Status of Dark Matter Direct Detection Searches

Bruno Serfass - UC Berkeley CGI Workshop, Oct. 2012

Dark Matter Halo

Evidence of Dark Matter at various galactic scales

- In particular, rotation curve of spiral galaxies imply the presence of dark matter halo
- Many candidates: WIMPs (SUSY, etc), axions,...

Standard DM halo assumptions:

- Isothermal and spherical
- Maxwell- Boltzmann velocity distribution <V>= 270 km/s, $\rho = 0.3$ GeV / cm³

But large uncertainties...

Dark Matter Wind on Earth

Annual modulation

- Sun travels through the DM cloud at 230 km/s
- Earth adds or subtracts 15 km/s to solar velocity

Expect a few ± 1 % annual modulation in rate

Diurnal modulation

- 90° change of direction
- But short track length in detectors
 - → difficult measurement

Direct Detection of WIMPs

If WIMPs are the halo, detect them via elastic scattering on target nuclei (nuclear recoils)

Energy spectrum and rate depend on target nucleus masses and WIMP distribution in Dark Matter Halo

(For Standard DM halo)

Energy spectrum of recoils
 falling exponential with <E> ~ 15 keV

Rate (based on $\sigma_{n\chi}$ and ρ) << 1 event /kg/day

Direct Detection of WIMPs

If WIMPs are the halo, detect them via elastic scattering on target nuclei (nuclear recoils)

Energy spectrum and rate depend on target nucleus masses and WIMP distribution in Dark Matter Halo

(For Standard DM halo)

Low Energy threshold needed (~ keV)
Good background rejection
Large exposure (high target mass)

Direct Detection Strategies

Goal: find a very small WIMP signal in presence of many other background particles interacting in detectors

Direct Detection Strategies

Nuclear/Electron Recoils (NR / ER):

Amount of charge or light created after an event depends on the type of interaction = "Quenching factor" (Q)

Energies calibrated with gamma sources are called "electron equivalent energies" ("keVee")

Direct Detection Sensitivity

Lots of Experiments

May experiments around the word. Deep underground to avoid cosmic rays

Sensitivity for a ~50 GeV WIMP:

Current Generation (or soon):
 σ_{sl} ~ 10⁻⁴⁵cm²

Next step ~1 Ton Exp. (under construction / development):
σ_{s1}~ 10⁻⁴⁶, few x10⁻⁴⁷ cm²

Plans for multi-ton Exp.
 (>5 years)
 σ_{sl} ~ few x10⁻⁴⁸ cm²

End of the road? Not so far away from being limited by backgrounds from low energy solar neutrinos

DAMA / LIBRA

Time Dependence of Residual Singles Rate in 2-4 keVee bin

- 25 Nal(TI) scintillating crystals in 5x5 grid (9.7 kg each) = 243 kg
- Two light guides + two PMTs on each crystal
- 8.9 sigma CL evidence of signal. But is it Dark Matter?
- 'Natural' WIMP candidate in contradiction with CDMSII, Xenon10 S2 Only, Xenon100

DAMA: DM Signal?

The number of environmental conditions which have annual modulation is too big to count!

Muons Neutrons • Temperature

Humidity

Human activity

Blum, arXiv:1110.0857 Nygren, arXiv:1102.0815 Ralston, arXiv:1006.5255

DAMA, arXiv:1202.4179

$$\begin{split} f_{\rm osc} &= \frac{R_{\rm osc}}{R_{\rm DC}} \sim 2\% & \begin{array}{l} \mbox{Muon? DAMA oscillation}\\ \mbox{too large...} \end{array} \\ &= \frac{R_{\rm osc}(\mu)}{R_{\rm DC}(\mu) + R_{\rm DC}(other)} < \frac{R_{\rm osc}(\mu)}{R_{\rm DC}(\mu)} \sim 2\% \\ R_{\rm DC}(other) \sim 0 \end{split}$$

DAMA: Reconciling discrepancies

> Astrophysics:

Blum: arXiv:1110.0857

- Non-Maxwellian velocity distributions (Chaudhury et al, arXiv:1006.5588)
- WIMP streams (Gondolo et al, arXiv:0504010 & Kelso et al, arXiv:1110.5338)
- ➔ By itself, still incompatible with CDMS and Xenon results (Fox et al, arXiv:1107.0717)

Other possible explanations:

- Material-dependent scattering cross sections
 - Isospin-violating DM
 - Inelastic scattering
- Experimental Problems:
 - Threshold, energy calibration

DAMA: Reconciling discrepancies

Need to reproduce DAMA results:

- > DM-ICE: Nal at South Pole
 - Under development, data available with prototype
- KIMS Korea Invisible Mass Search (Yangyang), Csl scintillators

CoGENT

- 440g p-type Point Contact Ge Detector (ionization only)
- E_{threshold} ~ 0.4 keVee

Next step: PNNL/UC/Canberra C-4 expansion (x10 mass, lower bckg and threshold)

CoGENT Timing information

Slow carrier transport near n⁺ electrode means slow risetimes

1002.4703: Surface Event Leakage ~0 for E>1keV_{ee}

Potential Problems:

- Quasi Collimated Source position
 dependence
- Between band events in background data?

CoGENT Results

Unexplained Excess below 3keV_{ee}
Enormous Modulation

Enormous Modulation

- DAMA: 2% vs CoGENT: >20%
- 2.8σ statistical significance

(Very) Low Temperature Detectors

Array of small dielectric crystal (Al₂O₃, Ge, Si, CaWO₄, etc) cooled to <50 mK</p>

Measure phonon + ionization (CDMS, Edelweiss) or light (CRESST)

Advantages:

- after an interaction (event), all excitations transform to heat →Good resolution
- Phonon excitation ~10-6 eV compare to few eV for conventional semiconductor detectorr →Low threshold

CRESST

- CaWO₄ Crystals, measure phonon and Scintillation
- 8 detectors, 730kg-d
- Multiple Nuclei: Multiple Q Q₀~0.1 Q_{Ca}~0.06 Q_w~0.04

CRESST Results

67 events at low energy observed "in the O, Ca, and W box" E_{max} = 40 keV, E_{min} = 10-19 keV depending module

CRESST Results

- CRESST: Assumed flat surfaces in monte carlo
- M. Kuzniak et al (1203.1576): Spectral shape varies significantly with surface roughness
- Maximal likelihood analysis overconstrained

- > Next steps:
 - > Decrease Clam Radioactivity
 - additional internal neutron shielding
 - increase of target mass
 - > Next run schedule end of year

Edelweiss

- Ge Crystals, measure charge and total phonon signal
- Interdigitated design provides excellent Surface rejection
- Fiducial volume 53% for 400g design

Edelweiss II Results

Data from 2008 – 2010 using 10 x 400g detectors

384 kg days in the energy range of [20,200] keV

- 5 events observed in NR
- 3 evts bg expected

 Low-E investigation [5-20 keV] using 113 kg-day exposure (3 evts obs, <3 bgd)

Phys. Lett. B 702 (2011) 335–329.
arXiv:1207.1815v1 (Low E)

Edelweiss Next Steps

> Edelweiss III:

40 x 800g bolometers installed in 2012 : 24 kg fiducial

 \Rightarrow 3000 kg.d (5x10⁻⁴⁵ cm²)

Eureka: (Edelweiss, CRESST)

- Multi-target (Ge, CaWO4)
- Phase 1 (2015): 150 kg
- Full Scale: 500 1000 kg
 - ⇒ 10⁻¹⁰ pb (10⁻⁴⁶ cm²) sensitivity

CDMS / SuperCDMS

Ge/Si Crystals. Measure charge and athermal phonons

CDMSII

- 7.6cm x 1cm detectors, 4 phonon + 2 charge channels
- use timing information of the athermal phonons for surface events discrimination
- data taken with 5 Towers (30 det.) between Oct. 2006 to Sept. 2008

WIMP search 10-100 keV recoil Analysis: Ahmed et al., Science 327:1619-1621,2010

Low Threshold Analysis: Ahmed et al., PRL 106, 131302 (2011)

Modulation Analysis:

No significant evidence for annual modulation in NR singles (WIMPs) In the energy range [5, 11.9] keV

CDMS / SuperCDMS

SuperCDMS Soudan (2011-2013)

- 7.6cm x 2.5 cm detectors
- 12 phonon + 4 charge channels, interleaved
- use charge and phonon partition for surface events discrimination

S2(-z)

S1(+z)

- 15 detectors (total mass ~9kg) in operation
- Surface electron rejection exceed what's needed for Soudan, 1 event at 930 kg-years raw.
- Expect between 5 and 8e-45 cm² sensitivity with 10 keV threshold

SuperCDMS SNOLAB

150 kg-scale Ge target, expected reach 0.2 zepto-barnes (2 x 10⁻⁴⁶ cm²)

- Use iZIP SuperCDMS Soudan design, with bigger detectors (1.38 kg) to reduce fabrication costs
- Surface events rejection demonstrated
 with iZIP Soudan
- Aiming for construction start in 2014

(Liquid) Noble Gas Detectors (Xe, Ar, Ne)

(Liquid) Noble Gas Detectors (Xe, Ar, Ne)

Nuclear/electron recoil discrimination methods:

- singlet/triplet ratio 10:1 nuclear recoil:electron recoil (pulse shape discrimination)
 - Time constants (singlet/triplet): Xe: 3ns/27ns, Ar 10/1500ns
- Ionization and direct excitation ratio

Implementation:

- Single phase: measure scintillation only
- Double phase: measure also ionisation through electroluminescense

(Liquid) Noble Gas Detectors (Xe, Ar, Ne)

Nuclear/electron recoil discrimination methods:

- singlet/triplet ratio 10:1 nuclear recoil:electron recoil (pulse shape discrimination)
 - Time constants (singlet/triplet): Xe: 3ns/27ns, Ar 10/1500ns
- Ionization and direct excitation ratio

Implementation:

- Single phase: measure scintillation only
- Double phase: measure also ionisation through electroluminescense

GAS	Single Phase	Double Phase
Xenon	ZEPLIN I, XMASS	ZEPLIN, XENON LUX
Argon	DEAP, CLEAN	WARP/ DarkSide, ArDM
Neon	CLEAN	SIGN

Liquid Xenon: XENON10/100/1T

XENON10

- 2005-2007
- Total Xe: 22 kg
- Fiducial: 5.4 kg
 - PRL 100, 101, 107
 - PRD 80
 - NIM A 601

XENON100

- 2008-2013
- Total Xe: 170 kg
- Fiducial: 65 kg
 - PRL 105, 107
 - PRD 84
 - More to come..

XENON1T

- Construction start fall 2012
- Total Xe: 2.2 T
- Fiducial: ~1.1T
- Projection 2x10⁻⁴⁷ cm²

Liquid Xenon: XENON100 latest result

Data taken between February 2011 and March 2012 (reduced background)

2 events observed with a background expectation of 1 ± 0.2

> σ_{SI} = 2.0x10⁻⁴⁵cm² for a 50 GeV WIMP (90% CL)

250

Plots from A. J. Melgarejo Fernandez, IDM 2012

-10

Liquid Xenon: XMASS

- Single phase detector (scintillation readout), self-shielding only
- 800 Kg total, 100 Kg fiducial
- Search down to σ_{sl} ~ a few x 10⁻⁴⁵ cm²

2010.09: Construction Completed

Slide from Y. Suzuki, IDM 2012

Liquid Xenon: XMASS

> XMASS completed first commissioning phase:

- Light yield: 14.7 PE/keVee (x4 XENON100) -> possible light-WIMP search
- Backgrounds (will be reduced in the near future):
 - Above 5 keV: γ from PMTs, ²¹⁰Pb PMT AI seal and Cu surface
 - Below 5keV: not quite understood (¹⁴C contaminated in GORE-TEX?)

Liquid Xenon: LUX

- Dual-phase xenon TPC, 350 kg (100 kg fiducial)
- Located at the Sanford Underground Research Facility in Lead, SD (4850 feet)
- Science run starts this year
- Projected sensitivity of a few ×10⁻⁴⁶ cm² after 300 days

Metastable Bubble Chamber Detectors

Superheated fluid (bulk or droplets)

Energy density effect: min. ionizing and low energy ER deposition density too small to nucleate bubbles (intrinsic rejection, no data cuts needed)

10 cm

Threshold, controlled by temperature, pressure

Readout:

- > acoustic (ultrasound)
- > motion sensing(video)

inexpensive, easily scalable

Assorted nuclei: spin dep. (F) or indep. (I and Br)

COUPP

COUPP

- Bubble chamber, filled with CF₃I target
- Instrumented with transducers for: temperature, pressure, acoustic transients, as well as machine vision cameras

Figure from M. Crisler, IDM 2012

COUPP 4Kg Results

- **Bubble chamber, filled with CF3I target**
- > 20 WIMP candidates
- "Almost certainly not WIMPs", background under investigation

PICASSO

- Super-heated freon (C₄F₁₀) droplets suspended in gel
- Exploding bubbles are detected acoustically (piezoelectric device)
- Triangulation between multiple sensors allows for position reconstruction

PICASSO

- Super-heated freon (C₄F₁₀) droplets suspended in gel
- Exploding bubbles are detected acoustically (piezoelectric device)
- Triangulation between multiple sensors allows for position reconstruction

CONCLUSIONS

Light WIMPs:

- No conclusion, lots of confusion
- More data needed !

> High Mass WIMPs:

- XENON100 reached 2x10⁻⁴⁵ cm²
- Will be soon joined by other experiments

Extra Slides

Liquid Argon: DarkSide

Slide from R. Saldanha, IDM 2012

Liquid Argon: ArDM

850 kg two-phase LAr target:120cm drift length, 25cm diameter

PMT array on bottom, LEMs on top for charge readout

Deployment at Canfranc 2012

Liquid Argon: MiniClean

•4 π coverage to maximize light-yield at threshold ... - 3D Position Reconstruction - Particle-ID via Pulse-shape discrimination Radon-free assembly ... "Cold" design allows both LAr & LNe ... • No electric fields ... PMTs only active component ... • Fast signals ($\tau_3 = 1.6 \mu s$) avoid pulse-pileup in LAr ... Calibration Top Hat Ports Optical Module PMT Target LAr/ Volume Outer LNe Vessel Light Guide Inner Acrylic Vessel Plug

Slide from A. Hime, IDM 2012

Liquid Argon: DEAP- 3600

DEAP-3600 Detector

3600 kg argon target (1000 kg fiducial) in sealed ultraclean Acrylic Vessel

Vessel is "resurfaced" in-situ to remove deposited Rn daughters after construction

Large area vacuum deposition source for TPB wavelength shifter deposition

255 Hamamatsu R5912 HQE PMTs 8-inch (32% QE, 75% coverage)

50 cm light guides + PE shielding provide neutron moderation

Detector in 8 m water shield at SNOLAB

Slide from M. Boulay, IDM 2012

Directionality: Time Projected Chambers

▷ DMTPC

- CCD based detector with directional sensitivity
- Total energy is given by amount of light deposited
- PMTs for trigger, Z information
- Excellent gamma/beta rejection base on track size

1m³ in fabrication, plan for underground operation at WIPP

The "4-Shooter" 18L TPC 4x CCD Sea-level @ MIT taking initial suite of calibration data

The "10L" 2x 5L TPCs, CF4 Underground @ WIPP taking data S. Ahlen *et al.*, Phys. Lett. B695 (2011) 124-129

R&D Vessel/DCTPC

arXiv:1108.4894

R&D Vessel/DCTPC 6L TPC, He+CF₄ mix @ Double Chooz measuring cosmogenic neutrons

Raytheon

50L TPC, pure CF₄ and He+CF₄ mix @ MIT; focused on neutron detection 50 cm drift length

Slide from S. Henderson, IDM 2012

Dark Matter Time Projection Chamber

Directionality: Time Projected Chambers

> DRIFT (Boulby)

- Sensitive to direction of recoiling nucleus
- Drift negative ions (CS₂ molecule) in TPC
 - remove magnetic field
 - reduces diffusion
- Excellent gamma/beta rejection base on track size

Searching for Axions

- Light pseudoscalar particle
 - Introduced to solve strong CP problem
 - weak couplings
 - born non-relativistic (cold dark matter)
- Detection rely on induced coupling to photons
- Techniques:
 - CAST: conversion of solar axions to photons in magnetic field (using LHC prototype magnet B~10T)
 - ADMX: high-Q resonance cavity in an external B field

