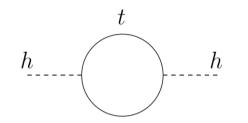
Spread Supersymmetry

Yasunori Nomura


UC Berkeley; LBNL

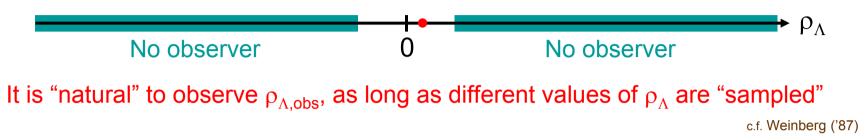
Is there a New Physics?

— if so, where is it?

Naturalness

h ... We "must" find $M_{\text{New}} \sim v_{\text{EW}}$ → true?

Shocking news in 1998 Supernova cosmology project; Supernova search team $\Lambda \neq 0$!


$$\rho_{\Lambda,obs} \sim (10^{-3} \,\mathrm{eV})^4 \, \ll M_{\rm Pl}^4 \, \text{(or TeV^4)}$$

- Naïve estimates *O*(10¹²⁰) too large
- There does not seem new gravitational physics at $L \sim (10^{-3} \text{ eV})^{-1}$

More significantly, $\rho_{\Lambda} \sim \rho_{matter}$ — Why now?

Emerging picture

--- Environmental selection in multiple "universes" (the multiverse)

Also suggested by theory

String landscape

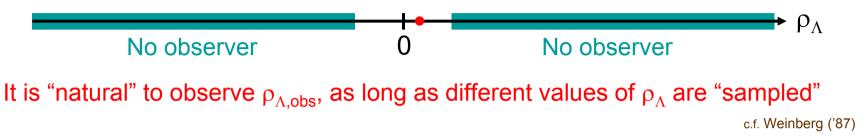
Compact (six) dimensions \rightarrow huge number of vacua

• Eternal inflation

Inflation is (generically) future eternal \rightarrow populate all the vacua

Significant Impacts on the way we think about physics

• Fundamental theory


Predictivity crisis / measure problem \rightarrow A new view of spacetime and gravity ... Quantum mechanics is important even at long distances Multivere = Quantum Many Worlds

c.f. Y.N., arXiv:1205.2675

Implications for TeV physics

Emerging picture

--- Environmental selection in multiple "universes" (the multiverse)

Also suggested by theory

String landscape

Compact (six) dimensions \rightarrow huge number of vacua

• Eternal inflation

Inflation is (generically) future eternal \rightarrow populate all the vacua

Significant Impacts on the way we think about physics

• Fundamental theory

 $\begin{array}{l} \mbox{Predictivity crisis / measure problem} \rightarrow \mbox{A new view of spacetime and gravity} \\ \mbox{... Quantum mechanics is important even at long distances} & \mbox{Multivere = Quantum Many Worlds} \\ \mbox{c.f. Y.N., arXiv:1205.2675} \end{array}$

Spread Supersymmetry (especially) with \widetilde{W} LSP

L.J.Hall and Y.Nomura, JHEP 01, 082 ('12) [arXiv:1111.4519] L.J.Hall, Y.Nomura, and S.Shirai, arXiv:1210.2395

Building upon

```
Giudice, Luty, Murayama, Rattazzi ('98) ... (unsequestered) anomaly mediation
Wells ('03,'04) ... scalar particles at PeV
Wino dark matter / collider: Gherghetta, Giudice, Wells; Moroi, Randall; Hisano, Matsumoto, Nagai, Saito, Semani; Hisano, Ishiwata, Nojiri, Saito; Ibe, Moroi, Yanagida; Buckley, Randall, Shuve; ...
Arkani-Hamed, Dimopoulos ('04) ... "split supersymmetry"
Arkani-Hamed, Delgado, Giudice ('06) ... "the simplest model of split"
```

• What is the **simplest** scenario?

(especially in the framework of the multiverse)

• What are the experimental signals?

Should the weak scale be natural? ---- No!

ex. Stability of complex nuclei Agrawal, Barr, Donoghue, Seckel ('97) For fixed Yukawa couplings,

no complex nuclei for $v \ge 2 v_{obs}$ Damour, Donoghue ('07)

... The origin of the weak scale may very well be anthropic / environmental!

Does this mean that there is no weak scale supersymmetry? --- No

The scale of superparticle masses determined by statistics

$$d \mathscr{N} \sim f(\widetilde{m}) \frac{v^2}{\widetilde{m}^2} d\widetilde{m} \qquad f(\widetilde{m}) \sim \widetilde{m}^{p-1}$$

For p < 2, weak scale SUSY results, but for p > 2, \tilde{m} prefers to be large...

What is the simplest scenario in this case?

We assume the "simplest": MSSM + *R* parity (I) The simplest high scale mediation

SUSY breaking mediated at the field-theoretic "cutoff" scale M_* ($\geq M_{unif}$) --- no (need of) flavor symmetry, *CP*, sequestering, ...

SUSY breaking field $X = \theta^2 F$ is **not** neutral

... scalar masses: X^+XQ^+Q , B_μ term: $X^+XH_uH_d$ gaugino mass: $XW^{\alpha}W_{\alpha}$, A term: XQ^+Q , μ term: $X^+H_uH_d$

... supergravity or loop effects

→ "Spread" in the superparticle spectrum

Write down all the possible terms with O(1) couplings in units of M_* , including $K = H_{\mu}H_d$

We assume the "simplest": MSSM + *R* parity (I) The simplest high scale mediation

SUSY breaking mediated at the field-theoretic "cutoff" scale M_* ($\geq M_{unif}$) --- no (need of) flavor symmetry, *CP*, sequestering, ...

SUSY breaking field $X = \theta^2 F$ is **not** neutral

... scalar masses: X^+XQ^+Q , B_μ term: $X^+XH_uH_d$ gaugino mass: $X'W^\alpha W_\alpha$, A term: XQ^+Q , μ term: $X^+H_uH_d$

... supergravity or loop effects

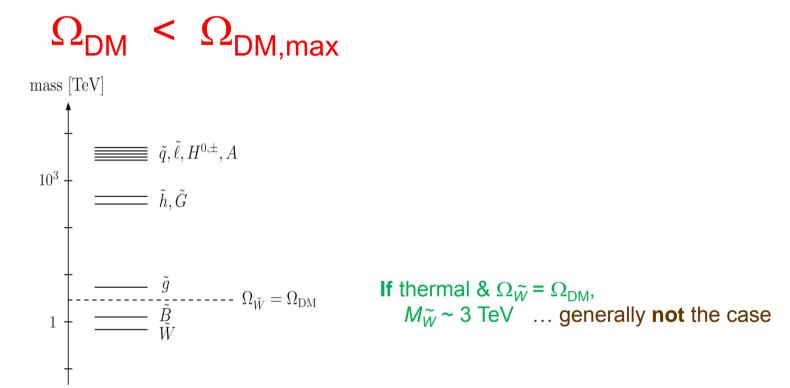
→ "Spread" in the superparticle spectrum

Write down all the possible terms with O(1) couplings in units of M_* , including $K = H_0 H_d$

We assume the "simplest": MSSM + *R* parity (I) The simplest high scale mediation

SUSY breaking mediated at the field-theoretic "cutoff" scale M_* ($\geq M_{unif}$) --- no (need of) flavor symmetry, *CP*, sequestering, ...

SUSY breaking field $X = \theta^2 F$ is **not** neutral


... scalar masses: X^+XQ^+Q , B_μ term: $X^+XH_uH_d$ gaugino mass: $XW^{\alpha}W_{\alpha}$, A term: XQ^+Q , μ term: $X^+H_uH_d$

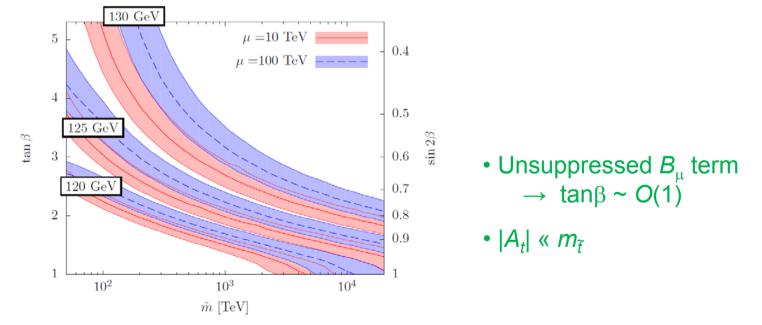
... supergravity or loop effects

→ "Spread" in the superparticle spectrum

Write down all the possible terms with O(1) couplings in units of M_* , including $K = H_{\mu}H_d$

What stops "drifting-up" of the spectrum?(II) The existence of the environmental boundary

Note: This is the same boundary used to argue for axion DM Linde ('88); Tegmark, Aguirre, Rees, Wilczek ('05) In general,


$$\Omega_a + \Omega_{WIMP} < \Omega_{DM,max} \longrightarrow Multi-component DM!$$

Immediate gifts

The two-step hierarchy implies

$$\tilde{m} \sim (10^2 - 10^4) \text{ TeV}$$

Higgs boson mass

- No SUSY flavor or CP problem (but still have a chance to see signals in the future)
- No gravitino problem $(m_{3/2} \sim 10 100 \text{ TeV})$

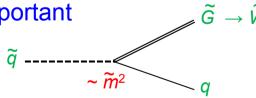
Experimental signatures

- depend on the gaugino spectrum & overall mass scale

(A) Gaguino spectrum

The gaugino masses arise from anomaly mediation and Higgsino-Higgs loops

 $M_1 = \frac{3}{5} \frac{\alpha_1}{4\pi} (11m_{3/2} + L),$
$$\begin{split} M_2 &= \frac{\alpha_2}{4\pi} (m_{3/2} + L), \\ M_3 &= \frac{\alpha_3}{4\pi} (-3m_{3/2})(1 + c_{\tilde{g}}). \end{split} \text{ correction from heavy squarks}$$
 $L = \mu \sin(2\beta) \frac{m_A^2}{|\mu|^2 - m_A^2} \ln \frac{|\mu|^2}{m_A^2} \sim 2\mu \sin(2\beta) \ln r_* \quad \dots \text{ from Higgsino/Higgs loops} \qquad \mathbf{f_*} \equiv \frac{\mathbf{M_{Pl}}}{\mathbf{M_{Pl}}}$ Here, 10010Wino non-LSP $|\mu|/m_{3/2}$ Wino LSP Wino LSP 0.1in most parameter space 0.110 1 1001000 r_*

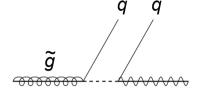

(B) The overall mass scale

— controlled by the dark matter abundance through condition $\Omega_{\rm DM}$ < $\Omega_{\rm DM,max}$

There are three sources for the wino relic abundance

Because of large \tilde{m} , the "freeze-in" contribution is important

- ... larger wino abundance
 - \rightarrow smaller wino (gaugino) mass


(even smaller mass if significant axion component)

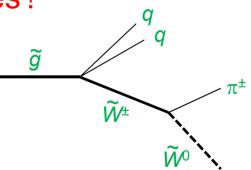
→ The gluino can be within LHC reach!

Gluino signals

Because of large \tilde{m} , the gluino is "long-lived"

$$c\tau_{\tilde{g}} = O(1 \text{ cm}) \left(\frac{M_{\tilde{g}}}{1 \text{ TeV}}\right)^{-5} \left(\frac{\tilde{m}}{1000 \text{ TeV}}\right)^4$$

... $r_* \ge O(10) \rightarrow$ long-lived (displaced) gluino signatures

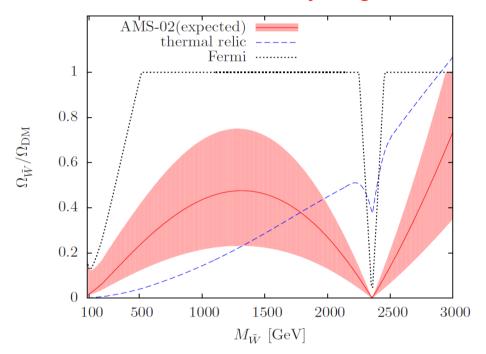

Winos are (nearly-degenerate) co-LSPs

 $M_{\tilde{W}^{\pm}} - M_{\tilde{W}^{0}} \simeq 160 \text{ MeV} \longrightarrow c\tau_{\tilde{W}^{\pm}} = O(10 \text{ cm})$

(Tree-level contribution could give a correction)

Decay chain with two long-lived particles !

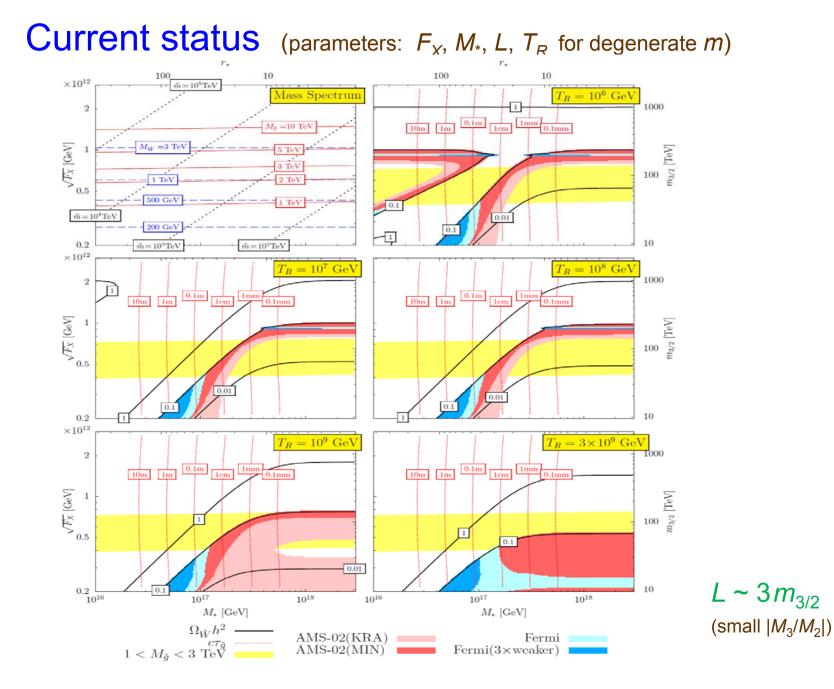
$$\tilde{g} \xrightarrow[]{\text{long-lived}} q\bar{q}(\tilde{W}^{\pm} \xrightarrow[]{O(10 \text{ cm})} \tilde{W}^0 \pi^{\pm})$$

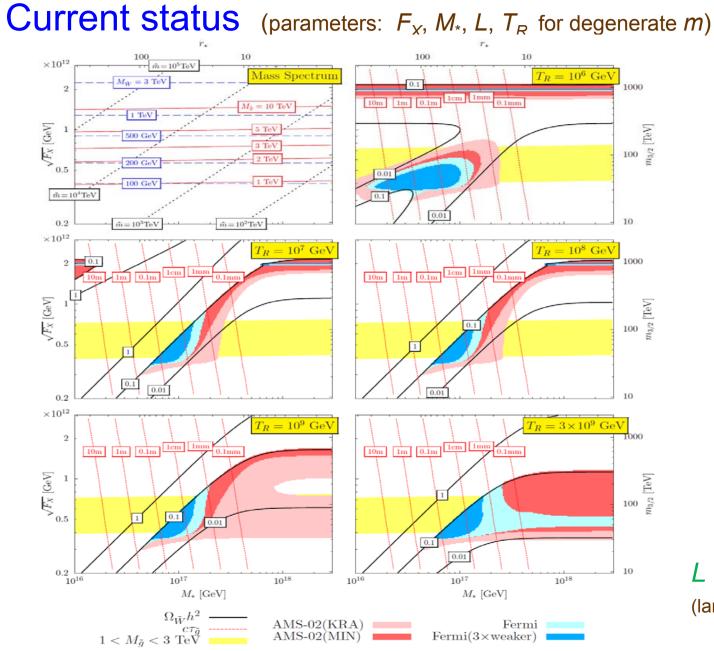


... allows us to measure masses & lifetimes of these particles

Measuring flavors of quarks from \tilde{g} decay, we can probe the flavor structure of the squark sector ! e.g. $\tilde{g} \rightarrow b\bar{s}\tilde{\chi}, t\bar{c}\tilde{\chi}$

Cosmic / astrophysical signals


Good prospect for indirect detection because of relatively large wino annihilation section



- Fermi gamma ray search already constrains the model
- AMS-02 antiproton search will probe significant parameter space

Direct detection is challenging

$$\sigma_{\rm SI} \simeq (0.6 - 2) \times 10^{-46} \text{ cm}^2 \sin^2(2\beta) \left(\frac{|\mu|}{5 \text{ TeV}}\right)^{-2} \left(\cos(\arg(M_2\mu)) + \left|\frac{M_2}{\mu}\right|\right)^2$$

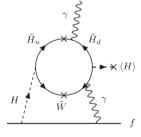
Future prospects

• AMS-02 will probe a significant portion of parameter space

• LHC has a great reach

— gluino

1


- $c\tau_{\tilde{g}} \ll O(1 \text{ mm}) \dots$ missing energy + high P_T jets
- $c\tau_{\tilde{g}}\gtrsim O(0.1~{\rm mm})~\dots$ displaced decay
- long-lived charged wino

• CMB measurements (recombination history)

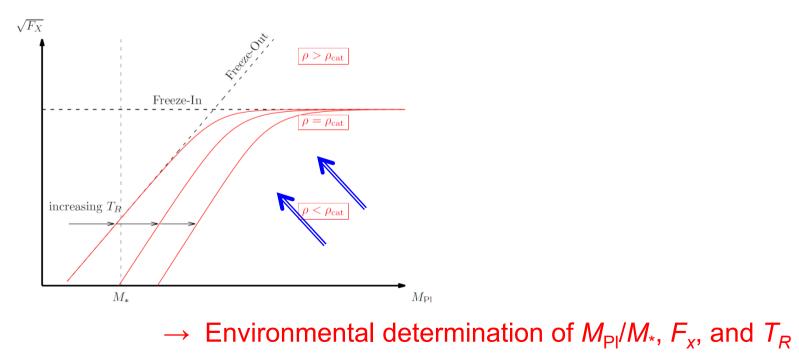
... can probe the region

$$n_{\tilde{W}} \lesssim \left(\frac{\Omega_{\tilde{W}}}{\Omega_{\rm DM}}\right)^{2/3} \times \begin{cases} 230 \text{ GeV} \quad (\rm WMAP7) \\ 460 \text{ GeV} \quad (\rm Planck \text{ forecast}) \\ 700 \text{ GeV} \quad (\rm cosmic \ variance \ with \ \ell_{max} = 2500) \end{cases} \qquad \begin{array}{c} \text{Galli, locco, Bertone, Melchiorri ('09);} \\ \text{Slatyer, Padmanabhan, Finkbeiner ('09)} \end{cases}$$

Electric dipole moments

$$d_e \simeq 3 \times 10^{-29} \ e \ \mathrm{cm} \times \sin(2\beta) \ \sin(\mathrm{arg}(M_2\mu)) \ \left(\frac{|\mu|}{10 \ \mathrm{TeV}}\right)^{-1} \left(\frac{M_{\tilde{W}}}{200 \ \mathrm{GeV}}\right)^{-1} f(m_h^2/M_{\tilde{W}}^2)$$
Arkani-Hamed, Dimopoulos, Giudice, Romanino ('04)

current bound: $d_e < 1.05 imes 10^{-27} \ e \ {
m cm}$, expected to become $\ d_e \sim 10^{-31} \ e \ {
m cm}$


• Direct detection, Gravitational wave, ...

Multiverse interpretation

"Strange" coincidences: $\Omega_{\text{thermal}} \sim \Omega_{\text{freeze-out}} \sim \Omega_{\text{UV}}$

$$\begin{split} & (Ym)_{\tilde{W}}|_{\rm FO} ~\sim~ 10^{-10} \ {\rm GeV} \left(\frac{\sqrt{F_X}}{2 \times 10^{12} \ {\rm GeV}}\right)^4 \left(\frac{2 \times 10^{18} \ {\rm GeV}}{M_{\rm Pl}}\right)^3, \\ & (Ym)_{\tilde{W}}|_{\rm FI} ~\sim~ 10^{-10} \ {\rm GeV} \left(\frac{\sqrt{F_X}}{2 \times 10^{12} \ {\rm GeV}}\right)^4 \left(\frac{3 \times 10^{17} \ {\rm GeV}}{M_*}\right)^3, \\ & (Ym)_{\tilde{W}}|_{\rm UV} ~\sim~ 10^{-10} \ {\rm GeV} \left(\frac{T_R}{10^9 \ {\rm GeV}}\right) \left(\frac{\sqrt{F_X}}{2 \times 10^{12} \ {\rm GeV}}\right)^2 \left(\frac{2 \times 10^{18} \ {\rm GeV}}{M_{\rm Pl}}\right)^2. \end{split}$$

... understood in terms of "scanning" in the multiverse

Summary

•

Weak scale supersymmetry

- Naturalness
- Gauge coupling unification
- WIMP dark matter

- SUSY flavor/CP (and μ) problems
- Cosmological gravitino problem

Summary

. . . .

Weak scale supersymmetry

- Naturalness \rightarrow Typicality
- Gauge coupling unification
- WIMP dark matter

- SUSY flavor/CP (and µ) problems
- Cosmological gravitino problem
- The simplest high scale mediation with non-singlet X
- Environmental selection on the dark matter abundance

→ Spread Supersymmetry

Plenty of experimental signatures

- AMS-02 antiproton search
- LHC probe of (displaced) gluino & charged wino decays (probing flavor)
- CMB, EDM measurements, ...

 \rightarrow (further) forces the revision of the concept of naturalness