Two Higgs at LEP, Tevatron and the LHC?

Genevieve Bélanger LAPTH, Annecy-le-Vieux

GB, U. Ellwanger, J.Gunion, Y.Jiang, S. Kraml, J. Schwarz (1210.1976) GB, U. Ellwanger, J.Gunion, Y.Jiang, S. Kraml (1208.4952)

Firenze, November 2012

Introduction

- Higgs discovery at LHC raises many questions
 - Is the new boson the SM Higgs
 - Deviations from SM couplings?
 - A probe of BSM
 - Is it lightest Higgs in MSSM? fine tuning-problem
 - Are there more light Higgses?
- Here consider two possibilities
 - 125GeV Higgs is the heavy Higgs another one at 100GeV
 - LHC/Tevatron might not have seen the same Higgs: 125-135GeV
- No sign (yet) of supersymmetry at LHC
- Supersymmetry offers a good DM candidate, strong evidence for DM motivation for beyond standard model

Outline

- Higgs at LHC and LEP
- Higgs in the NMSSM
- Two light Higgses – implications for LHC, DM ...
- Two Higgses at Tevatron and LHC

Higgs at LHC

- July 4th 2012: ATLAS and CMS reported a signal consistent with a Higgs boson with mass
- $m_h = 125.3 + -0.4 + -0.5 \text{GeV} (\text{CMS})$
- =126.0+/-0.4+/-0.4GeV (ATLAS)
- Such a mass can be reached in MSSM require large mixing in stop sector, fine-tuning
- Also measure the signal strength in various production/ decay channels : give indication whether the new particle is a SM Higgs
- Results not precise enough yet : indications that signal strength is larger than expected in two-photon mode
- If this result is confirmed : precious information/constraints on physics beyond the standard model, e.g. challenge for MSSM

CMS - Higgs results

ATLAS - Higgs results

- Also has an excess in two-photon mode
- Results for signal strength relative SM combining all production modes

lundi 19 novembre 2012

LEP results

- Small excess in e⁺e⁻-> Zbb (~2sigma) at LEP with M_h~98GeV.
- How can it be consistent with bound M_h>114 GeV? coupling to ZZ must be much weaker than in SM, only 0.1-0.25 SM
- Could that be a second Higgs h'?
- h' can mix with h and shift its properties, e.g. mixing with h' can suppress hbb, Br(h-γγ) can be modified because total width is suppressed

7

 $- Br(h \rightarrow \gamma \gamma) \sim \Gamma(h \rightarrow \gamma \gamma)/\Gamma(h \rightarrow bb)$

SUSY Higgs at LEP

- Characteristics of the LEP 'signal' at 100GeV
 - e.g. Drees (hep-ph/0502075) the light Higgs of MSSM with suppressed couplings to ZZ (MSSM in non-decoupling limit)
- Is the LHC Higgs the lightest Higgs?
 - This question was addressed in framework of MSSM
 - Heinemeyer et al, 1112.3026
 - Hagiwara et al, 1207.0802
 - Drees, 1210.6507
- As an example of a model that can be consistent with both LEP and LHC observations (including enhanced two-photon) here will consider NMSSM

NMSSM

• MSSM with additional singlet superfield

$$W_{\text{NMSSM}} = W_F + \lambda \hat{H}_u \cdot \hat{H}_d \hat{S} + \frac{1}{3} \kappa \hat{S}^3,$$

$$V_{\text{soft}}^{\text{NMSSM}} = \tilde{m}_u^2 |H_u|^2 + \tilde{m}_d^2 |H_d|^2 + \tilde{m}_S^2 |S|^2 + (A_\lambda \lambda S H_u \cdot H_d + \frac{A_\kappa}{3} \kappa S^3 + h.c.).$$

- μ parameter is related to vev of singlet $\mu = \lambda s$ - naturally of order of weak scale
- Higgs sector : 3 CP-even, 2 CP-odd + charged Higgs
 - much richer phenomenology than in MSSM
 - one singlet CP-even scalar + one singlet CP-odd scalar
- Also extra neutralino -> singlino
 - can impact dark matter properties

- largest increase is for low values of tanβ
- Easier to reach 125GeV even without very large stop corrections (Ellwanger et al JHEP1109.105; Hall et al 1112.2703)
- Fine tuning:

$$\begin{split} m_h^2 &\approx m_Z^2 \cos^2 2\beta + \frac{3}{(4\pi)^2} \frac{m_t^4}{v^2} \left[\ln \frac{m_{\tilde{t}}^2}{m_t^2} + \frac{X_t^2}{m_{\tilde{t}}^2} \left(1 - \frac{X_t^2}{12m_{\tilde{t}}^2} \right) \right].\\ M_Z^2 &\simeq -2\mu^2 + \frac{2(m_{H_d}^2 - \tan^2\beta \, m_{H_u}^2)}{\tan^2\beta - 1} \,.\\ \delta m_{H_u}^2 &= -\frac{3y_t^2}{8\pi^2} \left(m_{Q_3}^2 + m_{u_3}^2 + |A_t|^2 \right) \ln \left(\frac{\Lambda}{m_{\tilde{t}}} \right) \end{split}$$

- in NMSSM with lambda~1 stop mass/mixing not so large
- fine-tuning reduced in CNMSSM (Ellwanger et al 1107.2472)
- Doublet singlet mixing the lightest Higgs scalar can be very light escape LEP bounds

- Possible to increase branching ratios in two photons.
 - Ellwanger, 1012.1201,1112.3548
 - Does not require light sparticles

$$R^{h_i}_{gg}(X) \equiv \frac{\Gamma(h_i \to gg) \ \mathrm{BR}(h_i \to X)}{\Gamma(h_{\mathrm{SM}} \to gg) \ \mathrm{BR}(h_{\mathrm{SM}} \to X)}, \quad R^{h_i}_{\mathrm{VBF}}(X) \equiv \frac{\Gamma(h_i \to WW) \ \mathrm{BR}(h_i \to X)}{\Gamma(h_{\mathrm{SM}} \to WW) \ \mathrm{BR}(h_{\mathrm{SM}} \to X)}$$

• $R_{gg}(\gamma\gamma)_{>1}$ for $m_H=125$ GeV, when λ large (determines singlet-doublet mixing), tan β small

• $R_{gg\gamma\gamma}$ >1- associated with small μ , light charginos because singlet mass light

$$m_S^2 = \kappa \mu / \lambda (A_\kappa + 4\kappa \mu / \lambda)$$

- Signal strength for Higgs in different channels
- Complete independent set of \mathbb{R}^{h} $R^{h}_{gg}(WW), R^{h}_{gg}(bb), R^{h}_{gg}(\gamma\gamma), R^{h}_{VBF}(WW), R^{h}_{VBF}(bb), R^{h}_{VBF}(\gamma\gamma)$.
- Note for LEP : R_{VBF}(bb)

- Can one explain $M_{h1} \sim 100 + M_{h2} \sim 125$ with $R_{gg\gamma\gamma} > 1$ in NMSSM?
- Framework: NMSSM with semi-unified GUT scale soft SUSY breaking

- m_{1/2},m₀,A₀, m²_{Hu},m²_{Hd},m_S, A_{λ},A_{κ},tan β

• Take into account Higgs constraints in NMSSMTools + B physics, DM (WMAP upper bound and Xenon100), g-2

– Gunion, Jiang, Kraml, arXiv:1207.1545

• Note that g-2 does not explain discrepancy with SM

Higgs signal strength

• Two Higgses at 98GeV+125GeV

- For discovery of light Higgs in bb channel need to increase current LHC sensitivity (R~1) by a factor 4-10 -> higher luminosity LHC run
- h₁ in two-photon very small R~0.02

Dark matter issues

• 5 neutralinos

- LSP either higgsino or singlino
 - higgsino annihilate into W pairs -Ωh² ~0.1 because just below threshold
 - Singlino component annihilate via singlet Higgs exchange

Direct detection

- Searches for DM scattering with nuclei in large detectors - best limits from Xenon100 (2012)
- DM direct detection: from just below
 Xenon to quite a bit suppressed

$W^{-,Z,\overline{t},\overline{b},l^{-}...}$ dir $\widehat{\gamma},\nu,e^{+},\overline{p}$ detection

- Annihilation of pairs of DM into SM particles : decay products observed
- FermiLAT : Photons from Dwarf Spheroidal Galaxies

$$Q(x, \mathbf{E}) = \frac{\langle \sigma v \rangle}{2} \left(\frac{\rho(\mathbf{x})}{m_{\chi}}\right)^2 \frac{dN}{dE} \quad \text{ion}$$

light DM

 $<\sigma v>= 3 \times 10^{-26} \mathrm{cm}^3/\mathrm{sec}$

- Gamma-ray line at 130GeV
 - Weniger, arXiv:1204.2797

$$\langle \sigma v \rangle (\widetilde{\chi}_1^0 \widetilde{\chi}_1^0 \to \gamma \gamma) \sim 10^{-27} \mathrm{cm}^3/\mathrm{sec}$$

around $m_h \sim 90 \text{GeV}$. It is for these low masses that the signing also lowest[11, 13] and therefore for this low $\tan \beta$ this would characterized by the lightest SUSY Higgs through its two-

• In general NMSSM (no GUT scale unification) gamma-ray line possible (Das, Ellwanger, Mitropoulos, 1206.2639)

$$\langle \sigma v \rangle (\widetilde{\chi}_1^0 \widetilde{\chi}_1^0 \to a_{1.6}^{0.8} \to \gamma \gamma)$$

- If $2m_{LSP} \sim m_A$ (extremely fine tuned) can have resonance enhancement at $v \sim 0.001$ by: dominant contribution: W loop, top lo $_{300}$ $_{400}$ $_{500}$ $_{500}$ $_{600}$ $_{700}$ $_{800}$
 - $_{v\sigma(v)}$ If h<u>WW</u> coupling not modified, hyp not mu ($s-m_A^2)^2 + \Gamma_A^2 m_A^2$) is a postible device the second sec
 - $possible large contributions from susy 2 in (the (stop), chargino, state) <math>4m_{\chi}^{2}$ colored particles also
- Branchingthysecan beamodified because tota • In semi-unified NMSSM with an a state of the branching hyperbolic total suppressed and limits from Fermi dSPh S casily satisfied $(h \rightarrow \gamma\gamma)$ $R_{\gamma\gamma} = \frac{1}{BR^{49}(h \rightarrow \gamma\gamma)}$

For instance for $M_A = 200 \text{GeV}$ and $\tan \beta = 2.5$, the ratio of

- Apart from possible signals in future ton-scale direct detection experiments, for the moment no constraints on this scenario from DM observables other than relic density
- How to probe further this scenario?

How to probe further this scenario?

- LHC:
 - $-h_1$ (bb) with high luminosity
 - $-a_1$: light but mostly singlet low rates
 - a₂ : mainly doublet better prospect (no dedicate study yet)
 - $gg \rightarrow a_2 \rightarrow tt$ (~0.01pb for mass 500 GeV)
 - or $a_2 \rightarrow a_1 h_1 \rightarrow 4b$
 - $gg \rightarrow a_{2, h_{3}} \rightarrow \tau \tau$
 - Current limit at 200GeV ~8
 - need high luminosity

- Charged Higgs
 - 20% branching ratio into h_1W
 - possible detection of h₁ with high luminosity
- Higgses from neutralino decays
 - several channels have BR $\sim 10\%$ for decay into h_1

 $BR(\chi_3^0 \rightarrow X)$

... at future colliders

- ILC
 - Large rate for Zh₁
 - In some cases can detect all 5 neutral Higgses

lundi 19 novembre 2012

... at future colliders(2)

- Photon collider
 - h₂ SM-like coupling to two-photons : large cross section can measure also bb/WW partial widths
 - $-h_{1, a_1}$ suppressed because singlet but important contribution from light chargino loop

- Possibility of having a Higgs at 98 GeV hidden in LEP data fits in the NMSSM with distinctive signatures
- LHC can look for it in some standard search channels, and remains to be seen how well new channel can be exploited to search for h_{1,a_1}
- Note that in NMSSM light singlet can have any mass

Two Higgses at LHC and Tevatron

• Could it be that Tevatron and LHC have seen two Higgs bosons?

- At Tevatron enhanced signal in VH,H->bb between 110-140GeV best value, M_H~135GeV,
- ττ mode: CMS has deficit at 125GeV for VBF-tag mode, excess at 132 GeV
- Can al these small deviations be compatible with two lightest Higgses in NMSSM?

Signal strength for 125 GeV

 $R_1^{\gamma\gamma}(ggF) \simeq 1.66 \pm 0.36$. $R_1^{ZZ^{(*)}}(ggF) \simeq 1.02 \pm 0.38$.

Signal strength for 135 GeV

 $R_2^{\gamma\gamma}(ggF) \simeq 0.45 \pm 0.3 \qquad R_2^{ZZ^{(*)}}(ggF) \lesssim 0.2$ $R_2^{\tau\tau}(VBF) < 1.81 \qquad R_{135}^{bb}(VH) \simeq 3.53 + 1.26 - 1.16$

Sample point

- 'Fit' CMS+Tevatron Higgs signal
- Here ignore DM requirement

λ	0.617	$\mu_{ ext{eff}}$	143
κ	0.253	A_{λ}	164
$\tan\beta$	1.77	A_{κ}	337
M_{H_1}	125	M_{A_1}	95
M_{H_2}	136	M_{A_2}	282
M_{H_3}	289	$M_{H^{\pm}}$	272

Higgs	$S_{i,d}$	$S_{i,u}$	$S_{i,s}$	c_{D_i}	c_{U_i}	c_{V_i}	c_{g_i}	c_{γ_i}
H_1	-0.24	-0.67	0.70	-0.48	-0.77	-0.70	0.77	0.85
H_2	0.54	0.51	0.67	1.09	0.58	0.71	0.54	0.66
H_3	0.81	-0.54	-0.24	1.64	-0.62	-0.07	0.65	0.28

Higgs	$R^{\gamma\gamma}(ggF)$	$R^{\gamma\gamma}(VBF)$	$R^{VV^{(*)}}(ggF)$	$R^{VV^{(*)}}(VH)$	$R^{bb}(VH)$	$R^{\tau\tau}(ggF)$
H_1	1.30	1.09	0.90	0.75	0.36	0.42
H_2	0.16	0.27	0.18	0.31	0.74	0.43
H_3	0.58	0.01	0.04	0.004	0.23	19.6

• At Tevatron - poor mass resolution in $bb + production H_1 > H_2$

 $R^{bb}_{\text{eff}}(VH) \simeq R^{bb}_2(VH) + 1.3 \times R^{bb}_1(VH) \sim 1.3$

- Below central value of Tevatron
- More data at LHC ($\gamma\gamma$) will confirm/rule out this possibility
- Search for H₃ look at decays into light Higgs/ neutralino pairs

CONCLUSION

- Higgs searches at LHC could still provide exciting news
- Important to look for light Higgses in particular mainly singlet Higgs at 100GeV
- NMSSM is extension of MSSM that provide a Higgs 125 GeV with possibly enhanced di-photon rate and some extra light Higgs state