Searches for RPV-SUSY and Long-Lived particles in ATLAS

Monica D'Onofrio University of Liverpool GGI Meeting, Florence, 23 Oct. 2012

Searches for SUSY @ ATLAS

Broadly and deeply cover the SUSY signature space

Monica D'Onofrio, GGI, Florence

Searches for SUSY @ ATLAS

Giacomo's talk yesterday

R-parity

 Δ L =1, 9 λ couplings, 27 λ ' couplings

Pletora of new couplings, only partially constraints (m/100 GeV)

	$\lambda_{ijk}L_iL_j\bar{E}_k$	$\lambda_{1jk}' L_1 Q_j \bar{D}_k$	$\lambda'_{2jk}L_2Q_j\bar{D}_k$	$\lambda'_{3jk}L_3Q_j\bar{D}_k$
weakest	0.07	0.28	0.56	0.52
strongest	0.05	$5. \cdot 10^{-4}$	0.06	0.11

Monica D'Onofrio, GGI, Florence

RPV scenarios

- Many final states to explore and not yet searched for:
 - LSP no longer stable

 $\left(\begin{array}{c} \text{pair production:} \quad \tilde{q}\tilde{q}, \quad \tilde{q}\tilde{g}, \quad \tilde{g}\tilde{g} \\ \text{resonant } \tilde{\ell} \text{ production} \end{array}\right)$

Something like > 700
 possibilities, with final
 state signatures involving
 leptons and/or jets

 \otimes

If λ , λ ', λ '' very small, can lead to long-lived LSP

Monica D'Onofrio, GGI, Florence

Long-Lived particles in SUSY

- Several new physics models could give raise to new, massive particles with long-lifetime. Long-lived (LL) particles in RPC scenarios:
 - If ΔM (chargino-neutralino) ≈ 100 MeV (eg. in AMSB):
 - Long-lived charginos \rightarrow disappearing tracks
 - If very heavy squarks mediate gluinos decay (strong virtuality):
 - Long-lived gluinos \rightarrow R-hadrons (eg. Split SUSY)
 - If NLSP-gravitino GMSB couplings are weak: long-lived sleptons

'prompt' RPV SUSY:

O Leptonic RPV (production and/or decay):

- search for multilepton final states
- emu resonances and continuum

• Hadronic RPV:

- search for 2x3jet resonances
- search for 2x2jet resonances (currently focusing on scalar gluons searches)

Long-lived SUSY:

- $\,\circ\,$ Displaced vertex
- Disappearing tracks
- $\,\circ\,$ R-hadrons and sleptons

'prompt' RPV SUSY:

• Leptonic RPV (production and/or decay):

- search for multilepton final states
- emu resonances and continuum

• Hadronic RPV:

- search for 2x3jet resonances
- search for 2x2jet resonances (currently focusing on scalar gluons searches)
- Long-lived SUSY:
 - Displaced vertex
 - Disappearing tracks
 - R-hadrons and sleptons

RPV@decay: Multilepton

 Signature expected in case of RPV in the lepton sector

 $W_{RPV} = \lambda_{ijk} L_i L_j \bar{E_k}$

• High p_T leptons, possibly non large missing E_T

- Two SR defined based on MET and total tranverse energy (m_eff)
- Validation regions used for SM background checks:
 - Reducible bkg (fakes, from data)
 - Irreducible bkg (ZZ, ttZ, ttWW): from MC

Selection	SR1	SR2	VR1	VR2	VR3
Number of leptons	≥ 4	≥ 4	3	≥ 4	≥ 4
Z-candidate	veto	veto	veto	requirement	veto
$E_{\rm T}^{\rm miss}/{\rm GeV}$	> 50	_	> 50	_	< 50
$m_{\rm eff}/{ m GeV}$	_	> 300	_	_	< 300

$$m_{\text{eff}} = E_{\text{T}}^{\text{miss}} + \sum_{\mu} p_{\text{T}}^{\mu} + \sum_{e} E_{\text{T}}^{e} + \sum_{j} E_{\text{T}}^{j}.$$
10/23/2012 • 9

Monica D'Onofrio, GGI, Florence

Multilepton: background

Reducible background (WZ, ttW,tt,WW):

- Events with 3 real and one fake leptons, or 2 real and 2 fake (3,4 fakes negligible)
- Estimated with a *weighting method*

$$[N_{\text{data}}(3\ell_{S} + \ell_{L}) - N_{\text{MCirr}}(3\ell_{S} + \ell_{L})] \times F(\ell_{L}) - [N_{\text{data}}(2\ell_{S} + \ell_{L_{1}} + \ell_{L_{2}}) - N_{\text{MCirr}}(2\ell_{S} + \ell_{L_{1}} + \ell_{L_{2}})] \times F(\ell_{L_{1}}) \times F(\ell_{L_{2}})$$

$$F = \sum_{i,j} \left(\alpha^i \times R^{ij} \times f^{ij} \right) \overset{\checkmark}{\longleftarrow}$$

Fake ratio:

- \rightarrow l_s and l₁: signal and loose leptons
- \rightarrow i: type of fakes (HF, conversion)
- \rightarrow j: process category
- \rightarrow f^{ij} : fake rate of fake type I process j

F weighted for the fractional contribution of each process

Irreducible background:

ZZ, ttZ, ttWW
Monica D'Onofrio, GGI, Florence

Selection	VR1	VR2	VR3
SUSY ref. point 1	4.6 ± 0.5	1.38 ± 0.16	0.004 ± 0.006
SUSY ref. point 2	3.5 ± 0.4	2.32 ± 0.34	0.120 ± 0.029
ZZ	3.2 ± 1.9	38 ± 7	2.9 ± 1.5
$t\bar{t}Z$	0.70 ± 0.35	0.64 ± 0.32	$(3.5\pm 3.6)\times 10^{-3}$
$t\bar{t}WW$	0.08 ± 0.06	$(1.3 \pm 1.0) \times 10^{-3}$	$(2.2\pm 2.1)\times 10^{-4}$
WZ (†)	34.6 ± 6	_	_
$t\bar{t}W$ (†)	2.6 ± 0.8	_	-
Σ Irreducible	41 ± 8	38 ± 7	2.9 ± 1.5
Reducible	95 ± 32	-0.25 ± 0.96	1.3 ± 1.3
Σ SM	136 ± 33	38 ± 7	4.2 ± 1.8
Data	152	40	2
p_0 -value (σ)	0.33(0.45)	0.42 (0.21)	0.80(-0.85)

Multilepton: results

- Major uncertainties:
 - Irreducible bkg: generator uncertainties on ZZ MC modeling
 - Reducible bkg: dominated by unc. on contributions from each process

Selection	SR1	SR2
SUSY ref. point 1	6.5 ± 0.6	7.1 ± 0.7
SUSY ref. point 2	4.2 ± 0.6	4.5 ± 0.6
ZZ	0.14 ± 0.11	0.51 ± 0.30
$t\bar{t}Z$	0.023 ± 0.014	0.029 ± 0.016
$t\bar{t}WW$	0.0044 ± 0.0035	0.005 ± 0.004
Σ Irreducible	0.17 ± 0.12	0.54 ± 0.31
Reducible	0.8 ± 0.8	0.18 ± 0.26
Σ SM	1.0 ± 0.8	0.7 ± 0.4
Data	3	2
p_0 -value (σ)	0.05(1.7)	0.07(1.5)
$\sigma_{\rm vis}$ obs (exp)	1.3(0.8)	1.1 (0.7)

Monica D'Onofrio, GGI, Florence

Multilepton: interpretation

 Interpretation in simplified models for chargino pair production as well as mSUGRA/cMSSM breaking models

RPV@Production

Monica D'Onofrio, GGI, Florence

'prompt' RPV SUSY:

• Leptonic RPV:

- search for multilepton final states
- emu resonances and continuum

• Hadronic RPV:

- search for 2x3jet resonances
- search for 2x2jet resonances (currently focusing on scalar gluons searches)
- Long-lived SUSY:
 - Displaced vertex
 - Disappearing tracks
 - R-hadrons and sleptons

'Hadronic' RPV: 2x3jets

- UDD couplings least constrained via collider experiments
 - Very hard given the all-hadonic decays and overwhelming multijet bkg

Several interesting possibilities:

• Here, consider 2 x 3jets for gluino pair production focusing on uds λ "couplings

 $W_{R_p} = \frac{1}{2} \lambda_{ijk}'' \bar{U}_i \bar{D}_j \bar{D}_k$

- Resolved
- Boosted

2x3jets: resolved

- signal discriminated from multijet background by exploiting the large p_T of jets produced in gluino decays.
- p_T of 6th leading jets used to discriminate signal from bkg:
 - Three selections used: > 80 GeV, 120 GeV and 160 GeV
- Multijet bkg estimated using normalization procedure from low to high N jets

$$N_{data}^{\mathrm{n-jet}} = N_{data}^{\mathrm{m-jet}} \frac{N_{MC}^{\mathrm{n-jet}}}{N_{MC}^{\mathrm{m-jet}}}$$

- Tested from 3j / 4j \rightarrow 5j (signal depleted)
- Final estimate using 3 jets \rightarrow ≥ 6 jets

2x3jets: resolved (II)

- Good agreement between data and SM expectation
- Systematic uncertainties mostly from JES and JER, followed by PDF
 - Systematics on color flow and QCD radiation not considered due to the poor knowledge in case of RPV-vertex

Model $(m_{\tilde{g}})$	$p_{\mathrm{T,min}}^{\mathrm{6th-jet}}$	Data	Background	Signal bias [%]	Signal
$100 {\rm GeV}$	80 GeV	23600	23500 ± 2800	8.5	99200 ± 20000
200 GeV	120 GeV	856	851 ± 140	3.7	2700 ± 500
$300 {\rm GeV}$	120 GeV	856	851 ± 140	1.0	1460 ± 240
$400 {\rm GeV}$	$160 { m GeV}$	57	62 ± 13	0.8	110 ± 13
$500 {\rm GeV}$	$160 { m GeV}$	57	62 ± 13	0.3	67 ± 9
$600 {\rm GeV}$	$160~{\rm GeV}$	57	62 ± 13	0.1	43 ± 7
$800 \ {\rm GeV}$	$160~{\rm GeV}$	57	62 ± 13	0.0	20 ± 3

Monica D'Onofrio, GGI, Florence

2x3jets: boosted jets

Jet shape variable sensitive to the N-body structure from jets containing boosted-gluino decay products.

N-subjettiness
$$\tau_N = \frac{1}{d_0} \sum_k p_{\mathrm{T}k} \times \min(\delta R_{1k}, \delta R_{2k}, ..., \delta R_{Nk})$$
, with $d_0 \equiv \sum_k p_{\mathrm{T}k} \times R_{Nk}$

- $\tau_{32} = \tau_3 / \tau_2$ \rightarrow if \approx 1(0), jet well described by 2(3)-subjets After that, the trimming procedure is applied:
- Soft radiation removed

2x3jets: boosted (II)

- Select events with two massive large-R jets and τ_{32} <0.7
- High normal jet muliplicity also required to reduce multijet bkg
 - Use ABCD method

Region	Jet (J_1) selections	Jet (J_2) selections	Description
CR-A m ^{je}	iet < M	$m^{\rm jet} < M_{\rm threshold}$	Low-mass jets,
	$m^{s} < m_{\rm threshold}$		to validate τ_{32} shap
CR-B	$m^{\text{jet}} > M_{\text{threshold}}$	$m^{\rm jet} < M_{\rm threshold}$	Signal-like leading
	$\tau_{32} < 0.7$		to validate m^{jet}
$\operatorname{CR-}C$	$m^{\rm jet} < M_{\rm threshold}$	$m^{\text{jet}} > M_{\text{threshold}}$	Signal-like subleadi
		$\tau_{32} < 0.7$	jet, to validate $m^{\rm jet}$

$$N_{SR} = N_{CR-C} \times \left(\frac{N_{CR-B}}{N_{CR-A}}\right) \times \alpha$$

$$\alpha = \left. \left(\frac{N_{SR} / N_{CR-C}}{N_{CR-B} / N_{CR-A}} \right) \right|_{MC}$$

 α = correlation factor , evaluated from MC

• Monica D'Onofrio, GGI, Florence

Selection	Baseline Selection	SR1	SR2
Small- R ($R = 0.4$) jet $p_{\rm T}^{\rm jet}$	$p_{\mathrm{T}}^{\mathrm{jet}} > 30 \mathrm{GeV}$	$p_{\rm T}^{\rm jet} > 30~{ m GeV}$	$p_{\rm T}^{\rm jet} > 30 { m ~GeV}$
Large- R ($R = 1.0$) jet $p_{\rm T}^{\rm jet}$	$p_{\mathrm{T}}^{\mathrm{jet}} > 200 \ \mathrm{GeV}$	$p_{\mathrm{T}}^{\mathrm{jet}} > 200 \ \mathrm{GeV}$	$p_{\rm T}^{\rm jet} > 350~{ m GeV}$
Scalar sum $\sum_{i=1}^{N_{\text{jet}}^{R4}=4} p_{\text{T}}^{\text{jet}}$	(—)	$600 {\rm GeV}$	(—)
Small- R jet multiplicity	(—)	$N_{ m jet}^{R4} \ge 4$	$N_{\text{jet}}^{R4} \ge 4$
Large- R jet multiplicity	$N_{ m jet} \ge 2$	$N_{ m jet} \ge 2$	$N_{ m jet} \geq 2$
Large- R jet mass	(—)	$m_{J_1,J_2}^{\text{jet}} > 60 \text{ GeV}$	$m_{J_1,J_2}^{\text{jet}} > 140 \text{ GeV}$
Large-R jet τ_{32}	(—)	$ au_{32} < 0.7$	$ au_{32} < 0.7$

Data

MC (POWHEG+PYTHIA

Agreement with data is tested looking at correlations of 1^{st} and 2^{nd} leading jet M

2x3jets: results

- Boosted analysis sensitive for m(gluinos) up to 300 GeV
- Resolved analysis excludes m(gluinos) < 670 GeV

2x2jets

- Searches for 2jets resonances potentially sensitive also to RPV sparticle production (→jj final states)
 - In this case, search for pair-produced massive coloured scalars in four-jet
 - Background estimate using ABCD method:
 - Regions defined by m1,m2 and scattering angle, $\cos(\theta^*)$

• 'prompt' RPV SUSY:

- Leptonic RPV:
 - search for multilepton final states
 - emu resonances and continuum

• Hadronic RPV:

- search for 2x3jet resonances
- search for 2x2jet resonances (currently focusing on scalar gluons searches)

• Long-lived SUSY:

- \circ Displaced vertex
- Disappearing tracks
- $\,\circ\,$ R-hadrons and sleptons

To make it possible: ATLAS detector

Several sub-detectors with excellent time resolution, including (but not only):

Tile calorimeter

Monitored Drift Tubes (MDTs)

Resistive Plate Chambers (RPCs)

Can measure time-of-flight

Monica D'Onofrio, GGI, Florence

The ATLAS Inner Detector (ID)

• Pixel detector

- Semiconductor Tracker (SCT)
 - Good for finding vertices

- Transition Radiation
 Tracker (TRT) → a
 continuous tracker
 - Can detect kinked or disappearing tracks

Monica D'Onofrio, GGI, Florence

dE/dx measurements

Pixel detector can measure ionization energy loss *dE/dx* via charge deposited (calculated from Time-over-Threshold)

TRT can also measure <u>dE/dx</u> via Time-over-Threshold

The ATLAS Calorimeters

 Both LAr and Tile calorimeters can also measure *dE/dx* by summing energy deposits over path length.

Monica D'Onofrio, GGI, Florence

The ATLAS Muon Spectrometer

- Precision muon chambers can reconstruct "standalone" tracks
 - i.e. can find particles that did not leave tracks in Inner Detector (e.g. decay products of LLPs)
- MDTs can also measure *dE/dx* (similar principle to TRT).

Displaced vertices in ID

 Particles with lifetimes of order a few picoseconds could decay within the inner tracking detector, giving rise to displaced vertices

→ *Here*: consider **muon+jets** topology, i.e. from RPV neutralinos decay with a non-zero (but small) λ'_{211} coupling

- Presence of a muon useful for triggering and background rejection
- High track multiplicity helps vertex reconstruction

track and vertex reconstruction

- Standard ATLAS tracking is highly optimized for tracks coming from the primary interaction point (IP)
- To increase efficiency for secondary tracks

 \rightarrow re-run Silicon-seeded tracking algorithm, with looser cuts on transverse impact parameter, using "left-over" (shared) hits from Standard tracking.

- Vertex-finding algorithm based on an iterative disambiguation process
- then splits/merges/refits vertices until no tracks are shared between vertices.

Displaced vertices - selection

- Events triggered by high- p_T muon trigger, with no ID track requirement.
- Use tracks with $|d_0| > 2mm$, $p_T > 1$ GeV as input to vertexing
- Look in fiducial volume roughly corresponding to Pixel barrel
- Require at least 5 tracks in vertex, and mass > 10 GeV.
- Require high- p_T muon passing within 0.5mm of reco vertex

→ Veto vertices reconstructed in regions with high material density

Monica D'Onofrio, GGI, Florence

Displaced vertices - backgrounds

- Two sources of background vertices considered:
 - Purely random combinations of tracks inside the beampipe (where vacuum is good, but track density is high).
 - High-mass tail of distribution of real vertices from hadronic interactions with gas molecules.
 - Particularly if vertex is crossed by random (real or fake) track at large angle.

Use different datadriven method for each source: total estimate is $(4 \pm 60)^{*}10^{-3}$ vertices

Displaced vertices - results

3

• Zero vertices passing selection requirements observed in 4.4 fb⁻¹ data sample. 10^{2}

ATLAS

Data 2011

Signal MC

1.4

1.2

0.8

0.6

0.4

Displaced vertices - interpretation

- Exclusion limits set on squark pair production
 - Assume squark decays directly to LL neutralino, which decays to muon plus jets.
- Three combinations of squark and neutralino masses considered, to study the effect of LLP mass and boost on reconstruction efficiency

Sample	$m_{\tilde{q}}$	$m_{\tilde{\chi}_1^0}$	сτ
	[GeV]	[GeV]	[mm]
MH	700	494	78
ML	700	108	101
HH	1500	494	82

Disappearing tracks

- In AMSB model, could have long-lived charginos decaying to neutralino and soft pion
- Look for production processes as:

O(100) mm

$$\begin{array}{ll} pp \rightarrow \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{1}^{0} j, & pp \rightarrow \tilde{\chi}_{1}^{\pm} \tilde{\chi}_{1}^{-} j, \\ \tilde{\chi}_{1}^{\pm} \rightarrow \tilde{\chi}_{1}^{0} \pi^{\pm} & \text{branching ratio set to 100\%} \end{array}$$

Use jet from ISR to trigger on events

- Resulting final state:
 - High p_T jet + large missing ET
 - High-p_T disappearing track (or "kinked" track):
 - Isolated tracks that stop in outer TRT

Disappearing tracks - selection

• Event selection:

- missing E_T > 90GeV and ≥ 1 jet with p_T > 90GeV
- \circ Jets well separated from missing E_T direction in φ (Δφ > 1.5)
- $\circ~$ Veto events with reconstructed ele or μ candidates.

• Disappearing track candidate selection:

- Track must be isolated
- \circ have $p_T > 10GeV$,
- \circ at least 1 Pixel hit and 6 SCT hits,
- originate from primary vertex, and point to TRT barrel (but not region around $|\eta|=0$)
- Fewer than 5 hits in TRT outer module

Disappearing tracks - backgrounds

Potential background sources are:

Obtain p_T spectrum for both sources of background using data control samples

• Monica D'Onofrio, GGI, Florence

Disappearing tracks - results

- Use signal+background likelihood fit to track p_T spectrum, to test different signal hypotheses
- No significant excess found → Set limits on chargino mass and lifetime and charg-neut △M:

Stable Massive Particles (SMPs)

- SMPs predicted in SUSY several other BSM scenarios
- Stable $\rightarrow c\tau \ge$ size of detector
- **Produced** with β <1
- Within SUSY:
 - $\circ ~ \widetilde{\mathcal{U}} \text{ and } \widetilde{\chi}^{\scriptscriptstyle +}$
 - q̃/g̃ (bound states)

Colored sparticles can hadronise into long-lived bound hadronic states

R-hadrons

SMPs: how-to

- Particles with $c\tau \ge size$ of detector:
 - $_{\odot}$ If neutral and weakly interacting \rightarrow missing E_{T}
 - If charged (at any point!) or strongly interacting → can detect them directly
 - $_{\odot}$ If massive, could be produced with low velocities: B < 1
- Mass of SMPs:
- measure charged particle momentum *p* in ID and MS
- measure energy loss *dE/dx* in several subdetectors
 - For these analyses, use Pixel
 - \circ *dE/dX* is related to relativistic boost factor $\beta\gamma$
- measure time-of-flight in several sub-detectors
 - $\circ~$ For these analyses, use Tile, RPC, MDT
 - Can measure velocity β

B measurements and bkg

- Use $Z \rightarrow \mu \mu$ events to calibrate B measurements
- If B measurements from different systems are > 0.2 and internally consistent → combined in a weighted average.

Main background are high- p_T muons with mismeasured B.

- $\circ~$ Exploit fact that mis-measurements of B or By in different subdetectors are uncorrelated.
- Use data-driven method based on randomly sampling β or βγ values from CR distributions. Monica D'Onofrio, GGI, Florence
 10/23/2012

Long-lived sleptons - selection

- "Heavy muons"-like, releasing energy throughout detector
- Use single µ trigger (70-85% efficiency for GMSB slepton events):
 o Efficiency for particles arriving late at MS estimated from MC signal
- 2 μ candidates per event, $p_{T \text{ loose(tight)}} > 50(70)$ GeV.
- Either two loose candidates or one must pass tight selection.
- Bkg estimate: from iterative procedure based on muon-β PDF:
 - Assume bkg is due to measurement resolution
- Apply cut on candidate mass $m_{\beta}=p/\gamma\beta$ (depending on stau mass hypothesis: 122 465 GeV range)

Slepton search - results

Constraints in tan β vs Λ in

Direct sleptons production

GMSB scenario

- No excess above background expectation
- Constraints on stau mass in GMSB scenario

R-hadrons - selection

- Undergo interactions with detector material
 Can also change charge as it moves through detector
- If B is too low, particle might be associated with following bunch crossing by the time it gets to MS.
- Due to both these effects, efficiency for single muon trigger can be quite low.

\rightarrow use also missing E_T trigger

• Exploit possible additional jets from ISR.

Three different analyses:

- "Full detector"
- "ID only"
- "MS agnostic"

Cover the lack of knowledge of R-hadron interactions with the detector and the lifetimes for which they would not reach the calorimeters

300000000

R-hadrons - selection (2)

- All three analyses require good quality, isolated, highmomentum ID track.
- "MS agnostic":
 - missing E_T triggers
 - calorimeter-only timing measurement
 - →require ID trk pT>140 GeV
- "ID only":
 - Offline missing E_T cut
 - Tighter cuts on isolation and number of silicon hits

R-hadron searches - results

MS-agnostic and FD: final selection based on requirements on $\beta\gamma$ and β

10⁻¹⊟ 0

200

400

600

800

[GeV]

dE/dx thresholds

R-hadron searches - results

- No excess above background expectation seen in any of the three analyses
- Limits set by counting N events passing modeldependent mass cuts
- gluino R-hadrons:

R-hadron searches - results

 squark (stop & sbottom) Rhadrons:

Other searches for LL particles

Several New Physics models (well beyond SUSY) could give rise to new massive particles, with long lifetimes:

- Hidden sector interacts with SM via (heavy) Communicator particle(s)
 - light Higgs-to-LLP search:
 - look for displaced vertices at larger radii, near outer radius of hadronic calorimeter, or in the MS
 - Use specially developed trigger algorithm, and specialized tracking and vertexing, to reconstruct vertices in MS
 - **Higgs decay to hidden-sector fermions** \rightarrow decay to a (potentially long-lived) neutral hidden-sector particle γ_d and a stable hidden sector fermion γ_{d_1}
 - those escape detection
 - Decay of γ_d could give rise to collimated pairs of leptons

- Magnetic monopoles:
 - $_{\odot}$ Experimental signature \rightarrow large, localized energy deposit in EM calorimeter, associated with region of high ionization in TRT.

Conclusions

- Several SUSY models lead to hard to constrain or 'unconventional' signatures:
 - RPV multilepton or multijet scenarios
 - Long-lived particles
- Wide range of analyses, looking for many different signatures, sometimes using the detector in interesting and "non-standard" ways.
- No sign of New Physics so far....
- BUT:
 - All these analyses are being updated (and improved) with 2012 data.
 - More to come

<u>Doing our best to cover as much parameter space as possible,</u> <u>as well as and get maximum possible value out of our</u> <u>fantastic ATLAS detector</u>