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Figure 2: Left: pull comparison of the fit results with the direct measurements in units of the experimental

uncertainty. Right: determination of MH excluding the direct MH measurements and all the sensitive

observables from the fit, except the one given. Note that the fit results shown are not independent.

The fit indirectly determines the W mass (cf. Fig. 3 – bottom left, blue band) to be

MW = 80.3593± 0.0056mt
± 0.0026MZ

± 0.0018∆αhad (2)

± 0.0017αS
± 0.0002MH

± 0.0040theo , (3)

= 80.359± 0.011tot , (4)

which exceeds the experimental world average in precision. The different uncertainty contribu-

tions originate from the uncertainties in the input values of the fit as given in the second column

in Table 1. The dominant uncertainty is due to the top quark mass. Due to the weak, logarith-

mic dependence on MH the contribution from the uncertainty on the Higgs mass is very small

compared to the other sources of uncertainty. Note that in the Rfit scheme [17, 18] the treatment

of the theoretical uncertainty as uniform likelihood corresponds a linear addition of theoretical

and experimental uncertainties. Quadratic addition would give a total uncertainty in the MW

prediction of 0.008.

The indirect determination of the effective weak mixing angle (cf. Fig. 3 – bottom right, blue

GFitter
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propagators (oblique):



Altarelli (see also Barbieri’s Cargese lecs) defines the effective sin
2 θ via the muon vertex:
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Case of the b-quark...

2 Oblique corrections
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Of course for the coefficients e1,2,3 to be meaningful we have to fix field redefinition freedom (otherwise

we could e.g. rescale W 3 to set e2 → 0, or rotate B −W 3 to set e3 → 0). We fix these two freedoms

by requiring that the fermionic current has the standard form

gW aT a
+ g�BY

Moreover, we will assume as we may that the normalization of Y is chosen so that the unbroken

generator is Q = T3 + Y . Then we can do standard manipulations:

gW aT a
+ g�BY =

g√
2
(W+T+

+W−T−
) + eAQ+ Z

g

c
(T3 − s2Q)

Z ≡ cW 3 − sB

A = cB + sW 3

s =
g��

g2 + g�2
; e =

gg��
g2 + g�2

At this point we can compare this parametrization with parametrization in terms of physical observ-

ables from the previous section. In current parametrization we have
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Dependence on Higgs mass
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Since ε2 insensitive to heavy NP, 
makes sense to condition on U=0: 

4 Conclusion 9
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Figure 5: Experimental constraints on the S and T parameters with respect to the SM reference (MH,ref =
126 GeV and mt,ref = 173 GeV). Shown are the 68%, 95% and 99% CL allowed regions, where the third
parameter U is left unconstrained (orange, left) or fixed to 0 (blue, right). The prediction in the SM is given
by the black (grey) area when including (excluding) the new MH measurements.

to MH,ref = 126GeV and mt,ref = 173GeV. With these we find:

S = 0.03± 0.10 , T = 0.05± 0.12 , U = 0.03± 0.10 , (9)

with correlation coefficients of +0.89 between S and T , and −0.54 (−0.83) between S and U (T
and U). Fixing U = 0 we obtain S|U=0 = 0.05± 0.09 and T |U=0 = 0.08± 0.07 with a correlation
coefficient of +0.91. Figure 5 shows the 68%, 95% and 99% CL allowed regions in the (S, T ) plane
for freely varying U (left) and the constraints found when fixing U = 0 (right). For illustration
also the SM prediction is shown. The MH measurement reduces the allowed SM area from the
grey sickle, defined by letting MH float within the indicated range, to the narrow black strip.

4 Conclusion

Assuming the newly discovered particle at ∼126 GeV to be the Standard Model (SM) Higgs boson,
all fundamental parameters of the SM are known. It allows, for the first time, to overconstrain
the SM at the electroweak scale and to evaluate its validity. The global fit to all the electroweak
precision data and the measured Higgs mass results in a goodness-of-fit p-value of 0.07. Only a
fraction of the contribution to the “incompatibility” stems from the Higgs mass, which agrees at
the 1.3σ level with the fit prediction. The largest deviation between the best fit result and the
data is introduced by the known tension between A0,b

FB from LEP and A� from SLD, predicting
respectively a larger (by 2.5σ) and smaller (1.9σ) Higgs mass, and by R0

b
for which an improved

calculation increased the deviation from the measurement from previously 0.8σ to 2.4σ.

The knowledge of the Higgs mass dramatically improves the SM predictions of several key observ-
ables. The uncertainties in the predictions of the W mass, sin2θ�eff , and the top mass decrease
from 28 to 11 MeV, 2.3 · 10−5 to 1.0 · 10−5, and from 6.2 to 2.5 GeV, respectively. The improved
accuracy sets a benchmark for direct measurements, which has been reached (and surpassed) only
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Figure 4: Contours of 68% and 95% CL obtained from scans of fixed MW and mt. The blue (grey) areas
illustrate the fit results when including (excluding) the new MH measurements. The direct measurements
of MW and mt are always excluded in the fit. The vertical and horizontal bands (green) indicate the 1σ
regions of the direct measurements.

The measured value of MH together with the fermion masses, the strong coupling strength αS(M2
Z
)

and the three parameters defining the electroweak sector and its radiative corrections (chosen

here to be MZ , GF and ∆α(5)
had(M

2
Z
)) form a minimal set of parameters allowing one, for the

first time, to predict all the other SM parameters/observables. A fit using only this minimal
set of input measurements6 yields the SM predictions MW = 80.360 ± 0.011 GeV and sin2θ�eff =
0.23152± 0.00010. The ∆χ2 profile curves of these predictions are shown by the solid black lines
in Fig. 3 (bottom left) and (bottom right). The agreement in central value and precision of these
results with those from Eq. (4) and (7) (cf. blue bands in the plots) illustrates the marginal
additional information provided by the other observables.

Figure 4 displays CL contours of scans with fixed values of MW and mt, where the direct measure-
ments of MW and mt were excluded from the fit. The contours show agreement between the direct
measurements (green bands and data point), the fit results using all data except the MW , mt and
MH measurements (grey contour areas), and the fit results using all data except the experimental
MW and mt measurements (blue contour areas). The observed agreement again demonstrates the
impressive consistency of the SM.

Following the approach in [6] we extract from the electroweak fit the S, T, U parameters [35, 36]
describing the difference between the oblique vacuum corrections as determined from the experi-
mental data and the corrections expected in a reference SM (SMref defined by fixing mt and MH).
After the recent discovery, we change our definition of the reference SM for the S, T, U calculation

6For αS(M
2
Z) we use the result from Table 1.

Thus: better W measurements improve 
determination of ε1,ε3. Studying consistency 
directly in terms of mW seems rather awkward.
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EWPT in composite Higgs models
E

EWSB 
sector }

}E>> TeV: CFT with global symmetry G

resonances

m=0 goldstones W,Z,h

upon coupling to the SM gauge fields

f :   G/H



Problem:

Which CFT observable controls them?



Case study: Higgsless case
Peskin, Takeuchi 1991

G=SU(2)LxSU(2)R→ H=SU(2)V

strong sector heavy Higgs SM





μ independence: 



μ independence: 

Relative accuracy:



s

- If spectral densities are known (like in scaled-up QCD),
then S parameter can be computed reliably

- If unknown, still allows modelization 
(Vector Meson Dominance, Weinberg sum rules, etc)



For composite Higgs:
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For composite Higgs:

From resonances & CFT,
a la Peskin-Takeuchi

From pseudo-Goldstone Higgs 
(mH=125 GeV => must go beyond heavy Higgs approximation)

Aim for              rel. accuracy
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For concreteness, consider Minimal Comp. Higgs Model,
i.e. SO(5)/SO(4)

SO(5) Current correlators:

order parameter of SO(5)/SO(4) breaking

term responsible for S(UV)



OPE analysis in the UV

The first group of contributions is identical in the SM and MCHM and will cancel upon
computing the S parameter. The second contribution equals ε3,Higgs computed in section 2,
up to a factor a2 reflecting the reduction in the Higgs boson couplings. As we will see, the
regularization scale dependence of the Higgs contribution will cancel with that of c(µ2), and
the total S parameter will be UV finite and µ-independent.

3.2 Strong sector current two point function

We start with a general discussion of the SO(5) current-current correlation function (before
coupling to the SM gauge bosons). The form of this correlator is constrained by current
conservation, SO(5) symmetry, and the assumed symmetry breaking pattern SO(5)/SO(4).
The most general expression consistent with all constraints is [2]:

�JA
µ (q)J

B
ν (−q)� =

�
ηµν −

qµqν

q2

� �
δAB Π0(q

2) + Φ̃t
T

A
T

BΦ̃ Π1(q
2) + �ijklmΦ̃m Π2(q

2)
�
. (3.2)

Here Φ̃ ≡ Φ/f is the order parameter for the SO(5)/SO(4) breaking, and TA are the SO(5)
generators in the fundamental representation. The last term is written in the notation
representing currents as antisymmetric tensors: A ∼ [ij], B ∼ [kl]. This term, not
mentioned in [2], is forbidden if the global symmetry is O(5) rather than SO(5) symmetry.
It breaks PLR parity (see below) and would give opposite sign contributions to the SU(2)L
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C are the Clebsch-Gordan coefficients. The . . . in the OPE contains
fields of nonzero spin (including derivatives of scalars), which can’t get vevs if the Lorentz
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while it can be shown that 35 cannot get a vev consistent with a breaking to SO(4).
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OPE analysis in the UV
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computing the S parameter. The second contribution equals ε3,Higgs computed in section 2,
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These operators control formfactor asymptotics:The UV asymptotics of Πi(q
2
) at −q2 � m2

ρ will be related to the lowest scalar dimension

in the three vev channels:
3

Πi(q
2
) ∼ q

2
�
−q

2
/m

2
ρ

�−∆Oi
/2
, O0 ∈ 1,O1 ∈ 14,O2 ∈ 4 . (3.5)

That O2 controls Π2 is obvious because the Clebsh-Gordon coefficient is precisely the �-
tensor appearing in (3.2). That the vev of O1 controls Π1 is not immediately obvious but

can be checked easily using the explicit Clebsh-Gordan coefficient and comparing with the

prefactor in (3.2).

As we will see below, only Π1 is important for the computation of the S parameter. We

will write this formfactor in the form:

Π1(q
2
) = f

2
+ q

2Π̃1(q
2
) , (3.6)

splitting off the goldstone pole part f 2
whose normalization is determined by considering

the two point function of the broken currents J
[5i]
µ . We will represent the remainder by a

dispersion relation:

Π̃1(q
2
) =

� ∞

0

ds
ρ(s)

s− q2 + i�
, ρ(s) =

1

π
Im Π̃1(s) . (3.7)

The spectral density ρ(s) will enter our final result. Just like in QCD, for s � m2
ρ the

spectral density is dominated by the two-goldstone state and is nearly flat:

ρ(s) ≈ 1/(192π2
) (s � m

2
ρ) . (3.8)

For s ∼ mρ the density has complicated nongeneric structure reflecting the spectrum of

resonances. Finally, in the deep UV it asymptotes as

ρ(s) ∼ (s/m
2
ρ)

−∆O1/2 (s � m
2
ρ) . (3.9)

The first and second Weinberg sum rules [17] in this context would take the form:

� ∞

0

ds ρ(s) = f
2
,

� ∞

0

ds s ρ(s) = 0 (?) . (3.10)

These equations follow by expanding Π1(q
2
) at large q2 and setting the O(1) and O(1/q2)

coefficients to zero. Notice that this is legitimate only as long as ∆O1 > 2(4) for the first

(second) sum rule. This remark is relevant for the models à la Conformal Technicolor [18],

which can also realize a pseudo-goldstone Higgs boson [8]. A request of a scalar with the

SM Higgs doublet quantum numbers and a small anomalous dimension is imposed in these

models. This request necessitates the presence of low-dimension singlet scalars and even

lower-dimension symmetric traceless tensors [19–21]. The numerical bounds [22, 23] are

quite restrictive and imply that the second Weinberg sum rule is invalid in these scenarios.
4

3For Π0 actually the unit operator dominates, and so this equation describes the subleading asymptotics.
4The published bound in Fig. 6 of [23] concerns the case of an SO(4) global symmetry, but an almost

as strong bound holds for the SO(5) case.

8



Focus on Π1

Spectral density dominated by two-goldstone state at small s:

The UV asymptotics of Πi(q
2
) at −q2 � m2

ρ will be related to the lowest scalar dimension

in the three vev channels:
3

Πi(q
2
) ∼ q

2
�
−q

2
/m

2
ρ

�−∆Oi
/2
, O0 ∈ 1,O1 ∈ 14,O2 ∈ 4 . (3.5)

That O2 controls Π2 is obvious because the Clebsh-Gordon coefficient is precisely the �-
tensor appearing in (3.2). That the vev of O1 controls Π1 is not immediately obvious but

can be checked easily using the explicit Clebsh-Gordan coefficient and comparing with the

prefactor in (3.2).

As we will see below, only Π1 is important for the computation of the S parameter. We

will write this formfactor in the form:

Π1(q
2
) = f

2
+ q

2Π̃1(q
2
) , (3.6)

splitting off the goldstone pole part f 2
whose normalization is determined by considering

the two point function of the broken currents J
[5i]
µ . We will represent the remainder by a

dispersion relation:

Π̃1(q
2
) =

� ∞

0

ds
ρ(s)

s− q2 + i�
, ρ(s) =

1

π
Im Π̃1(s) . (3.7)

The spectral density ρ(s) will enter our final result. Just like in QCD, for s � m2
ρ the

spectral density is dominated by the two-goldstone state and is nearly flat:

ρ(s) ≈ 1/(192π2
) (s � m

2
ρ) . (3.8)

For s ∼ mρ the density has complicated nongeneric structure reflecting the spectrum of

resonances. Finally, in the deep UV it asymptotes as

ρ(s) ∼ (s/m
2
ρ)

−∆O1/2 (s � m
2
ρ) . (3.9)

The first and second Weinberg sum rules [17] in this context would take the form:

� ∞

0

ds ρ(s) = f
2
,

� ∞

0

ds s ρ(s) = 0 (?) . (3.10)

These equations follow by expanding Π1(q
2
) at large q2 and setting the O(1) and O(1/q2)

coefficients to zero. Notice that this is legitimate only as long as ∆O1 > 2(4) for the first

(second) sum rule. This remark is relevant for the models à la Conformal Technicolor [18],
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Figure 6: An upper bound on the lowest dimension symmetric tensor scalar appearing in φ × φ,
where φ transforms in the fundamental of SO(4). Here we show k = 2, . . . , 11.

the k = 11 curve in figure 8 is given by

∆0 ≤ 2(1 + ε) + 2.683 ε2 + . . . (ε # 1), (3.10)

where d = 1+ ε. Note that known superconformal theories populate the entire factorization
line,10 so it is impossible to have a bound stronger than ∆0 ≤ 2d. Our bound on dim(Φ†Φ) is
one of the few examples computed to date that approaches the provably best possible bound
for some nontrivial range of d’s.

Eq. (3.10) can be directly tested in theories that admit a perturbative Banks-Zaks limit
and contain a chiral operator with dimension near 1. As far as we are aware, there are
no known examples of perturbative theories living above the factorization line. Here we
have shown numerically that this can be understood purely from the constraints of crossing
symmetry and unitarity. It would be very interesting to understand this fact analytically.

It is amusing to speculate on the form of the bound as k → ∞. A simple and intriguing
possibility is that the small-d behavior might extend to all d, so that the best possible bound
∆0 ≤ 2d is realized. In other words, it might be the case that the anomalous dimension

10Namely supersymmetric mean field theories, which satisfy the necessary requirements of unitarity and
crossing symmetry, and exist for each d ≥ 1. They occur in the infinite-N limit of supersymmetric gauge
theories.
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∆0 ≤ 2(1 + ε) + 2.683 ε2 + . . . (ε # 1), (3.10)

where d = 1+ ε. Note that known superconformal theories populate the entire factorization
line,10 so it is impossible to have a bound stronger than ∆0 ≤ 2d. Our bound on dim(Φ†Φ) is
one of the few examples computed to date that approaches the provably best possible bound
for some nontrivial range of d’s.

Eq. (3.10) can be directly tested in theories that admit a perturbative Banks-Zaks limit
and contain a chiral operator with dimension near 1. As far as we are aware, there are
no known examples of perturbative theories living above the factorization line. Here we
have shown numerically that this can be understood purely from the constraints of crossing
symmetry and unitarity. It would be very interesting to understand this fact analytically.

It is amusing to speculate on the form of the bound as k → ∞. A simple and intriguing
possibility is that the small-d behavior might extend to all d, so that the best possible bound
∆0 ≤ 2d is realized. In other words, it might be the case that the anomalous dimension

10Namely supersymmetric mean field theories, which satisfy the necessary requirements of unitarity and
crossing symmetry, and exist for each d ≥ 1. They occur in the infinite-N limit of supersymmetric gauge
theories.
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∆0 ≤ 2(1 + ε) + 2.683 ε2 + . . . (ε # 1), (3.10)

where d = 1+ ε. Note that known superconformal theories populate the entire factorization
line,10 so it is impossible to have a bound stronger than ∆0 ≤ 2d. Our bound on dim(Φ†Φ) is
one of the few examples computed to date that approaches the provably best possible bound
for some nontrivial range of d’s.

Eq. (3.10) can be directly tested in theories that admit a perturbative Banks-Zaks limit
and contain a chiral operator with dimension near 1. As far as we are aware, there are
no known examples of perturbative theories living above the factorization line. Here we
have shown numerically that this can be understood purely from the constraints of crossing
symmetry and unitarity. It would be very interesting to understand this fact analytically.

It is amusing to speculate on the form of the bound as k → ∞. A simple and intriguing
possibility is that the small-d behavior might extend to all d, so that the best possible bound
∆0 ≤ 2d is realized. In other words, it might be the case that the anomalous dimension

10Namely supersymmetric mean field theories, which satisfy the necessary requirements of unitarity and
crossing symmetry, and exist for each d ≥ 1. They occur in the infinite-N limit of supersymmetric gauge
theories.
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Back to computing S

Step 1. Match UV theory to

The experimental value mh = 125 GeV corresponds to h ≈ 1.89 < 4 branch of these
formulas.

As a check, the Higgs mass dependence of (2.4) agrees with the Higgs mass dependence of
the full ε’s given in [14]. On the other hand, (2.4) also contains constant and logarithmically
divergent terms of the Higgs boson contributions. These terms will be relevant in the
composite Higgs discussion below. They could not be easily extracted from [14] which gives
only the total result for ε’s including the pure gauge boson loops but not the separate Higgs
contributions.

3 S parameter in the Minimal Composite Higgs Model

3.1 General idea

Let us formulate more precisely the problem that we want to solve. We are given a
strong sector realizing an SO(5)/SO(4) spontaneous symmetry breaking. The sector has a
multiplet of global currents Ja

µ . We assume that the two point functions of these currents
are known at all energies (either measured or solved). This is before the strong sector is
coupled to the SM gauge fields. Once these latter couplings are turned, we expect that the
backreaction on the current-current spectral densities at high energies will be negligible,
while at low energies it will be to some extent universal. So we expect that a formula must
exist which computes ε3, at the lowest nontrivial order O(g2), in terms of the UV tail of the
strong sector spectral densities, plus a universal IR piece. In this section we will present
such a formula.

The computation proceeds in two steps. The first step is to replace the full strong sector
by a low energy effective theory described by the Lagrangian

1

2
(DµΦ)

2 +OS , OS =
2c(µ2)

f 2
BµνW

a
µνΦ

t
T

aL
T

3RΦ (3.1)

The coefficient c(µ2) will have to be determined by a careful matching procedure; it will
depend on the matching scale as indicated. In this part of the computation the SM gauge
fields Wµ and Bµ can be viewed as classical external sources introduced to measure the
current correlation functions. The matching scale will be chosen in the rangemh � µ � mρ,
so that the Higgs boson can be neglected during the matching.

The second step is to compute ε3 starting from (3.1). Now we have to make gauge bosons
dynamical. We also have to take into account that the Higgs boson acquires a mass. The
ε3 gets a contribution from

• the SM gauge boson and fermion loops, vertex and box corrections,

• the Higgs boson loops, the second particle being a goldstone or a gauge boson,

• the contact contribution from OS.
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while at low energies it will be to some extent universal. So we expect that a formula must
exist which computes ε3, at the lowest nontrivial order O(g2), in terms of the UV tail of the
strong sector spectral densities, plus a universal IR piece. In this section we will present
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depend on the matching scale as indicated. In this part of the computation the SM gauge
fields Wµ and Bµ can be viewed as classical external sources introduced to measure the
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In effective theory:

Since ρ̃ππ(s) goes to zero rapidly for s � MV , it is at this scale that the UV logarithmic

divergence is cut off. The finite correction to the logarithm could be easily evaluated, but

we prefer not to show it explicitly. Unlike the general conclusion that the log-divergence

is cutoff at Λ ∼ MV , this finite term would not be a robust prediction of this model. For

example, it would change if we assumed an s-dependent width in the V propagator.

Subtracting a reference SM contribution, we finally obtain the S parameter:

Ŝ =
g2

4

�
F 2
V

M2
V

− F 2
A

M2
A

�
+

g2

96π2

�
log

MV

M ref
H

+O(1)

�
. (4.16)

The logarithm can be set to zero by choosing the reference mass M ref
H

= MV , and we will

be left with the resonance contribution ± uncertainty of the order g2/96π2 ∼ 0.5× 10
−3
.

We have based our discussion of the S parameter on the dispersion relation. However,

the goldstone contribution (4.7) is also simple to compute from the Feynman diagram

.

In the diagrammatic approach, adding V exchanges amounts to including diagrams:

, .

In this language, it would not be immediately clear how the V exchanges help with canceling

the logΛ dependence. In fact, it may seem that they make the situation worse because the

added diagrams contain power-like divergences. The resolution of the paradox lies in the

fact that since these divergences are contained in the subdiagrams

, ,

they have to be interpreted as renormalization of FV and of the vector propagator.
11

Computing via the dispersion relation allows us not to deal with these issues. Renor-

malization is performed “on the go”, and we get a finite result in terms of renormalized

parameters.

We will now comment on contributions of other intermediate states to the spectral

densities. The πV and πA two particle states contribute to ρA and ρV , respectively. In the

11Such a renormalization was discussed in [31]. The residual quadratic divergences in Ref. [31] are related
with contributions of the intermediate states other than ππ, to be discussed below.
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Step 2. Compute S from effective theory 

Recall SM:

1 Barbieri’s epsilons

ε1 = e1 − e5 + non oblique

ε2 = e2 − s2e4 − c2e5 + non oblique

ε3 = e3 + c2e4 − c2e5 + non oblique

(1.1)

where:

e1 =
A33(0)− AWW (0)

m2
W

=
AZZ(0)

m2
Z

− AWW (0)

m2
W

e2 = FWW (m2
W )− F33(m

2
Z)

e3 =
c

s
F30(m

2
Z)

e4 = Fγγ(0)− Fγγ(m
2
Z)

e5 = m2
ZF

�
ZZ(m

2
Z)

(1.2)

the form factors being defined as:

Πµν
ij (q) ≡ −igµν

�
Aij(0) + q2Fij(q)

�
+ qµqν terms

�: The −i factor is absorbed in the definition of Πµν
ij (q) (different from Peskin-Schrhoeder

notations).

Since γ’s don’t couple to the Higgs, to compute the Higgs mass dependence, we can
forget about e4 in the following.

2 Contributing Feynman diagrams

Figure 1: Higgs diagrams contributing to the Πµν
ij (q)

diagrams of the type (a) won’t contribute to e1 since they don’t involve g�. On top
of that, they are q2 independent and then don’t contribute to the F ij(q2) form factors on
which depend the other ei’s. So we are left with type (b) and (c) diagrams for the higgs
contribution to the epsilon parameters.
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boson propagating in the loop. The Higgs dependent parts of the ε parameters are then

found to be:

ε1,Higgs ≡ (e1 − e5)Higgs =
3g

2

64π2c2
HA(h) +

3g
�2

64π2
log
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m
2

Z

+
g
2

384π2c2

�
−4 + 3c

2
+ 18c

2
log c

2
�
,

ε2,Higgs ≡ (e2 − c
2
e5)Higgs

=
3g

2

64π2(c2 − s2)

�
[HA(h)−Hm(h)]− 2s

2
[HA(h)−HR(h)]

�
− g

2

384π2
(1 + 2 log c

2
) ,

ε3,Higgs ≡ (e3 − c
2
e5)Higgs =

3g
2

64π2
[HA(h)−HR(h)]−

g
2

192π2
log

Λ2

m
2

Z

− g
2

288π2
. (2.4)

We computed this result in dimensional regularization with

logΛ2 ≡ N� + log µ
2
, N� ≡

2

�
+ log(4π)− γ + 1 . (2.5)

We also did it in an arbitrary ξ-gauge. The result (2.4) is ξ-independent, for the following

reason. The total ε’s should of course be gauge-independent. Moreover, the ξ-dependent
terms in the diagrams involving the Higgs and in the diagrams involving only the gauge

bosons cannot cancel each other since the former depend on the Higgs mass and the latter

do not. So these two groups of ξ-dependent terms should cancel separately.

To facilitate comparison with the literature, we express (2.4) using the functions Hi(h)

of h = m
2

h/m
2

Z given by

HA(h) =
hc
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18
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HR(h) =− h

18
+

c
2

1− c2

h

log
h

c2
+

�
4

3
− 4

9
h+

1

9
h
2

�
Fh(h) +

h

1− h
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2
)

�
h
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9c4
− 4h

9c2
+

4
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�
Fh

�
h

c2

�
. (2.6)

These are obtained by dropping Higgs mass independent terms 0.18, 0.03, 0.52 from the

identically named functions in [14]. The functions Fh(h) and F
�
h(h) are given by

2

Fh(h) = 1 +

�
h

h− 1
− 1

2
h

�
log h+


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h log

��
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4

�
, h > 4 ,
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4

h − 1 arctan

�
4

h − 1 , h < 4 ,

F
�
h(h) = −1 +

h− 1

2
log h+





(3− h)

�
h

h−4
log

��
h
4
− 1 +
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h
4

�
, h > 4 ,

(3− h)

�
h

4−h arctan

�
4

h − 1 , h < 4 .

(2.7)

2Note that F �
h is not the derivative of Fh. The Fh is given with a misprint in (F.7) of [14]; the misprint

is corrected in [15].
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In composite Higgs:

gauge bosons, and also add the Higgs boson mass. The backreaction of these changes on the

effective theory parameters measured at the matching scale µ is negligible if mh,mW � µ
as we assume.

As explained at the end of section 3.1, all the contributions to the �3 having to do with

the loops of the W and Z (this includes vertex and box corrections) will be the same as

in the SM. The Higgs loop contribution will be reduced by a2, and there will be a new

contribution proportional to c(µ2
). In detail, we have:

ε3(SM) = ε3,W/Z + ε3,Higgs , (3.15)

ε3(MCHM) = ε3,W/Z + a2ε3,Higgs + g2
v2

f 2
c(µ2

) . (3.16)

Here ε3,Higgs is the SM Higgs contribution which we computed in Eq. (2.4), and c(µ2
) has

been computed via matching in the previous section. The ε3,W/Z is the only term which we

have not computed but it cancels when we form the difference, which is the S parameter in

our normalization:

Ŝ = ε3(MCHM)− ε3(SM) =
v2

f 2

�
−ε3,Higgs + g2c(µ2

)
�
. (3.17)

Notice that we define the S parameterwith respect to the SM with the same reference

value of the Higgs mass as that in the MCHM.

Substituting the values of ε3,Higgs and c(µ2
), the N� dependence cancels out, and we get

a UV-finite result:
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(3.18)

This formula is the main result of this paper. It computes the S parameter of the MCHM

at the leading order in g2 and with the relative accuracy O(m2

h/m
2

ρ). We remind that the

scale µ used to separate the IR and the UV parts of the final answer should be chosen in

the interval

mh � µ � mρ . (3.19)

The total then does not depend on µ as the spectral density in this interval is nearly flat;

see Eq. (3.8).

3.5 Limits and Benchmarks

To take full advantage of the accuracy that Eq. (3.21) provides, one needs to know the non-

generic part of the spectral density ρ(s), i.e. across the resonance region and into the UV. If

the MCHM scenario is realized in nature, this knowledge may come from future experiments

and theoretical computations based on a high energy description of the EWSB sector. Here

we will limit ourselves to discuss various limiting cases and examples. In particular we
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Toy model spectral density

s

would like to see how Eq. (3.21) compares to the simpler treatment of Ref. [5] discussed in
the introduction. We therefore consider various toy model spectral densities.

Example 1. Our first toy spectral density stays flat at the level corresponding to Eq. (3.8)
up to the mass of the first and only resonance, where it has a δ-function singularity and
drops to zero:

ρ(s) =
1

192π2
θ(s−m

2
ρ) + F

2
ρ δ(s−m

2
ρ) . (3.20)

For this density we would get the S parameter:
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2 v

2
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m
2
ρ
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F

2
ρ

m2
ρ

�
(3.21)

The last term in this formula is what we called ŜUV in Eq. (1.5). The estimate match if
Fρ ∼ f , which is natural as we discuss below. To compare with Ref. [5], let us expand in
the heavy Higgs limit:

Ŝ ≈ g
2 v

2

f 2

�
1

96π2

�
log

mρ

mh
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The logarithm in the first term is what we would get replacing mh → meff with Λ = mρ.
We also retained the finite term, which is the same 11/12 one gets when subtracting the
reference Higgs contribution in the Peskin-Takeuchi formula (see e.g. Eq. (4.10) of [16]). In
fact this limit of our formula could be derived starting from the Peskin-Takeuchi formula.

However, the observed value of the Higgs mass mh = 125 GeV lies beyond the range of
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Example 2. Vector Meson Dominance. We will now try to improve the toy model (3.20)
by introducing a coupling between the resonance and the goldstones. We thus have to write
a Lagrangian for the ρ. We will do it first in the antisymmetric tensor formalism [? ], and
comment on other formalisms below.

4 Discussion

Ref. [24] finds a logarithmic divergence of the Higgs boson contribution to the S parameter
in 5D composite Higgs models which they claim is “fundamentally different” from this one.
In our opinion their divergence is just a manifestation of the same general effect in their
concrete model.
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The logarithm in the first term is what we would get replacing mh → meff with Λ = mρ.
We also retained the finite term, which is the same 11/12 one gets when subtracting the
reference Higgs contribution in the Peskin-Takeuchi formula (see e.g. Eq. (4.10) of [16]). In
fact this limit of our formula could be derived starting from the Peskin-Takeuchi formula.

However, the observed value of the Higgs mass mh = 125 GeV lies beyond the range of
validity of the heavy Higgs approximation. Evaluating the HA,R functions exactly, the S

parameter can be conveniently written down in the form:
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Example 2. Vector Meson Dominance. We will now try to improve the toy model (3.20)
by introducing a coupling between the resonance and the goldstones. We thus have to write
a Lagrangian for the ρ. We will do it first in the antisymmetric tensor formalism [? ], and
comment on other formalisms below.

4 Discussion

Ref. [24] finds a logarithmic divergence of the Higgs boson contribution to the S parameter
in 5D composite Higgs models which they claim is “fundamentally different” from this one.
In our opinion their divergence is just a manifestation of the same general effect in their
concrete model.
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The logarithm in the first term is what we would get replacing mh → meff with Λ = mρ.
We also retained the finite term, which is the same 11/12 one gets when subtracting the
reference Higgs contribution in the Peskin-Takeuchi formula (see e.g. Eq. (4.10) of [16]). In
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Example 2. Vector Meson Dominance. We will now try to improve the toy model (3.20)
by introducing a coupling between the resonance and the goldstones. We thus have to write
a Lagrangian for the ρ. We will do it first in the antisymmetric tensor formalism [? ], and
comment on other formalisms below.

4 Discussion

Ref. [24] finds a logarithmic divergence of the Higgs boson contribution to the S parameter
in 5D composite Higgs models which they claim is “fundamentally different” from this one.
In our opinion their divergence is just a manifestation of the same general effect in their
concrete model.
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The logarithm in the first term is what we would get replacing mh → meff with Λ = mρ.
We also retained the finite term, which is the same 11/12 one gets when subtracting the
reference Higgs contribution in the Peskin-Takeuchi formula (see e.g. Eq. (4.10) of [16]). In
fact this limit of our formula could be derived starting from the Peskin-Takeuchi formula.

However, the observed value of the Higgs mass mh = 125 GeV lies beyond the range of
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Example 2. Vector Meson Dominance. We will now try to improve the toy model (3.20)
by introducing a coupling between the resonance and the goldstones. We thus have to write
a Lagrangian for the ρ. We will do it first in the antisymmetric tensor formalism [? ], and
comment on other formalisms below.

4 Discussion

Ref. [24] finds a logarithmic divergence of the Higgs boson contribution to the S parameter
in 5D composite Higgs models which they claim is “fundamentally different” from this one.
In our opinion their divergence is just a manifestation of the same general effect in their
concrete model.
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The logarithm in the first term is what we would get replacing mh → meff with Λ = mρ.
We also retained the finite term, which is the same 11/12 one gets when subtracting the
reference Higgs contribution in the Peskin-Takeuchi formula (see e.g. Eq. (4.10) of [16]). In
fact this limit of our formula could be derived starting from the Peskin-Takeuchi formula.
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Example 2. Vector Meson Dominance. We will now try to improve the toy model (3.20)
by introducing a coupling between the resonance and the goldstones. We thus have to write
a Lagrangian for the ρ. We will do it first in the antisymmetric tensor formalism [? ], and
comment on other formalisms below.

4 Discussion

Ref. [24] finds a logarithmic divergence of the Higgs boson contribution to the S parameter
in 5D composite Higgs models which they claim is “fundamentally different” from this one.
In our opinion their divergence is just a manifestation of the same general effect in their
concrete model.
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The logarithm in the first term is what we would get replacing mh → meff with Λ = mρ.
We also retained the finite term, which is the same 11/12 one gets when subtracting the
reference Higgs contribution in the Peskin-Takeuchi formula (see e.g. Eq. (4.10) of [16]). In
fact this limit of our formula could be derived starting from the Peskin-Takeuchi formula.

However, the observed value of the Higgs mass mh = 125 GeV lies beyond the range of
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Example 2. Vector Meson Dominance. We will now try to improve the toy model (3.20)
by introducing a coupling between the resonance and the goldstones. We thus have to write
a Lagrangian for the ρ. We will do it first in the antisymmetric tensor formalism [? ], and
comment on other formalisms below.

4 Discussion

Ref. [24] finds a logarithmic divergence of the Higgs boson contribution to the S parameter
in 5D composite Higgs models which they claim is “fundamentally different” from this one.
In our opinion their divergence is just a manifestation of the same general effect in their
concrete model.
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The logarithm in the first term is what we would get replacing mh → meff with Λ = mρ.
We also retained the finite term, which is the same 11/12 one gets when subtracting the
reference Higgs contribution in the Peskin-Takeuchi formula (see e.g. Eq. (4.10) of [16]). In
fact this limit of our formula could be derived starting from the Peskin-Takeuchi formula.

However, the observed value of the Higgs mass mh = 125 GeV lies beyond the range of
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Example 2. Vector Meson Dominance. We will now try to improve the toy model (3.20)
by introducing a coupling between the resonance and the goldstones. We thus have to write
a Lagrangian for the ρ. We will do it first in the antisymmetric tensor formalism [? ], and
comment on other formalisms below.

4 Discussion

Ref. [24] finds a logarithmic divergence of the Higgs boson contribution to the S parameter
in 5D composite Higgs models which they claim is “fundamentally different” from this one.
In our opinion their divergence is just a manifestation of the same general effect in their
concrete model.
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The logarithm in the first term is what we would get replacing mh → meff with Λ = mρ.
We also retained the finite term, which is the same 11/12 one gets when subtracting the
reference Higgs contribution in the Peskin-Takeuchi formula (see e.g. Eq. (4.10) of [16]). In
fact this limit of our formula could be derived starting from the Peskin-Takeuchi formula.
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Example 2. Vector Meson Dominance. We will now try to improve the toy model (3.20)
by introducing a coupling between the resonance and the goldstones. We thus have to write
a Lagrangian for the ρ. We will do it first in the antisymmetric tensor formalism [? ], and
comment on other formalisms below.

4 Discussion

Ref. [24] finds a logarithmic divergence of the Higgs boson contribution to the S parameter
in 5D composite Higgs models which they claim is “fundamentally different” from this one.
In our opinion their divergence is just a manifestation of the same general effect in their
concrete model.
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The logarithm in the first term is what we would get replacing mh → meff with Λ = mρ.
We also retained the finite term, which is the same 11/12 one gets when subtracting the
reference Higgs contribution in the Peskin-Takeuchi formula (see e.g. Eq. (4.10) of [16]). In
fact this limit of our formula could be derived starting from the Peskin-Takeuchi formula.

However, the observed value of the Higgs mass mh = 125 GeV lies beyond the range of
validity of the heavy Higgs approximation. Evaluating the HA,R functions exactly, the S
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Example 2. Vector Meson Dominance. We will now try to improve the toy model (3.20)
by introducing a coupling between the resonance and the goldstones. We thus have to write
a Lagrangian for the ρ. We will do it first in the antisymmetric tensor formalism [? ], and
comment on other formalisms below.

4 Discussion

Ref. [24] finds a logarithmic divergence of the Higgs boson contribution to the S parameter
in 5D composite Higgs models which they claim is “fundamentally different” from this one.
In our opinion their divergence is just a manifestation of the same general effect in their
concrete model.
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The logarithm in the first term is what we would get replacing mh → meff with Λ = mρ.
We also retained the finite term, which is the same 11/12 one gets when subtracting the
reference Higgs contribution in the Peskin-Takeuchi formula (see e.g. Eq. (4.10) of [16]). In
fact this limit of our formula could be derived starting from the Peskin-Takeuchi formula.

However, the observed value of the Higgs mass mh = 125 GeV lies beyond the range of
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Example 2. Vector Meson Dominance. We will now try to improve the toy model (3.20)
by introducing a coupling between the resonance and the goldstones. We thus have to write
a Lagrangian for the ρ. We will do it first in the antisymmetric tensor formalism [? ], and
comment on other formalisms below.

4 Discussion

Ref. [24] finds a logarithmic divergence of the Higgs boson contribution to the S parameter
in 5D composite Higgs models which they claim is “fundamentally different” from this one.
In our opinion their divergence is just a manifestation of the same general effect in their
concrete model.
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The logarithm in the first term is what we would get replacing mh → meff with Λ = mρ.
We also retained the finite term, which is the same 11/12 one gets when subtracting the
reference Higgs contribution in the Peskin-Takeuchi formula (see e.g. Eq. (4.10) of [16]). In
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Example 2. Vector Meson Dominance. We will now try to improve the toy model (3.20)
by introducing a coupling between the resonance and the goldstones. We thus have to write
a Lagrangian for the ρ. We will do it first in the antisymmetric tensor formalism [? ], and
comment on other formalisms below.

4 Discussion

Ref. [24] finds a logarithmic divergence of the Higgs boson contribution to the S parameter
in 5D composite Higgs models which they claim is “fundamentally different” from this one.
In our opinion their divergence is just a manifestation of the same general effect in their
concrete model.
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The logarithm in the first term is what we would get replacing mh → meff with Λ = mρ.
We also retained the finite term, which is the same 11/12 one gets when subtracting the
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But which dispersion relation, 
if any, controls UV?




