Johns Hopkins 36th Workshop Galileo Galilei Institute October 2012

Where is SUSY?

Lawrence Hall University of California, Berkeley

BERKELEY CENTER FOR THEORETICAL PHYSICS

SUSY Spectrum, 1984

SUSY Spectrum, 1984

Over 3 decades of susy: seismic shifts!

(I) 2011-A New Era of Data

V Higgs Boson

Is good news for perturbative Susy

 $\tilde{m} \sim v$

Unnatural

 $\tilde{m} \gg v$

Origin of v?

Large Range of \tilde{m} is Possible in MSSM

A) SM below \tilde{m}

B) Split SUSY (Fermionic superparters at 1 TeV)

No Superpartners Yet!!

Jets + missing transverse energy from squark and gluino production

A compilation of CMS results from 2011 data

Natural

 $\tilde{m} \sim v$

<u>Unnatural</u>

 $\tilde{m} \gg v$

Any superpartners at the TeV scale?

 $\tilde{m} \sim v$

<u>Unnatural</u>

 $\tilde{m} \gg v$

Any superpartners at the TeV scale?

• R parity violation: udd

• A compressed spectrum

 $\tilde{m} \sim v$

Unnatural

 $\tilde{m} \gg v$

Any superpartners at the TeV scale?

• R parity violation: udd

- A compressed spectrum
- Adding a singlet

Natural

<u>Unnatural</u>

 $\tilde{m} \gg v$

Any superpartners at the TeV scale?

- R parity violation: udd
- A compressed spectrum
- Adding a singlet

- Dark Matter
- Yukawa unification
- Spread Susy

2012 Result on Direct Detection

Implications for Neutralino DM

"The Well-Tempered Region is excluded"

Farina, Kadastik, Raidal, Pappadopulo, Pata, Strumia 1104.3572 revised Aug 2012

Indirect Detection via Gamma Rays

Fermi LAT 1108.3546

FIG. 2. Derived 95% C.L. upper limits on a WIMP annihilation cross section for the $b\bar{b}$ channel, the $\tau^+\tau^-$ channel, the $\mu^+\mu^-$ channel, and the W^+W^- channel. The most generic cross section ($\sim 3 \cdot 10^{-26} \,\mathrm{cm}^3 \mathrm{s}^{-1}$ for a purely s-wave cross section) is plotted as a reference. Uncertainties in the J factor are included.

(II) Natural SUSY

1. MSSM ??

2. Adding a singlet

Fine-Tuning in the MSSM: 2012

$$m_h^2 = M_Z^2 \cos^2 2\beta + \delta_t^2$$

Fine-Tuning in the MSSM: 2012

 $\Delta > 100$ The MSSM is fine-tuned

$$m_h^2 = M_Z^2 \cos^2 2\beta + \lambda^2 v^2 \sin^2 2\beta + \delta_t^2$$

$$m_h^2 = M_Z^2 \cos^2 2\beta + \lambda^2 v^2 \sin^2 2\beta + \delta_t^2$$

$$m_h^2 \,=\, M_Z^2 \cos^2 2\beta + \lambda^2 v^2 \sin^2 2\beta + \delta_t^2$$

Why not go to larger λ ? To very large λ ? \longrightarrow Natural theory with heavy Higgs

David Pinner, Josh Ruderman, LJH 1112.2703

 $1 < \lambda < 2$

Explains why we haven't seen superpartners yet

(III) TeV Susy

Dark Matter

Coupling Unification

Spread Susy

Direct Detection of Dark Matter

Exciting times ahead:

Cliff Cheung, David Pinner, Josh Ruderman, LJH 1210...

TeV Scale from Cosmological Abundance

- R parity
- $\tilde{m} < T_R$

- LSP is a SM superpartner
- No dilution

TeV Scale from Cosmological Abundance

- R parity
- $\tilde{m} < T_R$
- LSP is a SM superpartner
- No dilution

 $\tilde{m} \sim \text{TeV}$

TeV Scale from Cosmological Abundance

- R parity
- $\tilde{m} < T_R$
- LSP is a SM superpartner
- No dilution

Current Limits on Bino/Higgsino DM

Parameter space $(M_1, \mu, \tan \beta)$

Assume

 $\Omega_{LSP} = \Omega_{obs}$

"Blind Spot" $c_{h\chi\chi} \propto M_1 + \mu \sin 2\beta$

Cliff Cheung, David Pinner, Josh Ruderman, LJH 1210...

Future Probes of Bino/Higgsino DM

Parameter space $(M_1, \mu, \tan \beta)$

Assume

 $\Omega_{LSP} = \Omega_{obs}$

"Blind Spot" $c_{h\chi\chi} \propto M_1 + \mu \sin 2\beta$ $\sum_{i=1}^{5000} \sum_{i=1}^{i} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum$

 $\tan \beta = 2$

Cliff Cheung, David Pinner, Josh Ruderman, LJH 1210...

Bino/Higgsino DM from Freeze-out

Assume

 $\Omega_{LSP}^{FO} = \Omega_{obs}$

Parameter space $(M_1, \mu, \tan \beta) \rightarrow (\mu, \tan \beta)$

"Blind Spot" $c_{h\chi\chi} \propto M_1 + \mu \sin 2\beta$

Cliff Cheung, David Pinner, Josh Ruderman, LJH 1210...

LSP Dark Matter Summary

- Cosmological abundance of LSP provides independent argument for $~~\tilde{m} \sim {\rm TeV}$

(III) TeV Susy

Dark Matter

>

Coupling Unification

Spread Susy

Gauge Coupling Unification

Gauge Coupling Unification

occurs in the Standard Model!

Weak scale susy improves the precision: $\epsilon_g = 0.12 \quad \rightarrow \quad \epsilon_g = 0.014$

Gauge Coupling Unification

Weak scale susy improves the precision:

 $\epsilon_g = 0.12 \qquad \rightarrow \qquad \epsilon_g = 0.014$

But does not usefully constrain the superparticle masses

1

1

t

e susy improves the precision $16_i = 10_i \oplus \overline{5}_i \oplus 1_i$ $\rightarrow 10_H \stackrel{\delta}{=} 5_{H_u} \stackrel{\delta}{=} 9_{H_d} \stackrel{12}{=} 9_{H_d}$

 $16_3 16_3 10_H$

t

Constraining \tilde{m}

Gilly Elor, David Pinner, Josh Ruderman, LJH 1206.5301

$$\delta_{b}^{fin} = -\frac{g_{3}^{2}}{12\pi^{2}} \frac{\mu M_{3}}{m_{\tilde{b}}^{2}} \tan \beta - \frac{y_{t}^{2}}{32\pi^{2}} \frac{\mu A_{t}}{m_{\tilde{t}}^{2}} \tan \beta$$

$$\delta_b^{fin} \propto \frac{\mu}{m_{\tilde{q}}} \tan \beta$$

 δ_{μ}^{fin}

Constraining \tilde{m}

Gilly Elor, David Pinner, Josh Ruderman, LJH 1206.5301

Constraining \tilde{m}

Gilly Elor, David Pinner, Josh Ruderman, LJH 1206.5301

(III) TeV Susy

Dark Matter

Coupling Unification

A Mildly Split Spectrum

Two Versions

Wells hep-ph/0411041 Arkani-Hamed, Delgado, Giudice ph/0601041

Higgs Mass in Spread SUSY

Yasunori Nomura, LJH 1111.4519

Yasunori Nomura, Satoshi Shirai, LJH 1210.2395

Higgs Mass in Spread SUSY

 $\delta m_t = 1 \,\mathrm{GeV}$

Yasunori Nomura, LJH 1111.4519

Yasunori Nomura, Satoshi Shirai, LJH 1210.2395

LHC gluino signal

(IV) High Scale Susy

Higgs Mass

Higgs Mass

NNLO (1205.6497)

 α_s, m_t from experiment (1207.0980)

unified thresholds (not stops)

Higgs Mass

NNLO (1205.6497) α_s, m_t from experiment (1207.0980) unified thresholds (not stops)

An Alarming Possibility!!

SM Quartic Trajectory

Hall, Salem, Watari hep-ph/0608121

Standard Model Phase Diagram

Status of SUSY in 2012

- **MSSM** Fine tuning is worse than 1 in a 100
- Natural Susy

- R parity violation
- Adding S helps

- TeV-scale Susy
 - Dark Matter
 - b/τ suggests SUSY at 1-10 TeV
 - Moderately Split Spectra like 125 GeV Higgs
- High Scale SUSY
 - A worry!

Predicted Signals of Spread SUSY

