Rare Kaon and D-meson decays

Giancarlo D'Ambrosio INFN-Sezione di Napoli

GGI, 29th October 2012

- Minimal Flavour violation
- Short distance dominated $K \to \pi \bar{\nu} \nu$
- $K_L \to \pi^0 e^+ e^-$, the related channels $K \to \pi \gamma \gamma$ and $K_S \to \pi^0 e^+ e^-$
- CP violation in $K \to \pi \pi \gamma$, $K \to \pi \pi e e$

- Cappiello, Cata,G.D.,Gao
- $D^0 \rightarrow h^+ h^- l^+ l^ (h^+ h^- = \pi \pi, \pi K, K \pi, K K)$ Cappiello, Cata,G.D.
- Conclusions

GGI, 29th October 2012

Flavour Problem

• the SM Yukawa structure

$$\mathcal{L}_{SM}^{Y} = \bar{Q} Y_D D H + \bar{Q} Y_U U H_c + \bar{L} Y_E E H + \text{h.c.}$$
FCNC

$$\mathcal{H}_{\Delta F=2}^{SM} \sim \frac{G_F^2 M_W^2}{16\pi^2} \left[\frac{(V_{td}^* m_t^2 V_{tb})^2}{v^4} (\bar{d}_L \gamma^\mu b_L)^2 + \frac{(V_{td}^* m_t^2 V_{ts})^2}{v^4} (\bar{d}_L \gamma^\mu s_L)^2 \right] + \text{charm}$$

• Supersymmetry must be broken

$$-\mathcal{L}_{soft} = \tilde{Q}^{\dagger} m_Q^2 \tilde{Q} + \tilde{L}^{\dagger} m_L^2 \tilde{L} + \tilde{\bar{U}} a_u \tilde{Q} H_u + \dots$$

• $m_Q^2, m_L^2, a_u, ...$ matrices in flavour space additional (to $Y_{u,d,l}$) non-trivial structures

Theory

• There is a symmetry that New Physics must obey to satisfy FCNC -constraints

$$G_F = \underbrace{U(3)_Q \otimes U(3)_U \otimes U(3)_D \otimes U(3)_L \otimes U(3)_E}_{\text{global symmetry}} + \underbrace{Y_{U,D,E}}_{Y_{U,D,E}}$$

- Technicolour Chivukula, Georgi
- susy Hall,Randall
- Gauge mediation Dine, Nelson, Shirman; Giudice, Rattazzi

$$K^+ \to \pi^+ \nu \overline{\nu}$$

Brod,CKM2010, Straub, Gorbhan

$$B(K^{+}) \sim \kappa_{+} \left[\left(\frac{\mathrm{Im}\lambda_{\mathrm{t}}}{\lambda^{5}} X_{t} \right)^{2} + \left(\frac{\mathrm{Re}\lambda_{\mathrm{c}}}{\lambda} \left(P_{c} + \delta P_{c,u} \right) + \frac{\mathrm{Re}\lambda_{\mathrm{t}}}{\lambda^{5}} X_{t} \right)^{2} \right]$$

- κ_+ from K_{l3}
- P_c : SD charm quark contribution LD $\delta P_{c,u} \sim 4 \pm 2\%$

 $(30\% \pm 2.5\% \text{ to BR})$

- $B(K^{\pm}) = (8.22 \pm 0.27 \pm 0.29) \times 10^{-11}$ second non-pert. QCD
- first error parametric (V_{cb}) ,

• E949
$$B(K^{\pm}) = (1.73^{+1.15}_{-1.05}) \times 10^{-10}$$

K_L

 $B(K_L) = (2.43 \pm 0.25 \pm 0.06) \times 10^{-11} \text{ vs}$

E391a $B(K_L) < 2.6 \times 10^{-8}$ at 90% C.L.

 K_L Model-independent bound, based on SU(2) properties dim-6 operators for $\overline{s}d\overline{\nu}\nu$ $$_{\rm Grossman-Nir}$$

$$B(K_L) \leq \frac{\tau_L}{\tau_+} \times B(K^{\pm})_{E949} \leq 1.4 \times 10^{-9}$$
 at 90%C.L.

Straub, CKM 2010 workshop (arXiv:1012.3893v2)

$K_L ightarrow \pi^0 e^+ e^-$: summary

 $Br(K_L \to \pi^0 e^+ e^-) \le 2.8 \cdot 10^{-10}$ at 90% CL KTeV

CP conserving NA48

 $Br(K_L \to \pi^0 e^+ e^-) < 3 \cdot 10^{-12}$

$$V-A \otimes V-A \Rightarrow \langle \pi^0 e^+ e^- | (\bar{s}d)_{V-A} (\bar{e}e)_{V-A} | K_L \rangle$$
 violates CP

Possible large interference: $a_S < -0.5$ or $a_S > 1$; short distance probe even for a_S large

$$|2) + 3)|^{2} = \left[15.3 \ a_{S}^{2} - 6.8 \frac{Im\lambda_{t}}{10^{-4}} \ a_{S} + 2.8 \left(\frac{Im\lambda_{t}}{10^{-4}}\right)^{2}\right] \cdot 10^{-12}$$
$$[17.7 \pm 9.5 + 4.7] \cdot 10^{-12}$$

NA48/2 - NA62 preliminary $B = (1.01 \pm 0.07) \cdot 10^{-6}$ and $\hat{c} = 2.00 \pm 0.3$

$K(p_K) \to \pi(p_1)\pi(p_2)\gamma(q)$

• Lorentz + gauge invariance \Rightarrow Electric (E) and Magnetic(M) amplitude

$$A(K \to \pi \pi \gamma) = \mathbf{F}^{\mu\nu} \left[\mathbf{E} \partial_{\mu} K \partial_{\nu} \pi + \mathbf{M} \varepsilon_{\mu\nu\rho\sigma} \partial^{\rho} K \partial^{\sigma} \pi \right]$$

• Unpolarizated photons $\frac{d^2\Gamma}{dz_1 dz_2} \sim |E|^2 + |M|^2$ $|E^{2}| = |E_{IB}|^{2} + 2Re(E_{IB}^{*}E_{D}) + |E_{D}|^{2}$ \downarrow

ow Theorem
$$\Rightarrow E_{IB} \sim rac{1}{E_{\gamma}^*} + \mathsf{c}$$
 E_D , M chiral

tests

We need FIGHT DE/IB $\sim 10^{-3}$

	IB	DE_{exp}	
$K_S \to \pi^+ \pi^- \gamma$	10^{-3}	$< 9 \cdot 10^{-5}$	E1
$K^+ \to \pi^+ \pi^0 \gamma$	10^{-4} $(\Delta I = \frac{3}{2})$	$(0.44 \pm 0.07) 10^{-5}$ PDG	M1, E1
$K_L o \pi^+ \pi^- \gamma$	$\frac{10^{-5}}{(\text{CPV})}$	$(2.92 \pm 0.07) 10^{-5}$ KTeVnew	$rac{M1}{VMD}$

CPV is only from IB K_L (also measured in $K_L \rightarrow \pi^+ \pi^- e^+ e^-$)

BUT IB suppressed in K^+ and K_L .

$$K^+ \to \pi^+ \pi^0 \gamma$$

$$A(K \to \pi \pi \gamma) = \mathbf{F}^{\mu\nu} \left[\mathbf{E} \partial_{\mu} K \partial_{\nu} \pi + \mathbf{M} \varepsilon_{\mu\nu\rho\sigma} \partial^{\rho} K \partial^{\sigma} \pi \right]$$

E1 and M1 are measured with Dalitz plot

$$\frac{\partial^2 \Gamma}{\partial T_c^* \partial W^2} = \frac{\partial^2 \Gamma_{IB}}{\partial T_c^* \partial W^2} \left[1 + \frac{m_{\pi^+}^2}{m_K} 2Re\left(\frac{E1}{eA}\right) W^2 + \frac{m_{\pi^+}^4}{m_K^2} \left(\left|\frac{E1}{eA}\right|^2 + \left|\frac{M1}{eA}\right|^2 \right) W^4 \right]$$

$$W^2 = (q \cdot p_K)(q \cdot p_+)/(m_\pi^2 m_K^2)$$

 $A = A(K^+ \to \pi^+ \pi^0)$

$K^+ \rightarrow \pi^+ \pi^0 \gamma \ W - T_c$ Dalitz plot

Integrating over T_c deviations from IB measured

CP asymmetry $K^+ \to \pi^+ \pi^0 \gamma$

Dalitz plot analysis crucial $\mathsf{SM} \leq \mathcal{O}(10^{-5}) \qquad \qquad \text{Paver et al.}$ $\mathsf{NP} \leq \mathcal{O}(10^{-4}) \qquad \qquad \text{Colangelo et al.}$

NA48/2 $< 1.5 \cdot 10^{-3}$ at 90% CL

BUT NOT in the interesting interf. kin. region (statistics)

 K_{l4} and $\pi\pi$ strong phases $\delta^l_I(s)$ Cabibbo Maksymowicz

$$\frac{G_F}{\sqrt{2}} V_{us} \ \bar{e}\gamma^{\mu} (1 - \gamma^5) \nu \ H_{\mu}(p_1, p_2, q)$$

$$H^{\mu} = F_1 p_1^{\mu} + F_2 p_2^{\mu} + F_3 \varepsilon^{\mu\nu\alpha\beta} p_{1\nu} p_{2\alpha} q_{\beta}. \qquad F_i(s) = f_i(s) e^{i\delta_0^0(s)} + \dots$$

- crucial to measure $\sin \delta \Longrightarrow$ interf F_3
- Look angular plane asymmetry

- Interference $E \quad M$ novel compared to $K_L \rightarrow \pi^+ \pi^- \gamma$
- *E M* known from $K_L \rightarrow \pi^+ \pi^- \gamma$ (IB and DE)

$$K_L \to \pi^+ \pi^- \gamma^* \to \pi^+ \pi^- e^+ e^-$$

$$\frac{d^{5}\Gamma}{dE_{\gamma}^{*}dT_{c}^{*}dq^{2}d\cos\theta_{\ell}d\phi} = \mathcal{A}_{1} + \mathcal{A}_{2}\sin^{2}\theta_{\ell} + \mathcal{A}_{3}\sin^{2}\theta_{\ell}\cos^{2}\phi + \mathcal{A}_{4}\sin2\theta_{\ell}\cos\phi + \mathcal{A}_{5}\sin\theta_{\ell}\cos\phi + \mathcal{A}_{6}\cos\theta_{\ell} + \mathcal{A}_{7}\sin\theta_{\ell}\sin\phi + \mathcal{A}_{8}\sin2\theta_{\ell}\sin\phi + \mathcal{A}_{9}\sin^{2}\theta_{\ell}\sin2\phi$$

• $\mathcal{A}_{8,9}$, *B*-*M* interf.

•
$$\frac{\Re(E_B \ M^*)}{|E_B|^2 + |M|^2}$$
 is maximal,

• $\mathcal{A}_{5,6,7}$ interf. axial leptonic current

$$K^+ \to \pi^+ \pi^0 \gamma^* \to \pi^+ \pi^0 e^+ e^-$$

Cappiello, Cata,G.D. and Gao,

• the asymm. ,
$$\frac{\Re(E_B \ M^*)}{|E_B|^2 + |M|^2}$$
, not as lucky $E_B >> M$:

•
$$B(K^+)_{IB} \sim 3.3 \times 10^{-6} \sim 50 \ B(K^+)_M$$

- Short distance info without having simultaneously K^+ and K^- , asymm. in phase space, (P-violation) interesting! No ϵ -contamination
- interesting Dalitz plots (at fixed q^2) to disentangle M from E_B
- at $q^2 = 50 \text{MeV}$ IB only 10 times larger than DE

\sim		1 .		
(1	I)	'Am	nbro	ารเด
<u> </u>	-	/		

Rare Kaon and D-meson decays

$q_c~({\sf MeV})$	$B [10^{-8}]$	B/M	B/E	B/BE	B/BM	
$2m_l$	418.27	71	4405	128	208	
55	5.62	12	118	38	44	
100	0.67	8	30	71	36	
180	0.003	12	5	-19	44	

Figure 1: Dalitz plot for the contributions to $A_P^{(S)}$ (in arbitrary units) at $q^2 = (50 \text{ MeV})^2$.

Novel CP violation contributions (compared to $A_{CP}(K^+ \to \pi^+ \pi^0 \gamma)$

$$A_{CP} = \frac{\Gamma(K^+ \to \pi^+ \pi^0 e^+ e^-) - \Gamma(K^- \to \pi^- \pi^0 e^+ e^-)}{\Gamma(K^+ \to \pi^+ \pi^0 e^+ e^-) + \Gamma(K^- \to \pi^- \pi^0 e^+ e^-)}$$

Rare B-decays: NP searches

$$\mathcal{H}_{\text{eff}} = -\frac{4 G_F}{\sqrt{2}} V_{tb} V_{tq}^* \frac{e^2}{16\pi^2} \sum_i (C_i O_i + C'_i O''_i) + \text{h.c.} ,$$

$$O_7^{(\prime)} = \frac{m_b}{e} (\bar{q}\sigma_{\mu\nu}P_{R(L)}b)F^{\mu\nu}, \quad O_8^{(\prime)} = \frac{gm_b}{e^2} (\bar{q}\sigma_{\mu\nu}T^a P_{R(L)}b)G^{\mu\nu\,a},$$

$$O_9^{(\prime)} = (\bar{q}\gamma_\mu P_{L(R)}b)(\bar{\ell}\gamma^\mu\ell), \quad O_{10}^{(\prime)} = (\bar{q}\gamma_\mu P_{L(R)}b)(\bar{\ell}\gamma^\mu\gamma_5\ell),$$

$$O_{S}^{(\prime)} = \frac{m_{b}}{m_{B_{q}}} (\bar{q} P_{R(L)} b)(\bar{\ell}\ell) , \quad O_{P}^{(\prime)} = \frac{m_{b}}{m_{B_{q}}} (\bar{q} P_{R(L)} b)(\bar{\ell}\gamma_{5}\ell) ,$$

GGI, 29th October 2012

$$B \to K^* \mu \mu; \ K^* \text{ long. polar. and } A_{FB}$$
$$\frac{d\Gamma'}{d\theta_K} = \frac{3\Gamma'}{4} \sin \theta_K \left[2F_L \cos^2 \theta_K + (1 - F_L) \sin^2 \theta_K \right]$$
$$\frac{d\Gamma'}{d\theta_\ell} = \Gamma' \left(\frac{3}{4} F_L \sin^2 \theta_\ell + \frac{3}{8} (1 - F_L) (1 + \cos^2 \theta_\ell) + A_{FB} \cos \theta_\ell \right) \sin \theta_\ell$$

CP violation in **D**-decays

$$a_{CP} \equiv \frac{\Gamma(D^0 \to f) - \Gamma(\bar{D^0} \to f)}{\Gamma(D^0 \to f) + \Gamma(\bar{D^0} \to f)}$$

 $\Delta a_{CP} \equiv a_{CP}^{KK} - a_{CP}^{\pi\pi}$

$$\Delta a_{CP} = (-0.68 \pm 0.15)\%$$

 $4.3\sigma~{
m 's}$ from 0 (SM)

SM explanation still possible NP Operators

Isidori, J.F.K, Ligeti Perez Franco, Mishima, Silvestrini

Alternative channels $D o X\gamma$, $D o Xe^+e^-$, $D o V\gamma$ Delaunay et al, Isidori Kamenik

$$D^0
ightarrow h^+ h^- l^+ l^- \quad (h^+ h^- = \pi \pi, \pi K, K \pi, K K)$$
 Cappiello, Cata,G.D.

- Previous literature only order of magnitude estimate Biigi, Paul
- Motivated by LHCb workshop; they are asking for a prediction
- We establish the SM prediction (IB,DE). Exploratory work: short distance and NP require more work

$$D^0 \rightarrow h^+ h^- l^+ l^- \quad (h^+ h^- = \pi \pi, \pi K, K \pi, K K) \qquad \qquad {\rm Cappiello, \ Cata, G.D.}$$

- IB $\Gamma(D^0 \to h^+ h^-)$ from expts; similar to $K^+ \to \pi^+ \pi^0 e^+ e^-$
- DE determined from $D^0 \to V V \to V \gamma^*$

DE: form factor generated from $D \rightarrow VV$

$$\frac{e}{q^2} \ \bar{l}\gamma^{\mu}l \ H_{\mu}(p_1, p_2, q)$$

$$H^{\mu} = F_1 p_1^{\mu} + F_2 p_2^{\mu} + F_3 \varepsilon^{\mu\nu\alpha\beta} p_{1\nu} p_{2\alpha} q_{\beta}.$$

- general ff then VMD + Factorization Bauer,Stech,Wirbel
- We use D_{l4} data from Focus; CKM workshop: treatment OK! Babar much more precise

 m_{ll} and m_{hh} are given in GeV. Dimuon bremss strongly suppressed

Branchings

Decay mode	Bremss	(E)	(M)
$D^0 \to K^- \pi^+ e^+ e^-$	$9.9 \cdot 10^{-6}$	$6.2 \cdot 10^{-6}$	$4.8 \cdot 10^{-7}$
$D^0 \to \pi^+\pi^- e^+ e^-$	$5.3 \cdot 10^{-7}$	$1.3 \cdot 10^{-6}$	$1.3 \cdot 10^{-7}$
$D^0 \to K^+ K^- e^+ e^-$	$5.4 \cdot 10^{-7}$	$1.1 \cdot 10^{-7}$	$5.0 \cdot 10^{-9}$
$D^0 \to K^+ \pi^- e^+ e^-$	$3.7 \cdot 10^{-8}$	$1.7 \cdot 10^{-8}$	$1.3 \cdot 10^{-9}$
$D^0 \to K^- \pi^+ \mu^+ \mu^-$	$8.6 \cdot 10^{-8}$	$6.2 \cdot 10^{-6}$	$4.8 \cdot 10^{-7}$
$D^0 \to \pi^+ \pi^- \mu^+ \mu^-$	$5.6 \cdot 10^{-9}$	$1.3 \cdot 10^{-6}$	$1.3 \cdot 10^{-7}$
$D^0 \to K^+ K^- \mu^+ \mu^-$	$3.3 \cdot 10^{-9}$	$1.1 \cdot 10^{-7}$	$5.0 \cdot 10^{-9}$
$D^0 \to K^+ \pi^- \mu^+ \mu^-$	$3.3 \cdot 10^{-10}$	$1.7 \cdot 10^{-8}$	$1.3 \cdot 10^{-9}$

 Table 1: Long-distance contributions to the branching ratio for the different decay modes.

E-M interference; $A_{\phi} = \langle \operatorname{sgn}(s_{\phi}c_{\phi}) \rangle$

 A_{ϕ} -normalized distr. (solid) vs LD bkg (dashed)

Q_{10} and Forward-Backward asymmetry

Conclusions

- Precision physics required in all directions
- Alternative channels