking mediation scale [33]. Moreover, in order to satisfy
the bounds on degeneracy from optimal alignment models, as presented in Fig. 1, the mediation scale does not have
to be very high. To show this, we use the SUSY RGE for the diagonal squark mass entries, which is dominated by
the gluino contribution. Neglecting the other gaugino contributions, we can solve the relevant equations at one loop
analytically

1

↵s(MS)
=

1

↵s(⇤)
+

b
3

2⇡
ln

⇤

MS
, (25)

mg̃(⇤)

mg̃(MS)
= 1 + ↵s(⇤)

b
3

2⇡
ln

⇤

MS
, (26)

m2

˜Q1,2
(MS)�m2

˜Q1,2
(⇤) =

8

3b
3

⇥
mg̃(⇤)

2 �mg̃(MS)
2

⇤
, (27)

where ⇤ is the typical scale of the new supersymmetric particles (taken to be 1 TeV), MS is the SUSY breaking
mediation scale, b

3

= �3 is the MSSM QCD beta function and the last equation is written in the squark mass basis.
In addition, we define

P
m2

˜Q
(µ) = m2

˜Q1
(µ) +m2

˜Q2
(µ) and �m2

˜Q
(µ) = m2

˜Q2
(µ)�m2

˜Q1
(µ). Then in our approximation,

only
P

m2 has a nontrivial RGE evolution, while �m2 is invariant. Writing

�12Q (µ) =
�m2

˜Q
(µ)

P
m2

˜Q
(µ)

h
1 +

r
1�

⇣
�m2

˜Q
(µ)/

P
m2

˜Q
(µ)

⌘
2

i , (28)
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It can be seen that on the right-hand side of the plot, where the angle is very small (down alignment), the strongest
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squark mass are both 1 TeV, the weakest bound is �12Q . 0.13. This occurs around log� ↵ ⇠ 2.5, so the universal CP
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C . This implies an upper bound on CP violation in D �D mixing of order 0.2, around

the current experimental limit on
��|q/p|� 1

�� [32], which is expected to be improved significantly in the near future.
It is interesting that a modest level of degeneracy can be obtained only from the renormalization group equation

(RGE) flow, when starting from anarchy at the SUSY breaking mediation scale [33]. Moreover, in order to satisfy
the bounds on degeneracy from optimal alignment models, as presented in Fig. 1, the mediation scale does not have
to be very high. To show this, we use the SUSY RGE for the diagonal squark mass entries, which is dominated by
the gluino contribution. Neglecting the other gaugino contributions, we can solve the relevant equations at one loop
analytically
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where ⇤ is the typical scale of the new supersymmetric particles (taken to be 1 TeV), MS is the SUSY breaking
mediation scale, b

3

= �3 is the MSSM QCD beta function and the last equation is written in the squark mass basis.
In addition, we define

P
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(µ) +m2
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(µ) and �m2
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(µ). Then in our approximation,

only
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FIG. 1: The bound on �

12
Q as a function of the angle ↵ (see text). The angle ↵ is plotted on a log scale in the basis �C = 0.23,

so that a value of 1 on the x axis corresponds to ↵ = �C (large angle), while a value of 5 gives ↵ = �

5
C (small angle — down

alignment). The vertical doted line shows the angle of optimal alignment (weakest bound). The red (blue) shaded region
corresponds to a gluino mass mg̃ of 1 (1.5) TeV, and inside each region the average squark mass m̄Q̃ is varied in the range
[0.8mg̃, 1.2mg̃]. The upper edge of each region (weakest bound) comes from the lowest m̄Q̃ . The two dashed lines correspond
to m̄Q̃ = mg̃ .

is shown in Fig. 1 as a function of the angle ↵, for various ranges of the relevant SUSY parameters (see the caption).
It can be seen that on the right-hand side of the plot, where the angle is very small (down alignment), the strongest
constraint comes from �mD , while on the left hand side, where the angle is large, ✏K is the dominant constraint.
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where ⇤ is the typical scale of the new supersymmetric particles (taken to be 1 TeV), MS is the SUSY breaking
mediation scale, b
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We show that new physics that breaks the left-handed SU(3)Q quark flavor symmetry induces
contributions to CP violation in �F = 1 processes which are approximately universal, in that
they are not a↵ected by flavor rotations between the up and the down mass bases. Therefore,
such flavor violation cannot be aligned, and is constrained by the strongest bound from either
the up or the down sectors. We use this result to show that the bound from ✏

0
/✏ prohibits an

SU(3)Q breaking explanation of the recent LHCb evidence for CP violation in D meson decays.
Another consequence of this universality is that supersymmetric alignment models with a moderate
mediation scale are consistent with the data, and are harder to probe via CP violating observables.
With current constraints, therefore, squarks need not be degenerate. However, future improvements
in the measurement of CP violation in D �D mixing will start to probe alignment models.

I. INTRODUCTION

Measurements of flavor-changing neutral-current (FCNC) processes in the quark sector put strong constraints on
New Physics (NP) at the TeV scale and provide a crucial guide for model building. Generically, NP models can avoid
existing bounds by aligning the flavor structure with one of the quark Yukawa matrices. However, new flavor breaking
sources involving only the SU(2)L doublet quarks Qi (i.e., breaking only the SU(3)Q quark flavor symmetry) cannot
be simultaneously diagonalized in both the up and the down quark mass bases, and new contributions to FCNCs
are necessarily generated. To constrain such models of flavor alignment, processes involving both up and down type
quark transitions need to be measured. Consequently, one would näıvely conclude that robust constraints on the
corresponding microscopic flavor structures come from the weaker of the bounds in the up and the down sectors.

Below we argue, however, that in a large class of models, contrary to flavor violation in �F = 2 processes [1], in
the case of �F = 1 CP violation, it is the strongest of the up and down sector constraints which applies. We show
that in these scenarios, to a good approximation, the sources of �F = 1 CP violation are universal, namely they do
not transform under flavor rotations between the up and the down mass bases. This is particularly important for the
NP interpretation of the recent LHCb evidence for CP violation in D decays. Employing the ✏0/✏ constraint on new
CP violating �s = 1 operators, we exclude sizable contributions of SU(3)Q breaking NP operators to the direct CP
asymmetries in singly-Cabibbo-suppressed D decays, in particular to �aCP measured by the LHCb experiment [2].

Furthermore, applying our argument to rare semileptonic K and B decays, we show how the present and future
measurements of these processes constrain the sources of CP violation in rare semileptonic D decays and FCNC top
decays. In particular, the observation of non-SM CP asymmetries in these processes would, barring cancellations,
signal the presence of new sources of SU(3)U,D flavor symmetry breaking.

Finally, an additional implication of our result is that in viable flavor alignment models the universal flavor and CP
violating phases are naturally small. Applying this insight to supersymmetric (SUSY) alignment models leads to the
conclusion that the first two generation squarks can have mass splittings as large as 30% at the TeV scale, consistent
with mass anarchy at a supersymmetry breaking mediation scale as low as 10 TeV.

II. UNIVERSALITY OF CP VIOLATION WITH TWO GENERATIONS

It is well known that the gauge sector of the Standard Model (SM) respects a large global flavor symmetry. In the
quark sector, the corresponding flavor group, GF = SU(3)Q ⇥ SU(3)U ⇥ SU(3)D , is broken by the up and the down
Yukawa matrices Yu,d , formally transforming as (3, 3̄, 1) and (3, 1, 3̄) under GF , respectively. From these, one can
construct two independent sources of SU(3)Q breaking,

Au ⌘ (YuY
†
u )/tr , Ad ⌘ (YdY

†
d )/tr , (1)
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corresponding microscopic flavor structures come from the weaker of the bounds in the up and the down sectors.

Below we argue, however, that in a large class of models, contrary to flavor violation in �F = 2 processes [1], in
the case of �F = 1 CP violation, it is the strongest of the up and down sector constraints which applies. We show
that in these scenarios, to a good approximation, the sources of �F = 1 CP violation are universal, namely they do
not transform under flavor rotations between the up and the down mass bases. This is particularly important for the
NP interpretation of the recent LHCb evidence for CP violation in D decays. Employing the ✏0/✏ constraint on new
CP violating �s = 1 operators, we exclude sizable contributions of SU(3)Q breaking NP operators to the direct CP
asymmetries in singly-Cabibbo-suppressed D decays, in particular to �aCP measured by the LHCb experiment [2].

Furthermore, applying our argument to rare semileptonic K and B decays, we show how the present and future
measurements of these processes constrain the sources of CP violation in rare semileptonic D decays and FCNC top
decays. In particular, the observation of non-SM CP asymmetries in these processes would, barring cancellations,
signal the presence of new sources of SU(3)U,D flavor symmetry breaking.

Finally, an additional implication of our result is that in viable flavor alignment models the universal flavor and CP
violating phases are naturally small. Applying this insight to supersymmetric (SUSY) alignment models leads to the
conclusion that the first two generation squarks can have mass splittings as large as 30% at the TeV scale, consistent
with mass anarchy at a supersymmetry breaking mediation scale as low as 10 TeV.

II. UNIVERSALITY OF CP VIOLATION WITH TWO GENERATIONS

It is well known that the gauge sector of the Standard Model (SM) respects a large global flavor symmetry. In the
quark sector, the corresponding flavor group, GF = SU(3)Q ⇥ SU(3)U ⇥ SU(3)D , is broken by the up and the down
Yukawa matrices Yu,d , formally transforming as (3, 3̄, 1) and (3, 1, 3̄) under GF , respectively. From these, one can
construct two independent sources of SU(3)Q breaking,

Au ⌘ (YuY
†
u )/tr , Ad ⌘ (YdY

†
d )/tr , (1)

ar
X

iv
:1

20
2.

50
38

v1
  [

he
p-

ph
]  

22
 F

eb
 2

01
2

(e.g. q̄iq̃j g̃)

Blum et al., 0903.2118

uL aligned ↔ dL aligned

6

operator, O
7

, is also important at small q2. The B ! K⇤`+`� mode is particularly promising, since the distribution
of the K⇤ ! K⇡ decay products allows to extract information about the polarization of the K⇤. When combined
with the angular distributions of the two charged leptons, it is possible to construct observables probing directly CP
violating contributions to the relevant short-distance Wilson coe�cients [23]. Such observables could potentially be
measured at LHCb and SuperB [24]. On the other hand, the direct CP asymmetries depend on strong phases, which
are small in the inclusive B ! Xs`+`� decay (outside the resonance region), and are poorly known in the exclusive
B ! K(⇤)`+`� case. Another probe of this physics could be the study of time-dependent CP asymmetries in these
modes. While these are challenging experimentally, the interpretation of the results would be theoretically cleaner.
The SM predicts that the time-dependent CP asymmetry vanishes, as it does in Bs ! ��, to an even better accuracy
than in Bs !  �, due to a 2�s � 2�s cancellation between the mixing and decay phases. The same cancellation
occurs in NP models in which the mixing amplitude is modified as MSM

12

⇥ R2 and the decay amplitude is modified
as ASM ⇥ R. While this is the case in most supersymmetric models, it is not generic, and is violated, for example,
by models containing a Z 0 which has a flavor changing coupling to quarks and non-universal couplings to quarks and
leptons. (With very large data sets at the upgraded LHCb, a time-dependent Bs ! µ+µ� analysis would also be
worth pursuing.)

To analyze the connection between t ! cZ and FCNC b ! s decays, we need to consider the NP operators
before the Z is integrated out [25]. For example, the operator (b̄s)V�A (H†DH) contributes to Eq. (20), since after
electroweak symmetry breaking H†DµH ! gv2Zµ. Thus the relevant Wilson coe�cient, CH

bs , is constrained from
B ! Xs`+`�, similar to Eq. (22), as

��Im(CH
bs)
�� < 8.7⇥ 10�3 (⇤

NP

/TeV)2. Top decays into final states with a jet and
a pair of charged leptons o↵er a probe of the related (Xu

L)tc and (Xu
L)tu contributions [26]. The expected sensitivity

of this mode with 100 fb�1 at the 14 TeV LHC is |CH
tc(u)| . 0.2 (⇤

NP

/TeV)2 [25, 27], where the relevant operator is

defined as (t̄c(u))V�A (H†DH). According to Eq. (7), we can conclude that barring cancellations, any experimental
signal of CP violation in this channel would have to be due to SU(3)U breaking NP.

V. IMPLICATIONS FOR SUSY MODELS

In SUSY models the left-handed squark mass-squared matrix, m̃2

Q , is the only source of SU(3)Q breaking, and
is approximately SU(2)L invariant (see, e.g., [28] and references therein). In the following we discuss a universal
constraint on m̃2

Q from �F = 1 CP violation. In addition, we consider an example of �F = 2 constraints in relation
to alignment models, where our argument about universality of the CP phase also plays a role. In all cases the bounds
can be directly applied on the corresponding mass insertion parameters.

First we analyze the constraint from ✏0/✏. In the super-CKM basis, the neutral gaugino couplings are flavor
diagonal, while the mass matrices of the squarks are not diagonal in general. New contributions to CP violation
in �F = 1 processes involving left handed quarks are induced by the imaginary o↵-diagonal elements of m̃2

Q , and

can be parameterized in terms of the ratios �ijLL ⌘
�
m̃2

Q

�ij
/ m̄2

˜Q
, where i, j = 1, 2 are flavor indices and m̄

˜Q ⌘
(m

˜Q1
+m

˜Q2
)/2 is the average squark mass (this choice is consistent to linear order with the convention of [29]). The

experimental constraint on new contributions to ✏0/✏ is translated to the following bound on the left-handed mass
insertion parameter [29] Im �12LL  0.5 for m̄

˜Q = mg̃ = 500 GeV . This can be straightforwardly rephrased as a robust
constraint on the level of degeneracy

�12Q ⌘
m

˜Q2
�m

˜Q1

m
˜Q2

+m
˜Q1

 0.25

 
500GeV

m̄
˜Q

!
. (24)

This bound is weaker than the one obtained by combining the bounds from ✏K andD�D mixing [1]. Yet, interestingly,
it could have constrained degeneracy without the need for any additional measurements involving D mesons, more
than 20 years ago already, when the experimental uncertainty of ✏0/✏ approached the 10�3 level [30].

Constraints on alignment models that balance the bounds from mixing and CP violation in the K and D systems
have been analyzed in [1]. Here we comment on their results for supersymmetric models based on our CP universality
argument. According to the parameterization employed in [1], sin↵ (sin 2�) is proportional to the real (imaginary)
part of the o↵-diagonal element of the NP flavor violating source in the down mass basis. CP universality implies that
in the up mass basis, sin 2� still corresponds to the imaginary part, while the real part is rotated by twice the Cabibbo
angle. Equation (31) in [1] gives the bounds on squark mass degeneracy for the cases of vanishing (sin 2� = 0) and
maximal (sin 2� ⇠ 1) phase. We argue that the latter case is irrelevant, since it violates the assumption of alignment.
In contrast, while realistic models of alignment generically do not control the fundamental CP violating phases, they
force both sin↵ and sin 2� to be small, and should therefore be taken to be comparable [31]. This leads to a much
weaker bound than the more stringent one in [1]. In particular, the bound on �12Q from ✏K and �mK for sin↵ ⇠ sin 2�
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Degeneracy of Squarks 

• No strong degeneracy required! 

• Ex.:      =1.3 TeV,       =550 GeV,       =950 GeV 

• This can be generated by*: 
– Anarchy at the SUSY breaking mediation scale 

– SUSY renormalization group flow to the TeV scale 
– Can lead to modest level of degeneracy 

NPKI workshop 19 
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Abstract
We consider the case where the quark mass hierarchy is determined by flavor dynamics

at a high scale. In such a case, under reasonable assumptions, RGE e↵ects yield a binomial
distributions under which there is a preference to obtain either light or heavy fermions.
Assuming a chemistry similar to that of our universe, and imposing the presence of a light
Higgs field the metastability bound implies that a probable spectrum will include either
six light quarks or five light ones and a single heavy one with Yukawa coupling close to
the instability bound, consistent with the observed top mass.

1 Introduction

The recent LHC and Tevaron data [9, 10, 11, 12, 13, 14] hint for the existence of the Higgs boson
with a mass of about 125 GeV. Such a light Higgs is in agreement with the indirect constraints
derived from precision electroweak data [], assuming no significant new physics contributions.

It is well known that if the Higgs is su�ciently lighter than the top quark, electroweak
minimum of the Higgs potential might be destabilized, assuming no new physics beyond the
SM is in e↵ect below the Planck scale []. More precisely, when combining the latest hints about
the Higgs mass with the current data about the top mass and strong coupling, it seems that
the SM vacuum is metastable [5]. In other words, it is not the true minimum of the Higgs
potential, yet its lifetime is longer than the age of the universe.

The interesting fact that the top quark mass is close to the anthropic bound stemming
from electroweak vacuum stability motivates us to find a mechanism that would account both
for the existence of light quarks and that of a heavy quark. This can be realized in the context
of a multiverse picture, where anthropic bounds constrain the parameter space.

According to the common wisdom, the multiverse may emerge from the combination of...
(eternal inflation, string landscape).

While light fermion masses are usually generated by flavor models, a heavy quark naturally
emerges as a result of the IR quasi fixed point of the SM renormalization group equations
(RGE) []. The latter generates an order 1 Yukawa coupling at the weak scale for a wide range
of initial Yukawa values at some high UV scale. The combination of these two mechanisms
allows us to construct observed pattern of quark masses.

2 Flavor Dynamics

Various mechanisms that address the flavor puzzle have been studied in the literature [1, 2, 3],
yet all of them can be summarized in a simple formula for the e↵ective Yukawa couplings:

y / ✏

Q
, (1)
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Degeneracy of Squarks 

• No strong degeneracy required! 

• Ex.:      =1.3 TeV,       =550 GeV,       =950 GeV 

• This can be generated by*: 
– Anarchy at the SUSY breaking mediation scale 

– SUSY renormalization group flow to the TeV scale 
– Can lead to modest level of degeneracy 
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Assuming a chemistry similar to that of our universe, and imposing the presence of a light
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the instability bound, consistent with the observed top mass.
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Two questions on CPV in D mixing (3 slides)
♦ So within successful alignment models can we say something 

generic on CPV in D mixing? 
Kadosh, Paradisi & GP, in progress.

♦ Can we robustly bound the SM CPV in D mixing?
Grossman, Kagan, Ligeti, GP & Petrov, in prep’.

(& how to go beyond LO in �12Q )

24



Alignment: upper bound on CPV in D mixing 

♦ In complete alignment limit no CPV:  [m̃2
Q, YdY

†
d ] = 0

✏K / =
�
�dLL

�
12

<
�
�dLL

�
12 in alignment: =

�
�dLL

�
12

⇠ <
�
�dLL

�
12

⌘ �✏K ⇠ 1%,

♦ Min’ alignment with Yd just to saturate      ,         :  (switching to MIA)✏K �mD

�mD / 4�2
C

�
�12Q

�2
(both for 2�C�12Q � �✏K )

Im part of D � ¯D / 2�C �12Q =
�
�dLL

�
12

⇡ 2�C �12Q �✏K

CPV in D � D̄ : �✏K/2�C �12Q . 10%⇥
�
0.3/�12Q

�

LHCb soon (HCP?) will start testing alignment paradigm!
          ATLAS+CMS implications discussed below.

Kadosh, Paradisi & GP, in progress.
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SM: upper bound on absorptive CPV in D mixing 
Grossman, Kagan, Ligeti, GP & Petrov, in prep’.

The average and the difference in mass and width are given by

m ≡
m1 + m2

2
, Γ ≡

Γ1 + Γ2

2
,

x ≡
m2 − m1

Γ
, y ≡

Γ2 − Γ1

2Γ
. (4)

The decay amplitudes into a final state f are defined as follows:

Af = 〈f |H|D0〉,

Af = 〈f |H|D0〉. (5)

We define λf :

λf =
q

p

Āf

Af

. (6)

We now write the approximate expressions for the time-dependent DCS and SCS decay

rates that are valid for time t ∼< 1/Γ. We take into account the experimental information

that x, y and tan θc (where θc is the Cabibbo angle) are small, and expand each of the rates

only to the order that is relevant to the BaBar and Belle measurements:

Γ[D0(t) → K+π−] = e−Γt|AK+π− |2|q/p|2

×
{

|λ−1
K+π−

|2 + [Re(λ−1
K+π−

)y + Im(λ−1
K+π−

)x]Γt +
1

4
(y2 + x2)(Γt)2

}

,

Γ[D0(t) → K−π+] = e−Γt|AK−π+ |2|p/q|2 (7)

×
{

|λK−π+ |2 + [Re(λK−π+)y + Im(λK−π+)x]Γt +
1

4
(y2 + x2)(Γt)2

}

,

Γ[D0(t) → K+K−] = e−Γt|AK+K−|2 {1 + [Re(λK+K−)y − Im(λK+K−)x]Γt} ,

Γ[D0(t) → K+K−] = e−Γt|AK+K−|2
{

1 + [Re(λ−1
K+K−

)y − Im(λ−1
K+K−

)x]Γt
}

. (8)

Within the Standard Model, the physics of D0 − D0 mixing and of the tree level decays

is dominated by the first two generations and, consequently, CP violation can be safely

neglected (for reviews of charm physics, see [4, 5]). Indeed, CP violation in these processes

would constitute a signal for new physics [3, 6, 7]. In all ‘reasonable’ extensions of the

Standard Model, both the DCS [8] and the SCS [9] decays are still dominated by the Standard

Model CP conserving contributions. On the other hand, there could be new short distance,

possibly CP violating contributions to the mixing amplitude M12. Allowing for only such

CP violating effects of new physics, the picture of CP violation is simplified since there is

3

♦ System parameters roughly determined (HFAG):

                                           

where rd is a real and positive dimensionless parameter, �f is a strong (CP conserving)

mode-dependent phase, and ⇧ is a weak (CP violating) universal phase. Similar expressions

can be written to decays into any final state. The appearance of a single weak phase that is

common to all final states is related to the absence of direct CP violation, while the absence

of a strong phase in ⇥K+K� is related to the fact that the final state is a CP eigenstate.

In our analysis we assume that e�ects of direct CP violation are negligibly small even in

the presence of new physics (NP). The question of NP contributions to direct CP violation

in the doubly Cabibbo suppressed decays was investigated in detail in [7, 8] and shown to be

indeed generically small. In some special cases it could reach order 30%. The singly Cabibbo

suppressed decays case was studied in [9]. Typically direct CP violation is suppressed, but

in special models (or corners of parameter space) it could be non-negligible. Experimental

constraints on direct CP violation in charm decays were analyzed by the heavy flavor aver-

aging group (HFAG) [10] and found to be of order one percent. Furthermore, the e�ect of

including direct CP violation on the NP contributions was recently considered in [11] and

shown to be subdominant.

The experimental measurements of the various relevant D-decay rates can be used to

determine the values of the four parameters that are related to D0 �D0 mixing: x, y, |q/p|

and ⇧. Impressive progress in relevant measurements has been recently achieved in the

BaBar and Belle experiments. The information comes from a variety of final states of

neutral D-meson decays: K+K�, ⌅+⌅�, K⌅+⌅�, K⌃⇤, K�⌅+ and K+⌅�. HFAG has fitted

the data, and obtained the following one sigma ranges [10]:

x = (1.00 ± 0.25)⇥ 10�2,

y = (0.77 ± 0.18)⇥ 10�2,

1� |q/p| = +0.06 ± 0.14,

⇧ = �0.05 ± 0.09, (2.8)

where ⇧ is given in radians. These results imply the following:

1. The width-splitting and mass-splitting are at a level close to one percent.

2. CP violation is small.

We would now like to translate these statements, made for the parameters that are used to

describe the experimental results, to parameters that represent the theory input.

4

Huge recent progress in measurement of mass splitting 
    & CP violation  (CPV) in the D system:

18

2

complex basis independent dimensionless parameter �
f

,

�
f

= q

p

Af

Af
. Since x and y are known to be small, it

is instractive to work at leading order in them. Taking
into account the fact the we can also have Cabibbo su-
pressions, the relevant decays modes of interest are those
of the doubly-Cabibbo-suppressed decay into a flavor-
specific final state and singly-Cabibbo-suppressed decay
into a CP eigenstate.

We know that the e↵ect of of indeirect and direct CP
violation are small even in the presence of new physics.
Thus, we can treat them independently, such that the
total e↵ects add up. The e↵ects of indirect CP violation
can be parameterized in the following way:

��1
K

+
⇡

� = r
d

|p/q| e�i(�K⇡+�),

�
K

�
⇡

+ = r
d

|q/p| e�i(�K⇡��),

�
K

+
K

� = �|q/p| ei�, (3)

where r
d

is a real and positive dimensionless parameter,
�
f

is a strong (CP conserving) phase, and � is a weak
(CP violating) phase.

The current world averages of the above parameters,
allowing for CP violation in the fit, are [5]

x = (0.63+0.19
�0.20)⇥ 10�2 y = (0.75± 0.12)⇥ 10�2,

|q/p| = 0.91+0.18
�0.16 , � = �0.18± 0.16 . (4)

The three observables related to mixing are

y12 ⌘ |�12|
�

, x12 ⌘ 2|M12|
�

, �12 ⌘ arg

✓
M12

�12

◆
. (5)

NEW ROBUST BOUND ON THE SM
ABSORPTIVE PHASE

We start with the considertaion of �12, which can be
written as

�12 = �
X

i,j=d,s

�
i

�
j

�
ij

. (6)

We factored out the dependence on CKM elements, �
i

=
V
ci

V ⇤
ui

, so that �
ij

are hadronic quantities. In the flavor
SU(3) limit they are universal. In principle we could get
them from a sum over decays to common exclusive final
states [7]

�
ij

=
�

�
i

�
j

X

n2nij

cos �
n

p
B(D0 ! n)B(D0 ! n̄) , (7)

where �
n

is the strong phase di↵erence between the am-
plitudes A(D0 ! n) and A(D̄0 ! n). Note that the
sum over n

ij

are all the relevant final state. For exam-
ple, in the case of i = j = s, we sum over states like
K+K�, K⇤K, etc.

Using CKM unitarity,

�
d

+ �
s

+ �
b

= 0 , (8)

we can write Eq. (6) in two di↵erent ways. Eliminating
�
d

yields

�12 = ��2
s

(�
ss

+�
dd

�2�
sd

)+2�
s

�
b

(�
sd

��
dd

)��2
b

�
dd

,
(9)

Numerically, the three terms above exhibit a very large
hierarchy, since �

d

and �
s

are of order �(⇡ 0.23), while
�
b

is of order �5. Yet, since we care about CP violation,
the contributions form the 3rd generation cannot be ne-
glected, thus below we shall keep terms linear with �

b

and neglect higher order terms. As y is CP conserving
observable, it is dominated by the first two generation
contributions

y ⇡ �|�
s

|2 (y
ss

+ y
dd

� 2y
sd

) . (10)

with

y
xy

⌘ |�
xy

/�| , (11)

and we have used the relation y ⇡ y12 since we know ex-
perimentally that CP violation in D is subdominant [3].
It is convenient to use the following definition:

�12 = �0
12 + ��12 , M12 = M0

12 + �M12, (12)

where

�0
12 = ��2

s

(�
ss

+ �
dd

� 2�
sd

), (13)

��12 = 2�
s

�
b

(�
sd

� �
ss

) +O(�2
b

), (14)

and

M0
12 = ��2

s

(M
ss

+M
dd

� 2M
sd

), (15)

�M12 = 2�
s

�
b

(M
sd

�M
ss

) +O(�2
b

). (16)

In the limit that subleading SM decay amplitudes are
neglected, one has

arg

"
�0
12

�⇤0
12

✓
A

f

A
f

◆2
#
= arg

"
M0

12

M⇤0
12

✓
A

f

A
f

◆2
#
= 0, (17)

where A
f

and Ā
f

are the ampltiudes for D0 and D̄0

decays to CP eigenstate final states f . Now we can write
�12 as

�12 = arg


M0

12

�0
12

�
1 + �M12/M

0
12 � ��12/�

0
12

��
. (18)

or

�12 ⇡ Im(�M12/M
0
12)� Im(��12/�

0
12). (19)
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We provide a robust bound for the absorptive part of CP violating in charm mixing processes
within the standard model, phi� <⇠ 1%. We define the physical observables that are sensitive to
the presence of such CP violating sources, and discuss how new physics (that generically requires a
new dark sector) could violate our bound. Expected, near future, improvement in measurement of
CP violation in the charm system at the LHCb is expected to test our prediction and therefore be
sensitive to to non-standard model dynamics.

INTRODUCTION

CP violation in charm decays brings unique oppurtu-
nities to search of New Physics (NP). Like kaons, charm
mixing is dominated by the first two generation. Since
in the Standard Model (SM) CP violation requires all
three generation to participate, all CP violating e↵ects
are expected to be very small. Any large signal would be
a clear indication of NP. Moreover, charm physics pro-
vides sensitivity to NP in the up sector. It is often stated
that measuring any CP violating e↵ect in charm would
be a very clean signal of NP. Yet, due to the significant
improvements in experimental bounds expected in the
future, the above statement needs sharpening. Also, a
recent paper [1] claims that CP violating e↵ects in the
SM can be much larger than what was claimed before.

Our aim is to clarify the issue of the SM predictions
of CP violating e↵ects in the charm system. Precise pre-
dictions are not easy to obtain. The reason is the large
hadronic uncertainties. Charm mixing vanishes in the
SU(3) limit and the whole e↵ect is due to the break-
ing which is not easy to estimate. Thus, our aim is to
provide best estimates and conservative upper bounds,
so that any measurement above these bounds could be
viewed as an unambiguous indication of NP.

The size of any CP violating observable could depend
on several underlying factors. CP violating observables
that involve mixing are proportional to the phase of the
mixing diagram. The naive expectation of the size of
this phase is roughly the same as in the kaon system,
that is few times 10�3. Yet, this is not the only supres-
sion factor. Many times interegarted observables are also
supressed by the mixing parameter x or y (defined below,
in Eq. (??)). The reason is that the meson must oscillate
in order to be sensitive to the CP violating e↵ects in mix-
ing, and this for integrated asymmetries the observable is
often depend on the charateristice time scale of mixing,
that is x and y.

Observable that involve CP violation in decays are sen-
sitive to the relative size and phase between the two de-
cay amplitudes. These amplitude are generally tree and
penguins ones. The penguin diagrams are supressed by
small CKM elements and loop e↵ects and are expected
to be very small.
Below we discuss all these e↵ects, that is, the size of

the mixing phase, the sensitivity of the obsrevales ot the
mixing parameters and the size of the decay phase. We
find that indeed, at present sensitivity, any positive CP
violation signal will be a clean indication of NP.

NOTATION

We start by reviewing the notations. We are following
closely the notations of Ref. [10] and [3]. The two D
meson mass eigenstates are denoted by |D

i

i with i = 1, 2.
They have well defined masses, m

i

, and widths �
i

. They
are combinations of the interaction eigenstates |D0i and
|D0i

|D1,2i = p|D0i± q|D0i. (1)

This mixing follows from the D0 �D0 transition ampli-
tude, defined as (zl: this eq. cannot be right)

hD0|H|D0i = M12 +
i

2
�12 . (2)

The overall phase of the mixing amplitude is not a phys-
ical quantity. It can be changed by the phase conven-
tions for the u and c quarks. The relative phase between
M12 and �12 is, however, a phase convention independent
physical quantity, and if it is nonzero, then it implies
|q/p| 6= 1, often referred to as CP violation in mixing.
We define m ⌘ m1+m2

2 , � ⌘ �1+�2
2 and x ⌘

m2�m1
� , y ⌘ �2��1

2� . The decay amplitudes into a final
state f are A

f

= hf |H|D0i, A
f

= hf |H|D0i. We define a
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on several underlying factors. CP violating observables
that involve mixing are proportional to the phase of the
mixing diagram. The naive expectation of the size of
this phase is roughly the same as in the kaon system,
that is few times 10�3. Yet, this is not the only supres-
sion factor. Many times interegarted observables are also
supressed by the mixing parameter x or y (defined below,
in Eq. (??)). The reason is that the meson must oscillate
in order to be sensitive to the CP violating e↵ects in mix-
ing, and this for integrated asymmetries the observable is
often depend on the charateristice time scale of mixing,
that is x and y.

Observable that involve CP violation in decays are sen-
sitive to the relative size and phase between the two de-
cay amplitudes. These amplitude are generally tree and
penguins ones. The penguin diagrams are supressed by
small CKM elements and loop e↵ects and are expected
to be very small.
Below we discuss all these e↵ects, that is, the size of

the mixing phase, the sensitivity of the obsrevales ot the
mixing parameters and the size of the decay phase. We
find that indeed, at present sensitivity, any positive CP
violation signal will be a clean indication of NP.

NOTATION

We start by reviewing the notations. We are following
closely the notations of Ref. [10] and [3]. The two D
meson mass eigenstates are denoted by |D

i

i with i = 1, 2.
They have well defined masses, m

i

, and widths �
i

. They
are combinations of the interaction eigenstates |D0i and
|D0i

|D1,2i = p|D0i± q|D0i. (1)

This mixing follows from the D0 �D0 transition ampli-
tude, defined as (zl: this eq. cannot be right)

hD0|H|D0i = M12 +
i

2
�12 . (2)

The overall phase of the mixing amplitude is not a phys-
ical quantity. It can be changed by the phase conven-
tions for the u and c quarks. The relative phase between
M12 and �12 is, however, a phase convention independent
physical quantity, and if it is nonzero, then it implies
|q/p| 6= 1, often referred to as CP violation in mixing.
We define m ⌘ m1+m2

2 , � ⌘ �1+�2
2 and x ⌘

m2�m1
� , y ⌘ �2��1

2� . The decay amplitudes into a final
state f are A

f

= hf |H|D0i, A
f

= hf |H|D0i. We define a

Γ12 = −
(

λ2
s Γss + 2λsλd Γsd + λ2

d Γdd

)

, where λp = VcpV
∗

up

Γxy in the OPE picture

0

preliminary

(neglecting b a sec’ a sec’)
3

In the limit that subleading (CKM suppressed) SM decay
amplitudes are neglected, or other form of direct charm
CP violation which are bounded to be below the precent
level, we can equate
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where

�12 = �M

12 � ��
12 . (22)

It important to point out that the dispersive and ab-
sorptive contributions to �12, as defined above, are sepa-
rately physical observables. Thus, each contribution can
in principle be bounded separately. Later, we will discuss
the measurements which can determine ��

12 and �M

12 , and
the potential impact of the SM subleading decay ampli-
tudes.

We shall now obtain an upper bound on the absorptive
contribution to �12. We can express ��

12 as,

��
12 = 2 |�

b

�
s

| sin � �
sd

�0
12

�
sd

� �
dd
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+O(�2
b

), (23)

where the O(�2
b

) contributions are negligible and are
omitted in the following.

The magnitude can then be rewritten as
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s

sin �
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� �
dd
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���� . (24)

With the central values for y and the CKM parameters,
this yields

|��
12| = 0.008 ⇥ y

sd

⇥ |✏�
d

| , (25)

where we have introduced the SU(3) breaking quantities
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sd
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(One also obtains the same bound with ✏�
d

! ✏�
s

, in the
limit that O(�2

b

) terms are neglected.) Conservatively,
we can take |✏�

q

| < 1, where a natural expectation is
that the magnitude of SU(3) breaking is O(1/3). We
will show below in full generality that unitarity implies
that y

sd

thus yielding an upper bound on |��
12

|��
12| <⇠ 0.008 ⇥ |✏�

d

| . (27)

Before giving the general proof it is instructive to con-
sider some physical limits regarding the size of the ab-
sorptive phase. From Eq. 25 it is evident that to ob-
tain an upper bound on ��

12 an upper bound on y
sd

is

required as we now discuss in detail. We consider two
limiting cases concerning the value of y

sd

in conjunction
with Eq. (10) that can be rewritten as

y
sd

⇡ y/2|�
s

|2(r
sd

� 1) ⇠ 7%/(r
sd

� 1), . (28)

with r
sd

= (y
ss

+ y
dd

)/2y
sd

. (i) If there are no cancella-
tion between the di↵erent contributions to y in Eq. (10),
namely r

sd

� 1 or r
sd

⌧ 1, then from Eq. (28) we find
a rather strong upper bound for y

sd

y
sd

⇡ y/2�2
C

⇠ 7% ; (29)

(ii) however we do expect cancellation between y
ss

, y
dd

and y
sd

in (10), or r
sd

⇡ 1, to occur as the sum is pro-
portional the square of SU(3) breaking, ✏ [7]. In that
limit we have all the three terms being of the same order
while the algebraic sum of Eq. (10) being smaller than
any of the individual term. This is consistent with our
rough expectation for y to be of order �2

C

⇥ ✏2 ⇠ 0.5%,
consistent with the observed value for ✏ ⇠ 0.3. In such a
case we get

y
sd

⇡ y/2�2
C

✏2 ⇠ 1 , (30)

which would still yield a rather strong bound the absorp-
tive CPV phase, |��

12| <⇠ 1% .
The question is however, if there can be even lager

cancellation in (10) leading to a very weak bound on y
sd

and consequently the CPV phase. The answer is negative
as we can use unitarity to bound the value of y

sd

to be
less than unity, via the optical theorem, which would
lead to our robust SM bound as we now explain. The
amplitudes for CF and DCS D0 and D̄0 decays to non-
CP eigenstate, CP conjugate pairs of final state f and f̄
can be defined as

ACF
f

= hf |H|D0i , ADCS
f

= hf |H|D0i ,

ADCS
f

= hf |H|D0i , ACF
f

= hf |H|D0i, (31)

where H is the weak interaction e↵ective Hamiltonian
governing these decays. These amplitudes are related
according to the following expressions

ACF
f

= A
f

, ADCS
f

= A
f

ei�f ,

ACF
f

= A
f

, ADCS
f

= A
f

ei�f , (32)

where A
f

and A
f

are the magnitudes of the amplitudes,
and �

f

is a strong (CP conserving) phase. All of the
quantities entering Eq. (32) are understood to be phase
space dependent for 3-body and higher final states.
Both CF and DCS decays will contribute for the same

CP eigenstate final state, fCP. One can write

A
fCP = hfCP|H|D0i = ACF

fCP
+ADCS

fCP
= A

fCP ,

Ā
fCP = hfCP|H|D̄0i = ĀCF

fCP
+ ĀDCS

fCP
= ⌘

fCPAfCP , (33)
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In the limit that subleading (CKM suppressed) SM decay
amplitudes are neglected, or other form of direct charm
CP violation which are bounded to be below the precent
level, we can equate
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where
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It important to point out that the dispersive and ab-
sorptive contributions to �12, as defined above, are sepa-
rately physical observables. Thus, each contribution can
in principle be bounded separately. Later, we will discuss
the measurements which can determine ��

12 and �M

12 , and
the potential impact of the SM subleading decay ampli-
tudes.

We shall now obtain an upper bound on the absorptive
contribution to �12. We can express ��

12 as,
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where the O(�2
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) contributions are negligible and are
omitted in the following.
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With the central values for y and the CKM parameters,
this yields

|��
12| = 0.008 ⇥ y
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⇥ |✏�
d

| , (25)

where we have introduced the SU(3) breaking quantities
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(One also obtains the same bound with ✏�
d

! ✏�
s

, in the
limit that O(�2

b

) terms are neglected.) Conservatively,
we can take |✏�

q

| < 1, where a natural expectation is
that the magnitude of SU(3) breaking is O(1/3). We
will show below in full generality that unitarity implies
that y

sd

thus yielding an upper bound on |��
12
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12| <⇠ 0.008 ⇥ |✏�

d

| . (27)

Before giving the general proof it is instructive to con-
sider some physical limits regarding the size of the ab-
sorptive phase. From Eq. 25 it is evident that to ob-
tain an upper bound on ��

12 an upper bound on y
sd

is

required as we now discuss in detail. We consider two
limiting cases concerning the value of y

sd

in conjunction
with Eq. (10) that can be rewritten as

y
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|2(r
sd

� 1) ⇠ 7%/(r
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� 1), . (28)

with r
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= (y
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+ y
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)/2y
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. (i) If there are no cancella-
tion between the di↵erent contributions to y in Eq. (10),
namely r

sd

� 1 or r
sd

⌧ 1, then from Eq. (28) we find
a rather strong upper bound for y

sd
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sd

⇡ y/2�2
C

⇠ 7% ; (29)

(ii) however we do expect cancellation between y
ss

, y
dd

and y
sd

in (10), or r
sd

⇡ 1, to occur as the sum is pro-
portional the square of SU(3) breaking, ✏ [7]. In that
limit we have all the three terms being of the same order
while the algebraic sum of Eq. (10) being smaller than
any of the individual term. This is consistent with our
rough expectation for y to be of order �2

C

⇥ ✏2 ⇠ 0.5%,
consistent with the observed value for ✏ ⇠ 0.3. In such a
case we get

y
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✏2 ⇠ 1 , (30)

which would still yield a rather strong bound the absorp-
tive CPV phase, |��

12| <⇠ 1% .
The question is however, if there can be even lager

cancellation in (10) leading to a very weak bound on y
sd

and consequently the CPV phase. The answer is negative
as we can use unitarity to bound the value of y

sd

to be
less than unity, via the optical theorem, which would
lead to our robust SM bound as we now explain. The
amplitudes for CF and DCS D0 and D̄0 decays to non-
CP eigenstate, CP conjugate pairs of final state f and f̄
can be defined as

ACF
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= hf |H|D0i , ADCS
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ADCS
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= hf |H|D0i , ACF
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where H is the weak interaction e↵ective Hamiltonian
governing these decays. These amplitudes are related
according to the following expressions
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where A
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and A
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are the magnitudes of the amplitudes,
and �

f

is a strong (CP conserving) phase. All of the
quantities entering Eq. (32) are understood to be phase
space dependent for 3-body and higher final states.
Both CF and DCS decays will contribute for the same

CP eigenstate final state, fCP. One can write
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fCP
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fCP ,
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In the limit that subleading (CKM suppressed) SM decay
amplitudes are neglected, or other form of direct charm
CP violation which are bounded to be below the precent
level, we can equate
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It important to point out that the dispersive and ab-
sorptive contributions to �12, as defined above, are sepa-
rately physical observables. Thus, each contribution can
in principle be bounded separately. Later, we will discuss
the measurements which can determine ��

12 and �M

12 , and
the potential impact of the SM subleading decay ampli-
tudes.

We shall now obtain an upper bound on the absorptive
contribution to �12. We can express ��
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��
12 = 2 |�

b

�
s

| sin � �
sd

�0
12

�
sd

� �
dd

�
sd

+O(�2
b

), (23)

where the O(�2
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) contributions are negligible and are
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With the central values for y and the CKM parameters,
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) terms are neglected.) Conservatively,
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| < 1, where a natural expectation is
that the magnitude of SU(3) breaking is O(1/3). We
will show below in full generality that unitarity implies
that y
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Before giving the general proof it is instructive to con-
sider some physical limits regarding the size of the ab-
sorptive phase. From Eq. 25 it is evident that to ob-
tain an upper bound on ��

12 an upper bound on y
sd

is

required as we now discuss in detail. We consider two
limiting cases concerning the value of y
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with Eq. (10) that can be rewritten as
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with r
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dd

and y
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in (10), or r
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⇡ 1, to occur as the sum is pro-
portional the square of SU(3) breaking, ✏ [7]. In that
limit we have all the three terms being of the same order
while the algebraic sum of Eq. (10) being smaller than
any of the individual term. This is consistent with our
rough expectation for y to be of order �2

C

⇥ ✏2 ⇠ 0.5%,
consistent with the observed value for ✏ ⇠ 0.3. In such a
case we get
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which would still yield a rather strong bound the absorp-
tive CPV phase, |��
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cancellation in (10) leading to a very weak bound on y
sd

and consequently the CPV phase. The answer is negative
as we can use unitarity to bound the value of y

sd

to be
less than unity, via the optical theorem, which would
lead to our robust SM bound as we now explain. The
amplitudes for CF and DCS D0 and D̄0 decays to non-
CP eigenstate, CP conjugate pairs of final state f and f̄
can be defined as
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ADCS
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= hf |H|D0i , ACF
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where H is the weak interaction e↵ective Hamiltonian
governing these decays. These amplitudes are related
according to the following expressions

ACF
f

= A
f

, ADCS
f

= A
f

ei�f ,

ACF
f

= A
f
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where A
f

and A
f

are the magnitudes of the amplitudes,
and �

f

is a strong (CP conserving) phase. All of the
quantities entering Eq. (32) are understood to be phase
space dependent for 3-body and higher final states.
Both CF and DCS decays will contribute for the same

CP eigenstate final state, fCP. One can write

A
fCP = hfCP|H|D0i = ACF

fCP
+ADCS

fCP
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fCP ,

Ā
fCP = hfCP|H|D̄0i = ĀCF
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In the limit that subleading (CKM suppressed) SM decay
amplitudes are neglected, or other form of direct charm
CP violation which are bounded to be below the precent
level, we can equate
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It important to point out that the dispersive and ab-
sorptive contributions to �12, as defined above, are sepa-
rately physical observables. Thus, each contribution can
in principle be bounded separately. Later, we will discuss
the measurements which can determine ��

12 and �M
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the potential impact of the SM subleading decay ampli-
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⇡ 1, to occur as the sum is pro-
portional the square of SU(3) breaking, ✏ [7]. In that
limit we have all the three terms being of the same order
while the algebraic sum of Eq. (10) being smaller than
any of the individual term. This is consistent with our
rough expectation for y to be of order �2
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consistent with the observed value for ✏ ⇠ 0.3. In such a
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tive CPV phase, |��
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and consequently the CPV phase. The answer is negative
as we can use unitarity to bound the value of y
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to be
less than unity, via the optical theorem, which would
lead to our robust SM bound as we now explain. The
amplitudes for CF and DCS D0 and D̄0 decays to non-
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where H is the weak interaction e↵ective Hamiltonian
governing these decays. These amplitudes are related
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where A
f

and A
f

are the magnitudes of the amplitudes,
and �

f

is a strong (CP conserving) phase. All of the
quantities entering Eq. (32) are understood to be phase
space dependent for 3-body and higher final states.
Both CF and DCS decays will contribute for the same

CP eigenstate final state, fCP. One can write

A
fCP = hfCP|H|D0i = ACF
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+ADCS

fCP
= A

fCP ,

Ā
fCP = hfCP|H|D̄0i = ĀCF

fCP
+ ĀDCS

fCP
= ⌘

fCPAfCP , (33)

SU(3) breaking ✏�d . 1

2

complex basis independent dimensionless parameter �
f

,

�
f

= q

p

Af

Af
. Since x and y are known to be small, it

is instractive to work at leading order in them. Taking
into account the fact the we can also have Cabibbo su-
pressions, the relevant decays modes of interest are those
of the doubly-Cabibbo-suppressed decay into a flavor-
specific final state and singly-Cabibbo-suppressed decay
into a CP eigenstate.

We know that the e↵ect of of indeirect and direct CP
violation are small even in the presence of new physics.
Thus, we can treat them independently, such that the
total e↵ects add up. The e↵ects of indirect CP violation
can be parameterized in the following way:

��1
K

+
⇡

� = r
d

|p/q| e�i(�K⇡+�),

�
K

�
⇡

+ = r
d

|q/p| e�i(�K⇡��),

�
K

+
K

� = �|q/p| ei�, (3)

where r
d

is a real and positive dimensionless parameter,
�
f

is a strong (CP conserving) phase, and � is a weak
(CP violating) phase.

The current world averages of the above parameters,
allowing for CP violation in the fit, are [5]

x = (0.63+0.19
�0.20)⇥ 10�2 y = (0.75± 0.12)⇥ 10�2,

|q/p| = 0.91+0.18
�0.16 , � = �0.18± 0.16 . (4)

The three observables related to mixing are

y12 ⌘ |�12|
�

, x12 ⌘ 2|M12|
�

, �12 ⌘ arg

✓
M12

�12

◆
. (5)

NEW ROBUST BOUND ON THE SM
ABSORPTIVE PHASE

We start with the considertaion of �12, which can be
written as

�12 = �
X

i,j=d,s

�
i

�
j

�
ij

. (6)

We factored out the dependence on CKM elements, �
i

=
V
ci

V ⇤
ui

, so that �
ij

are hadronic quantities. In the flavor
SU(3) limit they are universal. In principle we could get
them from a sum over decays to common exclusive final
states [7]

�
ij

=
�

�
i

�
j

X

n2nij

cos �
n

p
B(D0 ! n)B(D0 ! n̄) , (7)

where �
n

is the strong phase di↵erence between the am-
plitudes A(D0 ! n) and A(D̄0 ! n). Note that the
sum over n

ij

are all the relevant final state. For exam-
ple, in the case of i = j = s, we sum over states like
K+K�, K⇤K, etc.

Using CKM unitarity,

�
d

+ �
s

+ �
b

= 0 , (8)

we can write Eq. (6) in two di↵erent ways. Eliminating
�
d

yields

�12 = ��2
s

(�
ss

+�
dd

�2�
sd

)+2�
s

�
b

(�
sd

��
dd

)��2
b

�
dd

,
(9)

Numerically, the three terms above exhibit a very large
hierarchy, since �

d

and �
s

are of order �(⇡ 0.23), while
�
b

is of order �5. Yet, since we care about CP violation,
the contributions form the 3rd generation cannot be ne-
glected, thus below we shall keep terms linear with �

b

and neglect higher order terms. As y is CP conserving
observable, it is dominated by the first two generation
contributions

y ⇡ �|�
s

|2 (y
ss

+ y
dd

� 2y
sd

) . (10)

with

y
xy

⌘ |�
xy

/�| , (11)

and we have used the relation y ⇡ y12 since we know ex-
perimentally that CP violation in D is subdominant [3].
It is convenient to use the following definition:

�12 = �0
12 + ��12 , M12 = M0

12 + �M12, (12)

where

�0
12 = ��2

s

(�
ss

+ �
dd

� 2�
sd

), (13)

��12 = 2�
s

�
b

(�
sd

� �
ss

) +O(�2
b

), (14)

and

M0
12 = ��2

s

(M
ss

+M
dd

� 2M
sd

), (15)

�M12 = 2�
s

�
b

(M
sd

�M
ss

) +O(�2
b

). (16)

In the limit that subleading SM decay amplitudes are
neglected, one has

arg

"
�0
12

�⇤0
12

✓
A

f

A
f

◆2
#
= arg

"
M0

12

M⇤0
12

✓
A

f

A
f

◆2
#
= 0, (17)

where A
f

and Ā
f

are the ampltiudes for D0 and D̄0

decays to CP eigenstate final states f . Now we can write
�12 as

�12 = arg


M0

12

�0
12

�
1 + �M12/M

0
12 � ��12/�

0
12

��
. (18)

or

�12 ⇡ Im(�M12/M
0
12)� Im(��12/�

0
12). (19)

Unitarity: ysd  1

3

In the limit that subleading (CKM suppressed) SM decay
amplitudes are neglected, or other form of direct charm
CP violation which are bounded to be below the precent
level, we can equate

��
12 ⌘ Im

✓
��12

�0
12

◆
=

1

2
arg

"
�12

�⇤
12

✓
A

f

A
f

◆2
#

(20)

and similarly,

�M

12 ⌘ Im

✓
�M12

M0
12

◆
=

1

2
arg

"
M12

M⇤
12

✓
A

f

A
f

◆2
#
, (21)

where

�12 = �M

12 � ��
12 . (22)

It important to point out that the dispersive and ab-
sorptive contributions to �12, as defined above, are sepa-
rately physical observables. Thus, each contribution can
in principle be bounded separately. Later, we will discuss
the measurements which can determine ��

12 and �M

12 , and
the potential impact of the SM subleading decay ampli-
tudes.

We shall now obtain an upper bound on the absorptive
contribution to �12. We can express ��

12 as,

��
12 = 2 |�

b

�
s

| sin � �
sd

�0
12

�
sd

� �
dd

�
sd

+O(�2
b

), (23)

where the O(�2
b

) contributions are negligible and are
omitted in the following.

The magnitude can then be rewritten as

|��
12| = 2

����
�
b

�
s

sin �

y

���� ⇥ y
sd

⇥
����
�
sd

� �
dd

�
sd

���� . (24)

With the central values for y and the CKM parameters,
this yields

|��
12| = 0.008 ⇥ y

sd

⇥ |✏�
d

| , (25)

where we have introduced the SU(3) breaking quantities

✏�
d

⌘ �
dd

� �
sd

�
sd

, ✏�
s

⌘ �
ss

� �
sd

�
sd

. (26)

(One also obtains the same bound with ✏�
d

! ✏�
s

, in the
limit that O(�2

b

) terms are neglected.) Conservatively,
we can take |✏�

q

| < 1, where a natural expectation is
that the magnitude of SU(3) breaking is O(1/3). We
will show below in full generality that unitarity implies
that y

sd

thus yielding an upper bound on |��
12

|��
12| <⇠ 0.008 ⇥ |✏�

d

| . (27)

Before giving the general proof it is instructive to con-
sider some physical limits regarding the size of the ab-
sorptive phase. From Eq. 25 it is evident that to ob-
tain an upper bound on ��

12 an upper bound on y
sd

is

required as we now discuss in detail. We consider two
limiting cases concerning the value of y

sd

in conjunction
with Eq. (10) that can be rewritten as

y
sd

⇡ y/2|�
s

|2(r
sd

� 1) ⇠ 7%/(r
sd

� 1), . (28)

with r
sd

= (y
ss

+ y
dd

)/2y
sd

. (i) If there are no cancella-
tion between the di↵erent contributions to y in Eq. (10),
namely r

sd

� 1 or r
sd

⌧ 1, then from Eq. (28) we find
a rather strong upper bound for y

sd

y
sd

⇡ y/2�2
C

⇠ 7% ; (29)

(ii) however we do expect cancellation between y
ss

, y
dd

and y
sd

in (10), or r
sd

⇡ 1, to occur as the sum is pro-
portional the square of SU(3) breaking, ✏ [7]. In that
limit we have all the three terms being of the same order
while the algebraic sum of Eq. (10) being smaller than
any of the individual term. This is consistent with our
rough expectation for y to be of order �2

C

⇥ ✏2 ⇠ 0.5%,
consistent with the observed value for ✏ ⇠ 0.3. In such a
case we get

y
sd

⇡ y/2�2
C

✏2 ⇠ 1 , (30)

which would still yield a rather strong bound the absorp-
tive CPV phase, |��

12| <⇠ 1% .
The question is however, if there can be even lager

cancellation in (10) leading to a very weak bound on y
sd

and consequently the CPV phase. The answer is negative
as we can use unitarity to bound the value of y

sd

to be
less than unity, via the optical theorem, which would
lead to our robust SM bound as we now explain. The
amplitudes for CF and DCS D0 and D̄0 decays to non-
CP eigenstate, CP conjugate pairs of final state f and f̄
can be defined as

ACF
f

= hf |H|D0i , ADCS
f

= hf |H|D0i ,

ADCS
f

= hf |H|D0i , ACF
f

= hf |H|D0i, (31)

where H is the weak interaction e↵ective Hamiltonian
governing these decays. These amplitudes are related
according to the following expressions

ACF
f

= A
f

, ADCS
f

= A
f

ei�f ,

ACF
f

= A
f

, ADCS
f

= A
f

ei�f , (32)

where A
f

and A
f

are the magnitudes of the amplitudes,
and �

f

is a strong (CP conserving) phase. All of the
quantities entering Eq. (32) are understood to be phase
space dependent for 3-body and higher final states.
Both CF and DCS decays will contribute for the same

CP eigenstate final state, fCP. One can write

A
fCP = hfCP|H|D0i = ACF

fCP
+ADCS

fCP
= A

fCP ,

Ā
fCP = hfCP|H|D̄0i = ĀCF

fCP
+ ĀDCS

fCP
= ⌘

fCPAfCP , (33)

absorptive = related to on-shell states
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The average and the difference in mass and width are given by

m ≡
m1 + m2

2
, Γ ≡

Γ1 + Γ2

2
,

x ≡
m2 − m1

Γ
, y ≡

Γ2 − Γ1

2Γ
. (4)

The decay amplitudes into a final state f are defined as follows:

Af = 〈f |H|D0〉,

Af = 〈f |H|D0〉. (5)

We define λf :

λf =
q

p

Āf

Af

. (6)

We now write the approximate expressions for the time-dependent DCS and SCS decay

rates that are valid for time t ∼< 1/Γ. We take into account the experimental information

that x, y and tan θc (where θc is the Cabibbo angle) are small, and expand each of the rates

only to the order that is relevant to the BaBar and Belle measurements:

Γ[D0(t) → K+π−] = e−Γt|AK+π− |2|q/p|2

×
{

|λ−1
K+π−

|2 + [Re(λ−1
K+π−

)y + Im(λ−1
K+π−

)x]Γt +
1

4
(y2 + x2)(Γt)2

}

,

Γ[D0(t) → K−π+] = e−Γt|AK−π+ |2|p/q|2 (7)

×
{

|λK−π+ |2 + [Re(λK−π+)y + Im(λK−π+)x]Γt +
1

4
(y2 + x2)(Γt)2

}

,

Γ[D0(t) → K+K−] = e−Γt|AK+K−|2 {1 + [Re(λK+K−)y − Im(λK+K−)x]Γt} ,

Γ[D0(t) → K+K−] = e−Γt|AK+K−|2
{

1 + [Re(λ−1
K+K−

)y − Im(λ−1
K+K−

)x]Γt
}

. (8)

Within the Standard Model, the physics of D0 − D0 mixing and of the tree level decays

is dominated by the first two generations and, consequently, CP violation can be safely

neglected (for reviews of charm physics, see [4, 5]). Indeed, CP violation in these processes

would constitute a signal for new physics [3, 6, 7]. In all ‘reasonable’ extensions of the

Standard Model, both the DCS [8] and the SCS [9] decays are still dominated by the Standard

Model CP conserving contributions. On the other hand, there could be new short distance,

possibly CP violating contributions to the mixing amplitude M12. Allowing for only such

CP violating effects of new physics, the picture of CP violation is simplified since there is

3

♦ System parameters roughly determined (HFAG):

                                           

where rd is a real and positive dimensionless parameter, �f is a strong (CP conserving)

mode-dependent phase, and ⇧ is a weak (CP violating) universal phase. Similar expressions

can be written to decays into any final state. The appearance of a single weak phase that is

common to all final states is related to the absence of direct CP violation, while the absence

of a strong phase in ⇥K+K� is related to the fact that the final state is a CP eigenstate.

In our analysis we assume that e�ects of direct CP violation are negligibly small even in

the presence of new physics (NP). The question of NP contributions to direct CP violation

in the doubly Cabibbo suppressed decays was investigated in detail in [7, 8] and shown to be

indeed generically small. In some special cases it could reach order 30%. The singly Cabibbo

suppressed decays case was studied in [9]. Typically direct CP violation is suppressed, but

in special models (or corners of parameter space) it could be non-negligible. Experimental

constraints on direct CP violation in charm decays were analyzed by the heavy flavor aver-

aging group (HFAG) [10] and found to be of order one percent. Furthermore, the e�ect of

including direct CP violation on the NP contributions was recently considered in [11] and

shown to be subdominant.

The experimental measurements of the various relevant D-decay rates can be used to

determine the values of the four parameters that are related to D0 �D0 mixing: x, y, |q/p|

and ⇧. Impressive progress in relevant measurements has been recently achieved in the

BaBar and Belle experiments. The information comes from a variety of final states of

neutral D-meson decays: K+K�, ⌅+⌅�, K⌅+⌅�, K⌃⇤, K�⌅+ and K+⌅�. HFAG has fitted

the data, and obtained the following one sigma ranges [10]:

x = (1.00 ± 0.25)⇥ 10�2,

y = (0.77 ± 0.18)⇥ 10�2,

1� |q/p| = +0.06 ± 0.14,

⇧ = �0.05 ± 0.09, (2.8)

where ⇧ is given in radians. These results imply the following:

1. The width-splitting and mass-splitting are at a level close to one percent.

2. CP violation is small.

We would now like to translate these statements, made for the parameters that are used to

describe the experimental results, to parameters that represent the theory input.

4

Huge recent progress in measurement of mass splitting 
    & CP violation  (CPV) in the D system:
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f

,

�
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= q
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Af

Af
. Since x and y are known to be small, it

is instractive to work at leading order in them. Taking
into account the fact the we can also have Cabibbo su-
pressions, the relevant decays modes of interest are those
of the doubly-Cabibbo-suppressed decay into a flavor-
specific final state and singly-Cabibbo-suppressed decay
into a CP eigenstate.

We know that the e↵ect of of indeirect and direct CP
violation are small even in the presence of new physics.
Thus, we can treat them independently, such that the
total e↵ects add up. The e↵ects of indirect CP violation
can be parameterized in the following way:

��1
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+
⇡

� = r
d

|p/q| e�i(�K⇡+�),

�
K

�
⇡

+ = r
d

|q/p| e�i(�K⇡��),

�
K

+
K

� = �|q/p| ei�, (3)

where r
d

is a real and positive dimensionless parameter,
�
f

is a strong (CP conserving) phase, and � is a weak
(CP violating) phase.

The current world averages of the above parameters,
allowing for CP violation in the fit, are [5]

x = (0.63+0.19
�0.20)⇥ 10�2 y = (0.75± 0.12)⇥ 10�2,

|q/p| = 0.91+0.18
�0.16 , � = �0.18± 0.16 . (4)

The three observables related to mixing are

y12 ⌘ |�12|
�

, x12 ⌘ 2|M12|
�

, �12 ⌘ arg

✓
M12

�12

◆
. (5)

NEW ROBUST BOUND ON THE SM
ABSORPTIVE PHASE

We start with the considertaion of �12, which can be
written as

�12 = �
X

i,j=d,s

�
i

�
j

�
ij

. (6)

We factored out the dependence on CKM elements, �
i

=
V
ci

V ⇤
ui

, so that �
ij

are hadronic quantities. In the flavor
SU(3) limit they are universal. In principle we could get
them from a sum over decays to common exclusive final
states [7]

�
ij

=
�

�
i

�
j

X

n2nij

cos �
n

p
B(D0 ! n)B(D0 ! n̄) , (7)

where �
n

is the strong phase di↵erence between the am-
plitudes A(D0 ! n) and A(D̄0 ! n). Note that the
sum over n

ij

are all the relevant final state. For exam-
ple, in the case of i = j = s, we sum over states like
K+K�, K⇤K, etc.

Using CKM unitarity,

�
d

+ �
s

+ �
b

= 0 , (8)

we can write Eq. (6) in two di↵erent ways. Eliminating
�
d

yields

�12 = ��2
s

(�
ss

+�
dd

�2�
sd

)+2�
s

�
b

(�
sd

��
dd

)��2
b

�
dd

,
(9)

Numerically, the three terms above exhibit a very large
hierarchy, since �

d

and �
s

are of order �(⇡ 0.23), while
�
b

is of order �5. Yet, since we care about CP violation,
the contributions form the 3rd generation cannot be ne-
glected, thus below we shall keep terms linear with �

b

and neglect higher order terms. As y is CP conserving
observable, it is dominated by the first two generation
contributions

y ⇡ �|�
s

|2 (y
ss

+ y
dd

� 2y
sd

) . (10)

with

y
xy

⌘ |�
xy

/�| , (11)

and we have used the relation y ⇡ y12 since we know ex-
perimentally that CP violation in D is subdominant [3].
It is convenient to use the following definition:

�12 = �0
12 + ��12 , M12 = M0

12 + �M12, (12)

where

�0
12 = ��2

s

(�
ss

+ �
dd

� 2�
sd

), (13)

��12 = 2�
s

�
b

(�
sd

� �
ss

) +O(�2
b

), (14)

and

M0
12 = ��2

s

(M
ss

+M
dd

� 2M
sd

), (15)

�M12 = 2�
s

�
b

(M
sd

�M
ss

) +O(�2
b

). (16)

In the limit that subleading SM decay amplitudes are
neglected, one has

arg

"
�0
12

�⇤0
12

✓
A

f

A
f

◆2
#
= arg

"
M0

12

M⇤0
12

✓
A

f

A
f

◆2
#
= 0, (17)

where A
f

and Ā
f

are the ampltiudes for D0 and D̄0

decays to CP eigenstate final states f . Now we can write
�12 as

�12 = arg


M0

12

�0
12

�
1 + �M12/M

0
12 � ��12/�

0
12

��
. (18)

or

�12 ⇡ Im(�M12/M
0
12)� Im(��12/�

0
12). (19)
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We provide a robust bound for the absorptive part of CP violating in charm mixing processes
within the standard model, phi� <⇠ 1%. We define the physical observables that are sensitive to
the presence of such CP violating sources, and discuss how new physics (that generically requires a
new dark sector) could violate our bound. Expected, near future, improvement in measurement of
CP violation in the charm system at the LHCb is expected to test our prediction and therefore be
sensitive to to non-standard model dynamics.

INTRODUCTION

CP violation in charm decays brings unique oppurtu-
nities to search of New Physics (NP). Like kaons, charm
mixing is dominated by the first two generation. Since
in the Standard Model (SM) CP violation requires all
three generation to participate, all CP violating e↵ects
are expected to be very small. Any large signal would be
a clear indication of NP. Moreover, charm physics pro-
vides sensitivity to NP in the up sector. It is often stated
that measuring any CP violating e↵ect in charm would
be a very clean signal of NP. Yet, due to the significant
improvements in experimental bounds expected in the
future, the above statement needs sharpening. Also, a
recent paper [1] claims that CP violating e↵ects in the
SM can be much larger than what was claimed before.

Our aim is to clarify the issue of the SM predictions
of CP violating e↵ects in the charm system. Precise pre-
dictions are not easy to obtain. The reason is the large
hadronic uncertainties. Charm mixing vanishes in the
SU(3) limit and the whole e↵ect is due to the break-
ing which is not easy to estimate. Thus, our aim is to
provide best estimates and conservative upper bounds,
so that any measurement above these bounds could be
viewed as an unambiguous indication of NP.

The size of any CP violating observable could depend
on several underlying factors. CP violating observables
that involve mixing are proportional to the phase of the
mixing diagram. The naive expectation of the size of
this phase is roughly the same as in the kaon system,
that is few times 10�3. Yet, this is not the only supres-
sion factor. Many times interegarted observables are also
supressed by the mixing parameter x or y (defined below,
in Eq. (??)). The reason is that the meson must oscillate
in order to be sensitive to the CP violating e↵ects in mix-
ing, and this for integrated asymmetries the observable is
often depend on the charateristice time scale of mixing,
that is x and y.

Observable that involve CP violation in decays are sen-
sitive to the relative size and phase between the two de-
cay amplitudes. These amplitude are generally tree and
penguins ones. The penguin diagrams are supressed by
small CKM elements and loop e↵ects and are expected
to be very small.
Below we discuss all these e↵ects, that is, the size of

the mixing phase, the sensitivity of the obsrevales ot the
mixing parameters and the size of the decay phase. We
find that indeed, at present sensitivity, any positive CP
violation signal will be a clean indication of NP.

NOTATION

We start by reviewing the notations. We are following
closely the notations of Ref. [10] and [3]. The two D
meson mass eigenstates are denoted by |D

i

i with i = 1, 2.
They have well defined masses, m

i

, and widths �
i

. They
are combinations of the interaction eigenstates |D0i and
|D0i

|D1,2i = p|D0i± q|D0i. (1)

This mixing follows from the D0 �D0 transition ampli-
tude, defined as (zl: this eq. cannot be right)

hD0|H|D0i = M12 +
i

2
�12 . (2)

The overall phase of the mixing amplitude is not a phys-
ical quantity. It can be changed by the phase conven-
tions for the u and c quarks. The relative phase between
M12 and �12 is, however, a phase convention independent
physical quantity, and if it is nonzero, then it implies
|q/p| 6= 1, often referred to as CP violation in mixing.
We define m ⌘ m1+m2

2 , � ⌘ �1+�2
2 and x ⌘

m2�m1
� , y ⌘ �2��1

2� . The decay amplitudes into a final
state f are A

f

= hf |H|D0i, A
f

= hf |H|D0i. We define a
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We provide a robust bound for the absorptive part of CP violating in charm mixing processes
within the standard model, phi� <⇠ 1%. We define the physical observables that are sensitive to
the presence of such CP violating sources, and discuss how new physics (that generically requires a
new dark sector) could violate our bound. Expected, near future, improvement in measurement of
CP violation in the charm system at the LHCb is expected to test our prediction and therefore be
sensitive to to non-standard model dynamics.

INTRODUCTION

CP violation in charm decays brings unique oppurtu-
nities to search of New Physics (NP). Like kaons, charm
mixing is dominated by the first two generation. Since
in the Standard Model (SM) CP violation requires all
three generation to participate, all CP violating e↵ects
are expected to be very small. Any large signal would be
a clear indication of NP. Moreover, charm physics pro-
vides sensitivity to NP in the up sector. It is often stated
that measuring any CP violating e↵ect in charm would
be a very clean signal of NP. Yet, due to the significant
improvements in experimental bounds expected in the
future, the above statement needs sharpening. Also, a
recent paper [1] claims that CP violating e↵ects in the
SM can be much larger than what was claimed before.

Our aim is to clarify the issue of the SM predictions
of CP violating e↵ects in the charm system. Precise pre-
dictions are not easy to obtain. The reason is the large
hadronic uncertainties. Charm mixing vanishes in the
SU(3) limit and the whole e↵ect is due to the break-
ing which is not easy to estimate. Thus, our aim is to
provide best estimates and conservative upper bounds,
so that any measurement above these bounds could be
viewed as an unambiguous indication of NP.

The size of any CP violating observable could depend
on several underlying factors. CP violating observables
that involve mixing are proportional to the phase of the
mixing diagram. The naive expectation of the size of
this phase is roughly the same as in the kaon system,
that is few times 10�3. Yet, this is not the only supres-
sion factor. Many times interegarted observables are also
supressed by the mixing parameter x or y (defined below,
in Eq. (??)). The reason is that the meson must oscillate
in order to be sensitive to the CP violating e↵ects in mix-
ing, and this for integrated asymmetries the observable is
often depend on the charateristice time scale of mixing,
that is x and y.

Observable that involve CP violation in decays are sen-
sitive to the relative size and phase between the two de-
cay amplitudes. These amplitude are generally tree and
penguins ones. The penguin diagrams are supressed by
small CKM elements and loop e↵ects and are expected
to be very small.
Below we discuss all these e↵ects, that is, the size of

the mixing phase, the sensitivity of the obsrevales ot the
mixing parameters and the size of the decay phase. We
find that indeed, at present sensitivity, any positive CP
violation signal will be a clean indication of NP.

NOTATION

We start by reviewing the notations. We are following
closely the notations of Ref. [10] and [3]. The two D
meson mass eigenstates are denoted by |D

i

i with i = 1, 2.
They have well defined masses, m

i

, and widths �
i

. They
are combinations of the interaction eigenstates |D0i and
|D0i

|D1,2i = p|D0i± q|D0i. (1)

This mixing follows from the D0 �D0 transition ampli-
tude, defined as (zl: this eq. cannot be right)

hD0|H|D0i = M12 +
i

2
�12 . (2)

The overall phase of the mixing amplitude is not a phys-
ical quantity. It can be changed by the phase conven-
tions for the u and c quarks. The relative phase between
M12 and �12 is, however, a phase convention independent
physical quantity, and if it is nonzero, then it implies
|q/p| 6= 1, often referred to as CP violation in mixing.
We define m ⌘ m1+m2

2 , � ⌘ �1+�2
2 and x ⌘

m2�m1
� , y ⌘ �2��1

2� . The decay amplitudes into a final
state f are A

f

= hf |H|D0i, A
f

= hf |H|D0i. We define a

Γ12 = −
(

λ2
s Γss + 2λsλd Γsd + λ2

d Γdd

)

, where λp = VcpV
∗

up

Γxy in the OPE picture
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preliminary

(neglecting b a sec’ a sec’)
3

In the limit that subleading (CKM suppressed) SM decay
amplitudes are neglected, or other form of direct charm
CP violation which are bounded to be below the precent
level, we can equate
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and similarly,
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where

�12 = �M

12 � ��
12 . (22)

It important to point out that the dispersive and ab-
sorptive contributions to �12, as defined above, are sepa-
rately physical observables. Thus, each contribution can
in principle be bounded separately. Later, we will discuss
the measurements which can determine ��

12 and �M

12 , and
the potential impact of the SM subleading decay ampli-
tudes.

We shall now obtain an upper bound on the absorptive
contribution to �12. We can express ��

12 as,

��
12 = 2 |�

b

�
s

| sin � �
sd

�0
12

�
sd

� �
dd

�
sd

+O(�2
b

), (23)

where the O(�2
b

) contributions are negligible and are
omitted in the following.

The magnitude can then be rewritten as

|��
12| = 2

����
�
b

�
s

sin �

y

���� ⇥ y
sd

⇥
����
�
sd

� �
dd

�
sd

���� . (24)

With the central values for y and the CKM parameters,
this yields

|��
12| = 0.008 ⇥ y

sd

⇥ |✏�
d

| , (25)

where we have introduced the SU(3) breaking quantities

✏�
d

⌘ �
dd

� �
sd

�
sd

, ✏�
s

⌘ �
ss

� �
sd

�
sd

. (26)

(One also obtains the same bound with ✏�
d

! ✏�
s

, in the
limit that O(�2

b

) terms are neglected.) Conservatively,
we can take |✏�

q

| < 1, where a natural expectation is
that the magnitude of SU(3) breaking is O(1/3). We
will show below in full generality that unitarity implies
that y

sd

thus yielding an upper bound on |��
12

|��
12| <⇠ 0.008 ⇥ |✏�

d

| . (27)

Before giving the general proof it is instructive to con-
sider some physical limits regarding the size of the ab-
sorptive phase. From Eq. 25 it is evident that to ob-
tain an upper bound on ��

12 an upper bound on y
sd

is

required as we now discuss in detail. We consider two
limiting cases concerning the value of y

sd

in conjunction
with Eq. (10) that can be rewritten as

y
sd

⇡ y/2|�
s

|2(r
sd

� 1) ⇠ 7%/(r
sd

� 1), . (28)

with r
sd

= (y
ss

+ y
dd

)/2y
sd

. (i) If there are no cancella-
tion between the di↵erent contributions to y in Eq. (10),
namely r

sd

� 1 or r
sd

⌧ 1, then from Eq. (28) we find
a rather strong upper bound for y

sd

y
sd

⇡ y/2�2
C

⇠ 7% ; (29)

(ii) however we do expect cancellation between y
ss

, y
dd

and y
sd

in (10), or r
sd

⇡ 1, to occur as the sum is pro-
portional the square of SU(3) breaking, ✏ [7]. In that
limit we have all the three terms being of the same order
while the algebraic sum of Eq. (10) being smaller than
any of the individual term. This is consistent with our
rough expectation for y to be of order �2

C

⇥ ✏2 ⇠ 0.5%,
consistent with the observed value for ✏ ⇠ 0.3. In such a
case we get

y
sd

⇡ y/2�2
C

✏2 ⇠ 1 , (30)

which would still yield a rather strong bound the absorp-
tive CPV phase, |��

12| <⇠ 1% .
The question is however, if there can be even lager

cancellation in (10) leading to a very weak bound on y
sd

and consequently the CPV phase. The answer is negative
as we can use unitarity to bound the value of y

sd

to be
less than unity, via the optical theorem, which would
lead to our robust SM bound as we now explain. The
amplitudes for CF and DCS D0 and D̄0 decays to non-
CP eigenstate, CP conjugate pairs of final state f and f̄
can be defined as

ACF
f

= hf |H|D0i , ADCS
f

= hf |H|D0i ,

ADCS
f

= hf |H|D0i , ACF
f

= hf |H|D0i, (31)

where H is the weak interaction e↵ective Hamiltonian
governing these decays. These amplitudes are related
according to the following expressions

ACF
f

= A
f

, ADCS
f

= A
f

ei�f ,

ACF
f

= A
f

, ADCS
f

= A
f

ei�f , (32)

where A
f

and A
f

are the magnitudes of the amplitudes,
and �

f

is a strong (CP conserving) phase. All of the
quantities entering Eq. (32) are understood to be phase
space dependent for 3-body and higher final states.
Both CF and DCS decays will contribute for the same

CP eigenstate final state, fCP. One can write

A
fCP = hfCP|H|D0i = ACF

fCP
+ADCS

fCP
= A

fCP ,

Ā
fCP = hfCP|H|D̄0i = ĀCF

fCP
+ ĀDCS

fCP
= ⌘

fCPAfCP , (33)
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amplitudes are neglected, or other form of direct charm
CP violation which are bounded to be below the precent
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where
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It important to point out that the dispersive and ab-
sorptive contributions to �12, as defined above, are sepa-
rately physical observables. Thus, each contribution can
in principle be bounded separately. Later, we will discuss
the measurements which can determine ��

12 and �M

12 , and
the potential impact of the SM subleading decay ampli-
tudes.

We shall now obtain an upper bound on the absorptive
contribution to �12. We can express ��
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) contributions are negligible and are
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With the central values for y and the CKM parameters,
this yields
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where we have introduced the SU(3) breaking quantities
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(One also obtains the same bound with ✏�
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, in the
limit that O(�2
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) terms are neglected.) Conservatively,
we can take |✏�
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| < 1, where a natural expectation is
that the magnitude of SU(3) breaking is O(1/3). We
will show below in full generality that unitarity implies
that y
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thus yielding an upper bound on |��
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Before giving the general proof it is instructive to con-
sider some physical limits regarding the size of the ab-
sorptive phase. From Eq. 25 it is evident that to ob-
tain an upper bound on ��

12 an upper bound on y
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is

required as we now discuss in detail. We consider two
limiting cases concerning the value of y
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in conjunction
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⌧ 1, then from Eq. (28) we find
a rather strong upper bound for y
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dd

and y
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in (10), or r
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⇡ 1, to occur as the sum is pro-
portional the square of SU(3) breaking, ✏ [7]. In that
limit we have all the three terms being of the same order
while the algebraic sum of Eq. (10) being smaller than
any of the individual term. This is consistent with our
rough expectation for y to be of order �2
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consistent with the observed value for ✏ ⇠ 0.3. In such a
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which would still yield a rather strong bound the absorp-
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and consequently the CPV phase. The answer is negative
as we can use unitarity to bound the value of y
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to be
less than unity, via the optical theorem, which would
lead to our robust SM bound as we now explain. The
amplitudes for CF and DCS D0 and D̄0 decays to non-
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where A
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are the magnitudes of the amplitudes,
and �
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is a strong (CP conserving) phase. All of the
quantities entering Eq. (32) are understood to be phase
space dependent for 3-body and higher final states.
Both CF and DCS decays will contribute for the same

CP eigenstate final state, fCP. One can write
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It important to point out that the dispersive and ab-
sorptive contributions to �12, as defined above, are sepa-
rately physical observables. Thus, each contribution can
in principle be bounded separately. Later, we will discuss
the measurements which can determine ��

12 and �M

12 , and
the potential impact of the SM subleading decay ampli-
tudes.
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rough expectation for y to be of order �2

C

⇥ ✏2 ⇠ 0.5%,
consistent with the observed value for ✏ ⇠ 0.3. In such a
case we get

y
sd

⇡ y/2�2
C

✏2 ⇠ 1 , (30)

which would still yield a rather strong bound the absorp-
tive CPV phase, |��

12| <⇠ 1% .
The question is however, if there can be even lager

cancellation in (10) leading to a very weak bound on y
sd

and consequently the CPV phase. The answer is negative
as we can use unitarity to bound the value of y

sd

to be
less than unity, via the optical theorem, which would
lead to our robust SM bound as we now explain. The
amplitudes for CF and DCS D0 and D̄0 decays to non-
CP eigenstate, CP conjugate pairs of final state f and f̄
can be defined as

ACF
f

= hf |H|D0i , ADCS
f

= hf |H|D0i ,

ADCS
f

= hf |H|D0i , ACF
f

= hf |H|D0i, (31)

where H is the weak interaction e↵ective Hamiltonian
governing these decays. These amplitudes are related
according to the following expressions

ACF
f

= A
f

, ADCS
f

= A
f

ei�f ,

ACF
f

= A
f

, ADCS
f

= A
f

ei�f , (32)

where A
f

and A
f

are the magnitudes of the amplitudes,
and �

f

is a strong (CP conserving) phase. All of the
quantities entering Eq. (32) are understood to be phase
space dependent for 3-body and higher final states.
Both CF and DCS decays will contribute for the same

CP eigenstate final state, fCP. One can write

A
fCP = hfCP|H|D0i = ACF

fCP
+ADCS

fCP
= A

fCP ,

Ā
fCP = hfCP|H|D̄0i = ĀCF

fCP
+ ĀDCS

fCP
= ⌘

fCPAfCP , (33)
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complex basis independent dimensionless parameter �
f

,

�
f

= q

p

Af

Af
. Since x and y are known to be small, it

is instractive to work at leading order in them. Taking
into account the fact the we can also have Cabibbo su-
pressions, the relevant decays modes of interest are those
of the doubly-Cabibbo-suppressed decay into a flavor-
specific final state and singly-Cabibbo-suppressed decay
into a CP eigenstate.

We know that the e↵ect of of indeirect and direct CP
violation are small even in the presence of new physics.
Thus, we can treat them independently, such that the
total e↵ects add up. The e↵ects of indirect CP violation
can be parameterized in the following way:

��1
K

+
⇡

� = r
d

|p/q| e�i(�K⇡+�),

�
K

�
⇡

+ = r
d

|q/p| e�i(�K⇡��),

�
K

+
K

� = �|q/p| ei�, (3)

where r
d

is a real and positive dimensionless parameter,
�
f

is a strong (CP conserving) phase, and � is a weak
(CP violating) phase.

The current world averages of the above parameters,
allowing for CP violation in the fit, are [5]

x = (0.63+0.19
�0.20)⇥ 10�2 y = (0.75± 0.12)⇥ 10�2,

|q/p| = 0.91+0.18
�0.16 , � = �0.18± 0.16 . (4)

The three observables related to mixing are

y12 ⌘ |�12|
�

, x12 ⌘ 2|M12|
�

, �12 ⌘ arg

✓
M12

�12

◆
. (5)

NEW ROBUST BOUND ON THE SM
ABSORPTIVE PHASE

We start with the considertaion of �12, which can be
written as

�12 = �
X

i,j=d,s

�
i

�
j

�
ij

. (6)

We factored out the dependence on CKM elements, �
i

=
V
ci

V ⇤
ui

, so that �
ij

are hadronic quantities. In the flavor
SU(3) limit they are universal. In principle we could get
them from a sum over decays to common exclusive final
states [7]

�
ij

=
�

�
i

�
j

X

n2nij

cos �
n

p
B(D0 ! n)B(D0 ! n̄) , (7)

where �
n

is the strong phase di↵erence between the am-
plitudes A(D0 ! n) and A(D̄0 ! n). Note that the
sum over n

ij

are all the relevant final state. For exam-
ple, in the case of i = j = s, we sum over states like
K+K�, K⇤K, etc.

Using CKM unitarity,

�
d

+ �
s

+ �
b

= 0 , (8)

we can write Eq. (6) in two di↵erent ways. Eliminating
�
d

yields

�12 = ��2
s

(�
ss

+�
dd

�2�
sd

)+2�
s

�
b

(�
sd

��
dd

)��2
b

�
dd

,
(9)

Numerically, the three terms above exhibit a very large
hierarchy, since �

d

and �
s

are of order �(⇡ 0.23), while
�
b

is of order �5. Yet, since we care about CP violation,
the contributions form the 3rd generation cannot be ne-
glected, thus below we shall keep terms linear with �

b

and neglect higher order terms. As y is CP conserving
observable, it is dominated by the first two generation
contributions

y ⇡ �|�
s

|2 (y
ss

+ y
dd

� 2y
sd

) . (10)

with

y
xy

⌘ |�
xy

/�| , (11)

and we have used the relation y ⇡ y12 since we know ex-
perimentally that CP violation in D is subdominant [3].
It is convenient to use the following definition:

�12 = �0
12 + ��12 , M12 = M0

12 + �M12, (12)

where

�0
12 = ��2

s

(�
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+ �
dd

� 2�
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), (13)

��12 = 2�
s

�
b

(�
sd

� �
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) +O(�2
b
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and
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s
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), (15)
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s
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b

). (16)

In the limit that subleading SM decay amplitudes are
neglected, one has
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where A
f

and Ā
f

are the ampltiudes for D0 and D̄0

decays to CP eigenstate final states f . Now we can write
�12 as
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�
1 + �M12/M

0
12 � ��12/�

0
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. (18)

or
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0
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0
12). (19)

Unitarity: ysd  1
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In the limit that subleading (CKM suppressed) SM decay
amplitudes are neglected, or other form of direct charm
CP violation which are bounded to be below the precent
level, we can equate
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and similarly,

�M

12 ⌘ Im

✓
�M12

M0
12

◆
=

1

2
arg

"
M12

M⇤
12

✓
A

f

A
f

◆2
#
, (21)

where

�12 = �M

12 � ��
12 . (22)

It important to point out that the dispersive and ab-
sorptive contributions to �12, as defined above, are sepa-
rately physical observables. Thus, each contribution can
in principle be bounded separately. Later, we will discuss
the measurements which can determine ��

12 and �M

12 , and
the potential impact of the SM subleading decay ampli-
tudes.

We shall now obtain an upper bound on the absorptive
contribution to �12. We can express ��

12 as,

��
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�
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| sin � �
sd

�0
12

�
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� �
dd
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), (23)

where the O(�2
b

) contributions are negligible and are
omitted in the following.

The magnitude can then be rewritten as
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dd
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With the central values for y and the CKM parameters,
this yields

|��
12| = 0.008 ⇥ y
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d

| , (25)

where we have introduced the SU(3) breaking quantities
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sd
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(One also obtains the same bound with ✏�
d

! ✏�
s

, in the
limit that O(�2

b

) terms are neglected.) Conservatively,
we can take |✏�

q

| < 1, where a natural expectation is
that the magnitude of SU(3) breaking is O(1/3). We
will show below in full generality that unitarity implies
that y

sd

thus yielding an upper bound on |��
12

|��
12| <⇠ 0.008 ⇥ |✏�

d

| . (27)

Before giving the general proof it is instructive to con-
sider some physical limits regarding the size of the ab-
sorptive phase. From Eq. 25 it is evident that to ob-
tain an upper bound on ��

12 an upper bound on y
sd

is

required as we now discuss in detail. We consider two
limiting cases concerning the value of y

sd

in conjunction
with Eq. (10) that can be rewritten as

y
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⇡ y/2|�
s

|2(r
sd

� 1) ⇠ 7%/(r
sd

� 1), . (28)

with r
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= (y
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+ y
dd

)/2y
sd

. (i) If there are no cancella-
tion between the di↵erent contributions to y in Eq. (10),
namely r

sd

� 1 or r
sd

⌧ 1, then from Eq. (28) we find
a rather strong upper bound for y

sd

y
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⇡ y/2�2
C

⇠ 7% ; (29)

(ii) however we do expect cancellation between y
ss

, y
dd

and y
sd

in (10), or r
sd

⇡ 1, to occur as the sum is pro-
portional the square of SU(3) breaking, ✏ [7]. In that
limit we have all the three terms being of the same order
while the algebraic sum of Eq. (10) being smaller than
any of the individual term. This is consistent with our
rough expectation for y to be of order �2

C

⇥ ✏2 ⇠ 0.5%,
consistent with the observed value for ✏ ⇠ 0.3. In such a
case we get

y
sd

⇡ y/2�2
C

✏2 ⇠ 1 , (30)

which would still yield a rather strong bound the absorp-
tive CPV phase, |��

12| <⇠ 1% .
The question is however, if there can be even lager

cancellation in (10) leading to a very weak bound on y
sd

and consequently the CPV phase. The answer is negative
as we can use unitarity to bound the value of y

sd

to be
less than unity, via the optical theorem, which would
lead to our robust SM bound as we now explain. The
amplitudes for CF and DCS D0 and D̄0 decays to non-
CP eigenstate, CP conjugate pairs of final state f and f̄
can be defined as

ACF
f

= hf |H|D0i , ADCS
f

= hf |H|D0i ,

ADCS
f

= hf |H|D0i , ACF
f

= hf |H|D0i, (31)

where H is the weak interaction e↵ective Hamiltonian
governing these decays. These amplitudes are related
according to the following expressions

ACF
f

= A
f

, ADCS
f

= A
f

ei�f ,

ACF
f

= A
f

, ADCS
f

= A
f

ei�f , (32)

where A
f

and A
f

are the magnitudes of the amplitudes,
and �

f

is a strong (CP conserving) phase. All of the
quantities entering Eq. (32) are understood to be phase
space dependent for 3-body and higher final states.
Both CF and DCS decays will contribute for the same

CP eigenstate final state, fCP. One can write

A
fCP = hfCP|H|D0i = ACF

fCP
+ADCS

fCP
= A

fCP ,

Ā
fCP = hfCP|H|D̄0i = ĀCF

fCP
+ ĀDCS

fCP
= ⌘

fCPAfCP , (33)
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where ⌘
fCP = +(�) for CP even (odd) final states. With-

out loss of generality, A
fCP can be identified with the

magnitude of the above amplitudes (a non-trivial rela-
tive strong phase between the CF and DCS amplitudes
is common to A

fCP and Ā
fCP , and can be removed).

Using the optical theorem, we can express �
sd

in terms
of a sum over all possible exclusive final states common
to CF and DCS D0 and D̄0 decays as follows,

�
sd

=
X

fCP

⌘
fCPA

2
fCP

+
X

f,f

2A
f

A
f

cos�
f

. (34)

Summing over all possible final states yields the total D0

decay width,

� =
X

fCP

A2
fCP

++
X

f,f̄

(A2
f

+A2
f̄

) + �SCS , (35)

where the last term is the total width for SCS decays.
Note that for multiparticle final states the sums also in-
clude integrals over final state phase space. However,
the phase space is common to CP conjugate final states
f , f̄ . It is therefore easily seen from the expressions in
(34), (35) that y

sd

< 1. The contributions CF/DCS de-
cays to CP eigenstate final states would, alone, satisfy
this inequality since there are both CP even and CP odd
eigenstates. This is also easily seen to be true for the
CF/DCS decays to non-CP eigenstate final states, via
the vector identity ~a2 +~b2 > 2|~a ·~b|, which implies that
2A

f

A
f

cos�
f

/(A2
f

+A2
f̄

) < 1. Finally, the contributions
of the SCS decays to the total width only further reduce
the ratio.

INTERPRETATION OF THE BOUND,
OBSERVABLES & NEW PHYSICS

From Eq. (20) it is clear that ��
12 is a physical quan-

tity yet as it is not often discussed in the literature we
shall now explain how in principle it could be measured
or constrained. We are interested in the case where neg-
ligible amount of direct CP is obtained for individual
state (as consistent with the data including the recent
observation of direct CPV by LHCb, Belle and CDF []
in D ! KK/⇡⇡ which is sub-percentage per mode). In
such a case (see e.g. [13] and references therein) we have
for a decay of a D meson into a CP eigenstate, f

CP

, the
following relation (AK+GP: this following part is

only for us to see explicitly how the derivation

work the point is that � is now get replaced with

�� ��
12 as in Eq. (40) below which is the key new

one! )

✓
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p
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A
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=

����
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����
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e�2i� (36)

=
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✓
Ā
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A
fCP

◆2

=
(x12/y12) e�i�12 � i

(x12/y12) ei�12 � i
e�2i��

12 (37)

where since there is no direct CPV by assumption we
have used the relation �

fCP = |q/p| We move the phase
��
12 to the l.h.s., and multiply the numerator and de-

nominator on the right by the denominator’s complex
conjugate, yielding

����
q

p

����
2

e�2i(���

�
12) = (38)

(x12/y12)2e�2i�12 + 1

(x12/y12)2 � 2(x12/y12) sin�12 + 1
. (39)

Now we equate the real parts and the imaginary parts,
yielding

����
q

p

����
2

sin 2(�� ��
12) =

�(x12/y12)2 sin 2�12

(x12/y12)2 � 2(x12/y12) sin�12 + 1
����
q

p

����
2

cos 2(�� ��
12) =

(x12/y12)2 cos 2�12 + 1

(x12/y12)2 � 2(x12/y12) sin�12 + 1
.

The ratio yields the desired relation,

tan 2(�� ��
12) = � sin 2�12

cos 2�12 + (y12/x12)2
. (40)

(Note that the corresponding relation for tan 2(�� �M

12)
is obtained by substituting (y12/x12)2 ! (x12/y12)2 in
the r.h.s.) After some algebra (see KS), involving the
usual relations between |q/p|, x, y and �12, x12, y12, and
employing a trigonometric identity, we obtain from the
above equations for sin 2(�� ��

12) and cos 2(�� ��
12) the

desired relation between observables (AK: a similar re-
lation can probably be found for tan[�� �M

12 ])

tan(�� ��
12) = �A

m

x/y (41)

where A
m

= (|q/p|2 � 1)/(|q/p|2 + 1) and one can iden-
tify Eq. (41) with the model independent bound obtained
in [3, 12] where the main di↵erence here is that the pos-
sibility of having both � and ��

12 being quasi universal.
By quasi universal phases we refer here to phases which
appear in the interference between mixing and decay, and
the amount CPV in decay in these decay modes is negli-
gible, |Ā

f

/A
f

| ' 1, and therefore we omit the subscript
f from both � and ��

12. In order to bound or to mea-
sure ��

12 one need to determine the value of A
m

, x and
y and to bound the value of �. � can be determined or
constrained by comparing di↵erent final state of D decay
and therefore therefore a comparison between the RHS
and LHS of Eq. (41) can be directly used to extract in-
formation on ��

12.
Finally, we comment that an example for an exotic

form of non-SM physics that can induce a sizable ��
12

could be from the presence of a new light sector which
couples to charm in a CP violating manner. If this light
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where the last term is the total width for SCS decays.
Note that for multiparticle final states the sums also in-
clude integrals over final state phase space. However,
the phase space is common to CP conjugate final states
f , f̄ . It is therefore easily seen from the expressions in
(34), (35) that y

sd

< 1. The contributions CF/DCS de-
cays to CP eigenstate final states would, alone, satisfy
this inequality since there are both CP even and CP odd
eigenstates. This is also easily seen to be true for the
CF/DCS decays to non-CP eigenstate final states, via
the vector identity ~a2 +~b2 > 2|~a ·~b|, which implies that
2A

f

A
f

cos�
f

/(A2
f

+A2
f̄

) < 1. Finally, the contributions
of the SCS decays to the total width only further reduce
the ratio.

INTERPRETATION OF THE BOUND,
OBSERVABLES & NEW PHYSICS

From Eq. (20) it is clear that ��
12 is a physical quan-

tity yet as it is not often discussed in the literature we
shall now explain how in principle it could be measured
or constrained. We are interested in the case where neg-
ligible amount of direct CP is obtained for individual
state (as consistent with the data including the recent
observation of direct CPV by LHCb, Belle and CDF []
in D ! KK/⇡⇡ which is sub-percentage per mode). In
such a case (see e.g. [13] and references therein) we have
for a decay of a D meson into a CP eigenstate, f

CP

, the
following relation (AK+GP: this following part is

only for us to see explicitly how the derivation

work the point is that � is now get replaced with

�� ��
12 as in Eq. (40) below which is the key new

one! )
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Ā

fCP

A
fCP

◆2

=
(x12/y12) e�i�12 � i

(x12/y12) ei�12 � i
e�2i��

12 (37)

where since there is no direct CPV by assumption we
have used the relation �

fCP = |q/p| We move the phase
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12 to the l.h.s., and multiply the numerator and de-

nominator on the right by the denominator’s complex
conjugate, yielding
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Now we equate the real parts and the imaginary parts,
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The ratio yields the desired relation,
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(Note that the corresponding relation for tan 2(�� �M

12)
is obtained by substituting (y12/x12)2 ! (x12/y12)2 in
the r.h.s.) After some algebra (see KS), involving the
usual relations between |q/p|, x, y and �12, x12, y12, and
employing a trigonometric identity, we obtain from the
above equations for sin 2(�� ��

12) and cos 2(�� ��
12) the

desired relation between observables (AK: a similar re-
lation can probably be found for tan[�� �M

12 ])
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where A
m

= (|q/p|2 � 1)/(|q/p|2 + 1) and one can iden-
tify Eq. (41) with the model independent bound obtained
in [3, 12] where the main di↵erence here is that the pos-
sibility of having both � and ��

12 being quasi universal.
By quasi universal phases we refer here to phases which
appear in the interference between mixing and decay, and
the amount CPV in decay in these decay modes is negli-
gible, |Ā

f

/A
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| ' 1, and therefore we omit the subscript
f from both � and ��

12. In order to bound or to mea-
sure ��

12 one need to determine the value of A
m

, x and
y and to bound the value of �. � can be determined or
constrained by comparing di↵erent final state of D decay
and therefore therefore a comparison between the RHS
and LHS of Eq. (41) can be directly used to extract in-
formation on ��

12.
Finally, we comment that an example for an exotic

form of non-SM physics that can induce a sizable ��
12

could be from the presence of a new light sector which
couples to charm in a CP violating manner. If this light
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f

/A
f

| ' 1, and therefore we omit the subscript
f from both � and ��

12. In order to bound or to mea-
sure ��

12 one need to determine the value of A
m

, x and
y and to bound the value of �. � can be determined or
constrained by comparing di↵erent final state of D decay
and therefore therefore a comparison between the RHS
and LHS of Eq. (41) can be directly used to extract in-
formation on ��

12.
Finally, we comment that an example for an exotic

form of non-SM physics that can induce a sizable ��
12

could be from the presence of a new light sector which
couples to charm in a CP violating manner. If this light

2
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f

,

�
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Af
. Since x and y are known to be small, it

is instractive to work at leading order in them. Taking
into account the fact the we can also have Cabibbo su-
pressions, the relevant decays modes of interest are those
of the doubly-Cabibbo-suppressed decay into a flavor-
specific final state and singly-Cabibbo-suppressed decay
into a CP eigenstate.

We know that the e↵ect of of indeirect and direct CP
violation are small even in the presence of new physics.
Thus, we can treat them independently, such that the
total e↵ects add up. The e↵ects of indirect CP violation
can be parameterized in the following way:
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where r
d

is a real and positive dimensionless parameter,
�
f

is a strong (CP conserving) phase, and � is a weak
(CP violating) phase.

The current world averages of the above parameters,
allowing for CP violation in the fit, are [5]
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NEW ROBUST BOUND ON THE SM
ABSORPTIVE PHASE

We start with the considertaion of �12, which can be
written as
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We factored out the dependence on CKM elements, �
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, so that �
ij

are hadronic quantities. In the flavor
SU(3) limit they are universal. In principle we could get
them from a sum over decays to common exclusive final
states [7]
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where �
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is the strong phase di↵erence between the am-
plitudes A(D0 ! n) and A(D̄0 ! n). Note that the
sum over n

ij

are all the relevant final state. For exam-
ple, in the case of i = j = s, we sum over states like
K+K�, K⇤K, etc.

Using CKM unitarity,
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we can write Eq. (6) in two di↵erent ways. Eliminating
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Numerically, the three terms above exhibit a very large
hierarchy, since �

d

and �
s

are of order �(⇡ 0.23), while
�
b

is of order �5. Yet, since we care about CP violation,
the contributions form the 3rd generation cannot be ne-
glected, thus below we shall keep terms linear with �

b

and neglect higher order terms. As y is CP conserving
observable, it is dominated by the first two generation
contributions
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and we have used the relation y ⇡ y12 since we know ex-
perimentally that CP violation in D is subdominant [3].
It is convenient to use the following definition:
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In the limit that subleading SM decay amplitudes are
neglected, one has
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where A
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and Ā
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are the ampltiudes for D0 and D̄0

decays to CP eigenstate final states f . Now we can write
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Modified model indep’ bound: Ligeti, Papucci & GP; Grossman, Nir & GP; Kagan-Sokoloff.

� & ��
12: quasi-universal CP phases, related

to final states without CP in decay,

��� Āf

Af

��� ' 1

LHCb precisely measure x, y,�, Am & test for presence of ��
12

♦

♦

CPV light hidden sector that couples to D & decay to SM =>
quasi universal absorptive phase, can be observed as above.

♦

preliminary
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However is this consistence with the     
                LHC data??

The relentless march of experiment

Rakhi Mahbubani CERN Flavour vs LHC squark limits 1/14
1/14

Mahbubani, Papucci, GP, Ruderman & Weiler, to appear.

• SM quark flavor symmetry

• two sources of breaking:

• Implication (2): bounds on degeneracy in SUSY alignment models

• viable SUSY spectra can be generated from complete anarchy at 
moderate mediation scales (SUSY QCD RGE)

• surprising mass hierarchies still viable, e.g.
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We show that new physics that breaks the left-handed SU(3)Q quark flavor symmetry induces
contributions to CP violation in �F = 1 processes which are approximately universal, in that
they are not a↵ected by flavor rotations between the up and the down mass bases. Therefore,
such flavor violation cannot be aligned, and is constrained by the strongest bound from either
the up or the down sectors. We use this result to show that the bound from ✏

0
/✏ prohibits an

SU(3)Q breaking explanation of the recent LHCb evidence for CP violation in D meson decays.
Another consequence of this universality is that supersymmetric alignment models with a moderate
mediation scale are consistent with the data, and are harder to probe via CP violating observables.
With current constraints, therefore, squarks need not be degenerate. However, future improvements
in the measurement of CP violation in D �D mixing will start to probe alignment models.

I. INTRODUCTION

Measurements of flavor-changing neutral-current (FCNC) processes in the quark sector put strong constraints on
New Physics (NP) at the TeV scale and provide a crucial guide for model building. Generically, NP models can avoid
existing bounds by aligning the flavor structure with one of the quark Yukawa matrices. However, new flavor breaking
sources involving only the SU(2)L doublet quarks Qi (i.e., breaking only the SU(3)Q quark flavor symmetry) cannot
be simultaneously diagonalized in both the up and the down quark mass bases, and new contributions to FCNCs
are necessarily generated. To constrain such models of flavor alignment, processes involving both up and down type
quark transitions need to be measured. Consequently, one would näıvely conclude that robust constraints on the
corresponding microscopic flavor structures come from the weaker of the bounds in the up and the down sectors.

Below we argue, however, that in a large class of models, contrary to flavor violation in �F = 2 processes [1], in
the case of �F = 1 CP violation, it is the strongest of the up and down sector constraints which applies. We show
that in these scenarios, to a good approximation, the sources of �F = 1 CP violation are universal, namely they do
not transform under flavor rotations between the up and the down mass bases. This is particularly important for the
NP interpretation of the recent LHCb evidence for CP violation in D decays. Employing the ✏0/✏ constraint on new
CP violating �s = 1 operators, we exclude sizable contributions of SU(3)Q breaking NP operators to the direct CP
asymmetries in singly-Cabibbo-suppressed D decays, in particular to �aCP measured by the LHCb experiment [2].

Furthermore, applying our argument to rare semileptonic K and B decays, we show how the present and future
measurements of these processes constrain the sources of CP violation in rare semileptonic D decays and FCNC top
decays. In particular, the observation of non-SM CP asymmetries in these processes would, barring cancellations,
signal the presence of new sources of SU(3)U,D flavor symmetry breaking.

Finally, an additional implication of our result is that in viable flavor alignment models the universal flavor and CP
violating phases are naturally small. Applying this insight to supersymmetric (SUSY) alignment models leads to the
conclusion that the first two generation squarks can have mass splittings as large as 30% at the TeV scale, consistent
with mass anarchy at a supersymmetry breaking mediation scale as low as 10 TeV.

II. UNIVERSALITY OF CP VIOLATION WITH TWO GENERATIONS

It is well known that the gauge sector of the Standard Model (SM) respects a large global flavor symmetry. In the
quark sector, the corresponding flavor group, GF = SU(3)Q ⇥ SU(3)U ⇥ SU(3)D , is broken by the up and the down
Yukawa matrices Yu,d , formally transforming as (3, 3̄, 1) and (3, 1, 3̄) under GF , respectively. From these, one can
construct two independent sources of SU(3)Q breaking,

Au ⌘ (YuY
†
u )/tr , Ad ⌘ (YdY

†
d )/tr , (1)
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With current constraints, therefore, squarks need not be degenerate. However, future improvements
in the measurement of CP violation in D �D mixing will start to probe alignment models.
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SUSY alignment models

SUSY predictions masses, splittings (degeneracy), mixing angles (e.g., )

& mixing said to imply that alignment not viable w/o degeneracy [arXiv:0903.2118]

Consider NP op.:

is a flavor-singlet

One invariant
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[Gedalia, Kamenik, ZL, Perez, arXiv:1202.5038]

Maybe surprising spectra viable: , ,

LHC searches using jets MET much less constraining without assuming that
1st–2nd generation squarks are degenerate [Mahbubani, Papucci, Perez, Ruderman, Weiler, to appear]

ZL — p.14

Important implications for LHC searches

On Universality of CPV in SU(3)Q breaking NP
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What if the first 2 generation squark are
not degenerate?

Mahbubani, Papucci, GP, Ruderman & Weiler, to appear. 
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(c̃, s̃)L, c̃R, s̃R

Everything degenerate         

M
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(ũ, d̃)L, (c̃, s̃)L

 Everything degenerate                       Split, but MFV                                                  Anarchy!
Producing Top Quarks 
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Tevatron  

Fermilab 

1 km 

CDF 
D0 

Main Injector 

PIC 2009 – Kobe, Japan Bernd Stelzer, Simon Fraser University 

- The Energy Frontier -!

LHC 

CERN 

•! 1.96 TeV pp collider 

•! Run II started in 2001 

•! Record Inst. Lum. 3.6!1032 [cm-2sec-1] 

Most of the results 

•! 14 TeV pp collider 

•! Restart in Nov 2009 at 7 TeV 

•! Inst. Lum. 1032-1034 [cm-2sec-1] 

ATLAS 

CMS 

Brief outlook 

??

??

29



How do limits change?
Estimate:

‡ ≥ 1
m5

q̃

Decouple 6 dof:

∆ �m
max

m
max

= 1 ≠ 4≠1
5 ≥ 25%

TOO NAIVE!

Rakhi Mahbubani CERN Flavour vs LHC squark limits 6/14
6/14

Limits a�ected by:

• squark multiplicity
• signal e�ciencies
• PDFs

Rakhi Mahbubani CERN Flavour vs LHC squark limits 7/14
7/14

Cross-sections vs. mass
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E�ciencies

Signal e�ciency falls very rapidly with decreasing squark mass
Below ≥ 600 GeV ‘‡ = 1

Rakhi Mahbubani CERN Flavour vs LHC squark limits 8/14
8/14

Squark searches
• Relaxing degeneracy assumption:

• naively: σ ∝ 1/m6                                  
→ from 8→2 light squarks mass limit 
change by 41/6-1~ 25%

• but:

• efficiencies have hard thresholds  
(and current limits are on the 
thresholds) 

• P.d.f’s have large effects                      
(u vs. d vs. c vs. s…) 

• large effects on mass limits!! 
1000500200 300 700

0.0

0.1

0.2

0.3

0.4

msquark@GeVD

Ef
fic
ie
nc
y
x
A
cc
ep
ta
nc
e

Efficiencies
Searches are inefficient 
for light squarks

Example: ATLAS 1/fb
2jet, Meff > 1TeV, 
mLSP = 0GeV

Do no expect it to be much 
better for higher luminosity
searches (> 5 /fb) b/c
even harder cuts used1000500200 300 700
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0.3

0.4

ATLAS 1/fb, 
2jet Meff>1TeV

Tuesday, April 17, 12

meff is the scalar sum of transverse momenta 
of the leading N jets with Emiss.
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In fact, all 4 flavor “sea” squarks can be rather light!
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Figure 12: Diagrams which cause flavor violation in models with arbitrary soft masses.

Fig. 5g and eq. (3.72)]. There are similar diagrams if the left-handed slepton mass matrix
m2

L has arbitrary off-diagonal entries. If m2
L or m2

e were “random”, with all entries of
comparable size, then the contributions to BR(µ → eγ) would be about 5 or 6 orders of
magnitude larger than the current experimental upper limit of 5×10−11, even if the sleptons
are as heavy as 1 TeV. Therefore the form of the slepton mass matrices must be severely
constrained.

There are also important experimental constraints on the squark (mass)2 matrices. The
strongest of these come from the neutral kaon system. The effective hamiltonian for K0 ↔
K

0 mixing gets contributions from the diagram in Fig. 12b, among others, if LMSSM
soft contains

(mass)2 terms which mix down squarks and strange squarks. The gluino-squark-quark
vertices in Fig. 12b are all fixed by supersymmetry to be of strong interaction strength;
there are similar diagrams in which the bino and winos are exchanged.54 If the squark and
gaugino masses are of order 1 TeV or less, one finds that limits on the parameters ∆mK and
εK appearing in the neutral kaon system effective hamiltonian severely restrict the amount
of down-strange squark mixing and CP-violating complex phases that one can tolerate in
the soft parameters.55 Considerably weaker, but still interesting, constraints come from
the D0, D

0 and B0, B
0 neutral meson systems, and the decay b → sγ.56 After the Higgs

scalar fields get VEVs, the au, ad, ae matrices contribute off-diagonal squark and slepton
(mass)2 terms [for example, d̃adQ̃Hd + c.c. → (ad)12〈H0

d〉s̃Ld̃∗R + c.c., etc.], so their form
is also strongly constrained by flavor-changing neutral current (FCNC) limits. There are
other significant constraints on CP-violating phases in the gaugino masses and (scalar)3 soft
couplings following from limits on the electric dipole moments of the neutron and electron.57

All of these potentially dangerous FCNC and CP-violating effects in the MSSM can be
evaded if one assumes (or can explain!) that supersymmetry breaking should be suitably
“universal”. In particular, one can suppose that the squark and slepton (mass)2 matrices
are flavor-blind. This means that they should each be proportional to the 3 × 3 identity
matrix in family space:

m2
Q = m2

Q1; m2
u = m2

u1; m2
d

= m2
d
1; m2

L = m2
L1; m2

e = m2
e1. (5.14)

If so, then all squark and slepton mixing angles are rendered trivial, because squarks and
sleptons with the same electroweak quantum numbers will be degenerate in mass and can
be rotated into each other at will. Supersymmetric contributions to FCNC processes will
therefore be very small in such an idealized limit, modulo the mixing due to au, ad, ae.
One can make the further assumption that the (scalar)3 couplings are each proportional to
the corresponding Yukawa coupling matrix:

au = Au0 yu; ad = Ad0 yd; ae = Ae0 ye. (5.15)
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ũ

ũ
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Conclusions

♦ Light (non-”sups”) squarks maybe buried (regardless of alignment).    

♦ Alignment: non degeneracy is viable: testable at LHC(b).

♦ Minimalism: up flavor & CPV might hold the key.  

♦ SM: new (preliminary) robust bound on absorptive D-D CPV;
sensitive to “dark photon / hidden valley” models.

(The holy grail being the dispersive remains unconstrained) 
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