

Update on Higgs HCP results

B. Di Micco CERN Università degli Studi di Roma Tre

On behalf of the ATLAS collaboration

GGI - Galileo Galilei Institute for Theoretical Physics

15/11/12 09:18

Introduction

Phys.Lett. B716 (2012) 1-29

First observations of a new particle in the search for the Standard Model Higgs boson at the LHC

- Higgs discovered this summer
- Observation in the most sensitive channels $\gamma\gamma$, ZZ, WW
- 6σ observed, 5σ expected.

What we know today.

- It is a non spin I boson (observed in $\gamma\gamma$);
- It couples to both W and Z (needed to explain the EWSB);
- It's production cross section is consistent with the SM ggF process (at least at order 1), so it most likely couples to top.
- Does it couple to other fermions (bb) and leptons? SM lepton sector looks a bit triky, one single Higgs is just economic, neutrino masses imply several order of magnitude difference in the couplings

HCP results.

- dedicated to search in TT and bb;
- mass measurment;
- coupling measurement;
- first attempt to provide cross section measurements unfolded from the theoretical error

ZZ, YY

- Missing from HCP;
 - don't worry, they are still there...
 - High statistics is now probing the detector calibration at % level, we need hard work to understand calibrations without a reference point different than the Higgs itself..
 - Possible update in December...

4

H→bb

Higgs production and decay.

- Very challenging jet backgrounds
 - 7-8 orders of magnitude greater
- Utilise associated production V=W,Z and tt
 - Clean leptonic decay signatures for trigger and offline analysis to reject background events
 - This talk will focus the new VH results. Recent ttH analysis results (7 TeV) are mentioned at the end.

- The search for H → bb is important to understand if new particle is SM
- Most prevalent SM Higgs decay
 - > At m_H ~125 GeV: BR(H→bb) ~ 58%
 - Direct constraint on coupling to fermions
- Input to measuring VH & tH couplings

Analysis selection.

Search in ggF and VBF impossible due to the huge QCD multi-jet background Associate production allows better background rejection through isolated leptons and high missing E_T (reducing QCD)

- Search for Higgs decaying to pair of b-quarks
 - Associated production to reduce backgrounds
- The analysis is divided into three channels
 - \succ Two (IIbb), one (Ivbb) or zero (vvbb),) (I=e,µ)
- Cuts common to all channels
 - > Two or three jets: 1^{st} jet $p_T > 45$ GeV other jets $p_T > 20$ GeV
 - Two b-tags: 70% efficiency per tag (mistag ~1%)

Two lepton

One lepton

ZH → Ilbb

- No additional leptons
- $E_t^{miss} < 60 \text{ GeV}$
- 83 < m_z < 99 GeV
- Single & di-lepton trigger

- WH \rightarrow Ivbb
- No additional leptons
- E_t^{miss} > 25 GeV
- 40 < M_T^W < 120 GeV
- Single lepton trigger

Zero lepton

$ZH \rightarrow vvbb$

- No leptons
- E_t^{miss} > 120 GeV
- E^{miss} trigger

Analysis improvements

- Data used: 4.7fb⁻¹ \sqrt{s} = 7 TeV (2011) & 13fb⁻¹ \sqrt{s} = 8 TeV (2012)
 - S/B increases with higher pT^{bb};
 - \bullet The analysis is catgorised as a function of $p_T{}^V$
- 16 signal categories with cuts optimised for each
 - > 0-lepton: E_T^{miss} [120-160] [160-200] [>200] GeV x (2 jets or 3 jets)
 - ➤ 1 & 2 lepton: p_T^{W/Z} [0-50],[50,100],[100-150],[150-200] [>200] GeV
- Some other improvements
 - > Muon energy (p_T > 4 GeV) added for b-jets (increased resolution)
 - > Apply ttbar based b-tagging calibration (reduces systematic at high p_T)

contamination, used to correct p_T^V

Flavour fit

Events with 0, I and 2 b tag jets have different flavour contributions. This allows to fit the normalisation of the several components.

10

Flavours and signal fit

The second		$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8 \text{ TeV}$	
-lavour maximum likelinood fit	Z + c	1.99 ± 0.51	0.71 ± 0.23	
One scale factor applied for each bkg	Z+ light	0.91 ± 0.12	0.98 ± 0.11	TeV
> Determine V+light and V+c scale fa $\frac{Z+c}{Z+c}$	W + c	1.04 ± 0.23	1.04 ± 0.24).23
> Z+c factor changes due to MC treat $\frac{Z+c}{Z+\log}$ $\frac{Z+1}{W+}$	W+ light	1.03 ± 0.08	1.01 ± 0.14).11
Improved understanding of bkg V p7 $\frac{W+c}{W+1}$	light 1.03 ±	$0.08 \mid 1.01 \pm 0.$	$14 \xrightarrow{-1.07}{101}$	-3.24
Correction from the pre-tag sample a	I		<u> </u>	0.14

- ➢ W + jets and Z + jets: ~5-10% correction required
- Top background: ~15% correction required

both top and V+jets p_T^V distribution.

Flavour fit produces excellent MC/data agreement in 12 data regions

2. Binned profile likelihood fit to 16 signal regions & top control regions $\overline{\underline{sv}}$

W+b, Z+b and top bkg are floated in fit

Rescaling factors from the fit

 $L(\mu,\theta)$ fit to signal strength μ (= σ/σ_{SM})

> Nuisance parameters θ for systematics

Systematics uncertainties

Main experimental uncertainties

- b-tagging and jet energy dominate
- > Jets: components (7 JES, 1 p_T^{Reco} , resol.)
- \succ E_T^{miss} scale and resolution
- > bTagging light, c & 6 p_T efficiency bins
- Top, W, Z background modelling
- Lepton/ Multijet / diboson / Luminosity
- MC statistics

Main theoretical uncertainties

- ➢ W/Z+jet m_{bb} and V pT
- ➢ BR(H→bb) @ mH=125 GeV
- Signal cross-sections include pT-dependent electroweak correction factors
- Single top/top normalisation
- ➢ W+c, Z+c

	Uncertainty [%] 01	lepton	11	epton	21	epton	S	
	l Uncertainty [%] Uncertainty [%]	0 lepto	on on	1 lept	on ton	$\frac{2}{2}$ lep	tons ptons	:
	b-tagging l c-tagging	6.5		6 .4	0	3.	5.9	-
] light tagging	273		2^{6}_{22}	4	$\begin{vmatrix} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 $	886	
] Jet/Pile up/Emiss Jet/Pile up/Emiss	20^{1}		7_{-0}^{2}	2	54	48 5 4	
	Lepton Lepton	0.0		2.1	1	1.	8 ⁴	
	Top modelling	2.7		4.1 4	1		50	
	W modelling	г. Л.8		5:4	4		0-) ₇ 0	
	¹ Z modelling	2.8		0.1	1		, 1 ₅ 7	
	1 Dibesen	0.8		206	3		65	
	Multietsity	9.6		32.6	6	39	<u>60</u>	
	Lamineaity	8.5		3.6	6	6	86	
	Statistical	<u> </u>		15	6	10	<u>≯</u> .6 ™	
_		25		1.)	· ·	14	:
				WH		$\frac{2}{ZH}$	<u> </u>	
	tiging tainty [%] 8.9	900le	ptoi	8.8	1 lep	80m	2 lep	tons
	$t/Pile-up/E_T^{miss}$ 19	2Ħ	W	H	W	A .2	Z	H
	b-tagging	8.8	9	$\begin{bmatrix} 2 \\ 2 \\ 3 \\ 3 \end{bmatrix}$	8.	8.8	8.	6
t	$H p_T$ -dependence 5.3	8.1	2	7.6	6.	5.0	4.	2
	Henebry PDF 3.5	9.9		9 .5	2.	<u>h.5</u>	1.	8
	Htheory & BIR 1.6	ð.4	3	0.4	3.	31.6	3.	3
	talisticply-dependented	51.8	8	4.1	7.0	2.6	5.	0
	untringoshiy PDF 3.6	3.9	3	36	3.	\$3.6	_ 3.	5
	^{100}H theory scale 24	12.6	0.	40	0.4	415	<u> </u>	6
	Statistical	4.9	1	8	4.	1	2.	6
	Luminosity	3.6	3.	.6	3.0	6	3.	6
	Total	24	3	4	16	5	1.	3

mbb distributions 2-leptons

mbb distributions I-lepton

mbb distributions 0-leptons

Cut flow in each category.

	0-lej	pton, 2 je	t	0-lep	oton, 3 je	t			1-lepton	l				2-leptor	1	
Bin		-	$E_{\mathrm{T}}^{\mathrm{miss}}$	[GeV]					$p_{\rm T}^W$ [GeV]				$p_{\rm T}^{Z}[{\rm GeV}]$]	
	120-160	160-200	>200	120-160	160-200	>200	0-50	50-100	100-150	150-200	> 200	0-50	50-100	100-150	150-200	>200
ZH	2.9	2.1	2.6	0.8	0.8	1.1	0.3	0.4	0.1	0.0	0.0	4.7	6.8	4.0	1.5	1.4
WH	0.8	0.4	0.4	0.2	0.2	0.2	10.6	12.9	7.5	3.6	3.6	0.0	0.0	0.0	0.0	0.0
Тор	89	25	8	92	25	10	1440	2276	1120	147	43	230	310	84	3	0
W + c,light	30	10	5	9	3	2	580	585	209	36	17	0	0	0	0	0
W + b	35	13	13	8	3	2	770	778	288	77	64	0	0	0	0	0
Z + c,light	35	14	14	8	5	8	17	17	4	1	0	201	230	91	12	15
Z + b	144	51	43	41	22	16	50	63	13	5	1	1010	1180	469	75	51
Diboson	23	11	10	4	4	3	53	59	23	13	7	37	39	16	6	4
Multijet	3	1	1	1	Ι	0	890	522	68	14	3	12	3	0	0	0
Total Bkg.	361	127	98	164	63	42	3810	4310	1730	297	138	1500	1770	665	97	72
	± 29	± 11	± 12	± 13	± 8	± 5	± 150	± 86	± 90	± 27	±14	± 90	± 110	± 47	± 12	±12
Data	342	131	90	175	65	32	3821	4301	1697	297	132	1485	1773	657	100	69

Complex analysis, discriminant power not obvious from the cut flow, a standard candle is needed to understand if everything is under control...

- WZ & ZZ production with $Z \rightarrow bb$ similar signature, but 5 times larger cross-section
- Perform a separate fit to search for it and to validate the analysis procedure
 - Profile likelihood fit performed (with full systematics)
 - All backgrounds (except diboson) subtracted
 - > Uses full $p_T^{W,Z}$ range, done individually for each channel & year (see backup)
- Clear excess is observed in data at expected mass (all lepton channels combined)
- Results: $\sigma/\sigma_{SM} = \mu_D = 1.09 \pm 0.20$ (stat) ± 0.22 (syst). The significance is 4.0 σ

CL_s limit results.

 $\mathcal{L}(\mu, \theta)$

 $q_{\mu} = 2\ln(\mathcal{L}(\mu, \hat{\theta}_{\mu}) / \mathcal{L}(\hat{\mu}, \hat{\theta}))$

Poisson term constructed for each category, with a scale factor μ to apply to the MC predicted yield.

Test statisitics built to evaluate upper limit, using asymptotic approximation.

- Observed & expected CL_S limit on normalised signal strength as function of Higgs Boson mass (0,1,2 lepton combined)
- Observed (expected) values at m_H = 125 GeV
 - Limits 1.8 (3.3) & 3.4 (2.5) times the Standard Model
 - ▶ p₀ values: 0.97 (0.26) & 0.17 (0.20)
 - $\succ \sigma / \sigma_{SM}$: $\mu = -2.7 \pm 1.1$ (stat.) ± 1.1 (syst.) & $\mu = 1.0 \pm 0.9$ (stat.) ± 1.1 (syst.)

ttH analysis.

From quarks to leptons $H \rightarrow \tau \tau$ search

H→TT searches

• Three Higgs production processes are considered in this analysis.

- Separate analysis for three different ττ decay mode.
 - lep-lep = II4v : (ee)+eµ+µµ
 - lep-had = $I\tau_{had}3v : e\tau_{had} + \mu\tau_{had}$
 - had-had = $\tau_{had} \tau_{had} \nu \nu \cdot (\tau_{had} \tau_{had})$
- Combined all three channels to search for $H \rightarrow \tau \tau$ signature.

Analysis strategy (8 TeV)

6 Single lepton Category

Quite similar categorization for 2011. 2011 and 2012 data were treated as separate categ.

Di-tau mass reconstruction.

• $m_{\tau\tau}$ can be reconstructed using some approximations (due to the missing neutrino informations).

• for high p_T taus we can assume that the neutrino direction is along the visible decay product, it allows to reconstruct the m_{TT} (collinear approximation)

 better resoultion can be achieved "guessing" the 3D angle between the visibe decay product of the τ and the "sum" of neutrino momenta;

• the $\Delta \theta_{3D}$ distribution is taken from simulation, and the $\Delta \theta_{3D}$ comes from a likelihood maximisation linked to the event topology and the $\Delta \theta_{3D}$ pdf assuming the τ decay kinematic

Event by Event estimator of true di-τ mass likelihood. Full reconstruction of event kinematics.

Missing Mass Calculator(MMC)

• Solve τ , E_T^{miss} in $\Delta \phi(\tau_{vis}, v)$ parameter space using $\Delta \theta_{3D}(\tau_{vis}, v)$ template from simulation as PDF.

Selection $T_{lep}T_{lep}$

2-jet VBF	Boosted	2-jet VH	1-jet				
Pre-selection: exactly two leptons with opposite charges							
30	GeV < $m_{\ell\ell}$ < 75 GeV ($30 \text{ GeV} < m_{\ell\ell} < 100 \text{ GeV})$					
for same-fi	avor (different-flavor) le	eptons, and $p_{T,\ell 1} + p_{T,\ell 2} > 3$	5 GeV				
At least	one jet with $p_T > 40 \text{ G}$	eV ($ JVF_{jet} > 0.5$ if $ \eta_{jet} < 2$	2.4)				
$E_{\rm T}^{\rm miss} > 40~{ m Ge}$	$eV(E_{\rm T}^{\rm miss} > 20 \text{ GeV})$ for	r same-flavor (different-flavo	r) leptons				
	$H_{\rm T}^{\rm miss}$ > 40 GeV for	same-flavor leptons					
	0.1 < 2	$x_{1,2} < 1$					
$0.5 < \Delta \phi_{\ell\ell} < 2.5$							
$p_{\pi} = 25 \text{ GeV} (\text{IVF})$	excluding 2 jet VBF	$p_{\pi,n} > 25 \text{ GeV}$ (IVF)	excluding 2-jet VBF,				
$p_{T,j2} > 25 \text{ GeV} (J \text{ V} \text{ I})$	excluding 2-jet v DI	$p_{T,j2} > 25 \text{ GeV} (J \text{ V} T)$	Boosted and 2-jet VH				
$\Delta \eta_{jj} > 3.0$	$p_{T,\tau\tau} > 100 {\rm GeV}$	excluding Boosted	$m_{\tau\tau j} > 225 \text{ GeV}$				
$m_{jj} > 400 { m GeV}$	<i>b</i> -tagged jet veto	$\Delta \eta_{jj} < 2.0$	<i>b</i> -tagged jet veto				
<i>b</i> -tagged jet veto		$30 \text{ GeV} < m_{jj} < 160 \text{ GeV}$					
Lepton centrality and CJV		<i>b</i> -tagged jet veto	_				
0-jet (7 TeV only)							
Pre-selection: exactly two leptons with opposite charges							
Different-flavor leptons with 30 GeV < $m_{\ell\ell}$ < 100 GeV and $p_{T,\ell 1} + p_{T,\ell 2}$ > 35 GeV							
$\Delta \phi_{\ell\ell} > 2.5$							
	<i>b</i> -tagged jet veto						

Selection $T_{lep}T_{had}$

7 Te	eV	8 TeV		
VBF Category	Boosted Category	VBF Category	Boosted Category	
$\triangleright p_{\mathrm{T}}^{\tau_{\mathrm{had-vis}}} > 30 \mathrm{GeV}$	_	$\triangleright p_{\mathrm{T}}^{\tau_{\mathrm{had-vis}}} > 30 \mathrm{GeV}$	$\triangleright p_{\mathrm{T}}^{\tau_{\mathrm{had-vis}}} > 30 \mathrm{GeV}$	
$\triangleright E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	$\triangleright E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	$\triangleright E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	$\triangleright E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	
$\triangleright \geq 2$ jets	▶ $p_{\rm T}^{\rm H}$ > 100 GeV	$\triangleright \geq 2$ jets	▷ $p_{\rm T}^{\rm H} > 100 {\rm GeV}$	
▶ $p_{\rm T}^{\ j1}, p_{\rm T}^{\ j2} > 40 \text{ GeV}$	▶ $0 < x_1 < 1$	▷ $p_{\rm T}$ j1 > 40, $p_{\rm T}$ j2 >30 GeV	▷ $0 < x_1 < 1$	
$\triangleright \Delta \eta_{jj} > 3.0$	▶ 0.2 < <i>x</i> ₂ < 1.2	$\triangleright \Delta \eta_{jj} > 3.0$	▶ 0.2 < <i>x</i> ₂ < 1.2	
▶ <i>m_{jj}</i> > 500 GeV	▹ Fails VBF	▷ m_{jj} > 500 GeV	▹ Fails VBF	
▶ centrality req.	-	▷ centrality req.	-	
$\triangleright \eta_{j1} \times \eta_{j2} < 0$	-	$\triangleright \eta_{j1} \times \eta_{j2} < 0$	-	
▶ $p_{\rm T}$ ^{Total} < 40 GeV	-	$\triangleright p_{\rm T}^{\rm Total} < 30 {\rm GeV}$	-	
_	-	$\triangleright p_{\rm T}^{\ell} > 26 {\rm GeV}$	-	
• <i>m</i> _T <50 GeV	• <i>m</i> _T <50 GeV	• $m_{\rm T}$ <50 GeV	• $m_{\rm T}$ <50 GeV	
• $\Delta(\Delta R) < 0.8$	• $\Delta(\Delta R) < 0.8$	• $\Delta(\Delta R) < 0.8$	• $\Delta(\Delta R) < 0.8$	
• $\sum \Delta \phi < 3.5$	• $\sum \Delta \phi < 1.6$	• $\sum \Delta \phi < 2.8$	-	
_	_	• <i>b</i> -tagged jet veto	• <i>b</i> -tagged jet veto	
1 Jet Category	0 Jet Category	1 Jet Category	0 Jet Category	
▶ \geq 1 jet, $p_{\rm T}$ >25 GeV	$\triangleright 0$ jets $p_{\rm T} > 25$ GeV	▷ \geq 1 jet, $p_{\rm T}$ >30 GeV	\triangleright 0 jets $p_{\rm T}$ >30 GeV	
$\triangleright E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	$\triangleright E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	$\triangleright E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	$\triangleright E_{\rm T}^{\rm miss} > 20 {\rm GeV}$	
▶ Fails VBF, Boosted	▶ Fails Boosted	▶ Fails VBF, Boosted	▶ Fails Boosted	
• <i>m</i> _T <50 GeV	• <i>m</i> _T <30 GeV	• $m_{\rm T}$ <50 GeV	• <i>m</i> _T <30 GeV	
• $\Delta(\Delta R) < 0.6$	• $\Delta(\Delta R) < 0.5$	• $\Delta(\Delta R) < 0.6$	• $\Delta(\Delta R) < 0.5$	
• $\sum \Delta \phi < 3.5$	• $\sum \Delta \phi < 3.5$	• $\sum \Delta \phi < 3.5$	• $\sum \Delta \phi < 3.5$	
_	• $p_{\mathrm{T}}^{\ell} - p_{\mathrm{T}}^{\tau} < 0$	_	$\bullet p_{\rm T}^{\ell} - p_{\rm T}^{\tau} < 0$	

$$x_{1,2} = \frac{|p_{\text{vis}1,2}|}{|(p_{\text{vis}1,2} + p_{\text{mis}1,2})|} .$$

I leptonic visible momentum fraction in the collinear approx.2 hadronic visible momentum fraction in the collinear approx.

Selection Thad Thad

L •

Cut	Description							
Preselection	No muons or electrons in the event							
	Exactly 2 medium τ_{had} candidates matched with the trigger objects							
	At least 1 of the τ_{had} candidates identified as tight							
	Both τ_{had} candidates are from the same primary vertex							
	Leading $\tau_{had-vis}$ $p_T > 40$ GeV and sub-leading $\tau_{had-vis}$ $p_T > 25$ GeV, $ \eta < 2.5$							
	τ_{had} candidates have opposite charge and 1- or 3-tracks							
	$0.8 < \Delta R(\tau_1, \tau_2) < 2.8$							
	$\Delta\eta(\tau,\tau) < 1.5$							
	if $E_{\rm T}^{\rm miss}$ vector is not pointing in between the two taus, min $\left\{\Delta\phi(E_{\rm T}^{\rm miss},\tau_1),\Delta\phi(E_{\rm T}^{\rm miss},\tau_2)\right\} < 0.2\pi$							
VBF	At least two tagging jets, j_1 , j_2 , leading tagging jet with $p_T > 50$ GeV							
	$\eta_{j1} \times \eta_{j2} < 0, \Delta \eta_{jj} > 2.6$ and invariant mass $m_{jj} > 350$ GeV							
	$\min(\eta_{j1}, \eta_{j2}) < \eta_{\tau 1}, \eta_{\tau 2} < \max(\eta_{j1}, \eta_{j2})$							
	$E_{\rm T}^{\rm miss} > 20 { m GeV}$							
Boosted	Fails VBF							
	At least one tagging jet with $p_T > 70(50)$ GeV in the 8(7) TeV dataset							
	$\Delta R(\tau_1,\tau_2) < 1.9$							
	$E_{\rm T}^{\rm miss} > 20 { m GeV}$							
	if $E_{\rm T}^{\rm miss}$ vector is not pointing in between the two taus, $\min\left\{\Delta\phi(E_{\rm T}^{\rm miss},\tau_1),\Delta\phi(E_{\rm T}^{\rm miss},\tau_2)\right\} < 0.1\pi$.							

Background estimation.

- Opposite sign tau decay products are required.
- High Missing ET and low MT cuts are added.
- $Z \rightarrow \tau \tau$ estimated by embedding+MC Even's / 10 Ge/ μτ_{had} H+1-jei 500 -- used $Z \rightarrow \mu\mu$ data and replace μ by full simulated τ , - Data so that all the objects except tau decay product are 0 x H(125)→ττ 400 Z→ττ (OS-SS) obtained by real data. Others (OS-SS) Same Sign Data -- Used high statistics MC for VBF channel with 300 ///// Bkg. uncert. correction by data. $L dt = 4.6 \text{ fb}^{-1}$ 200 √s = 7 TeV ATLAS Preliminary $Z \rightarrow ee/\mu\mu$ + jets, Top, di-boson Estimated by MC 100

QCD and W+Jets – Estimated from Same Sign events(lephad) -- Template fit by loose selection (lep-lep,hadhad)

with correction.

100 150 200 250 300 350

MMC mass m_{rt} [GeV]

$Z \rightarrow \tau \tau$ validation

Higgs Signal is on the right hand side tail of Z. Need carful varidation of the $Z \rightarrow \tau \tau$ shape.

Non-VBF channel : Embedding

- → Checked with MC sample
- \rightarrow Assigned systematics by varying condition.

VBF channel : High statistics MC

- \rightarrow Jet kinematics are validated by Zee/µµ data.
- \rightarrow Reweighted kinematics for MC mismodeling.

ggF categories.

- Boost category is the best sensitivity in non-VBF category.
- 0/1 jet non-boost events also used for limit calculation.

VBF categories.

- Highest sensitivity channels are VBF category.
- Limited statistics but Good S/B ratio.

Systematic uncertainties

- Systematic uncertainties for $Z \rightarrow \tau \tau$ background and Signal.
- Dominant systematics are Embedding, Tau Energy Scale and Jet Energy Scale. Both Shape and Normalization variation are taken into account.

Uncertainty	$H \rightarrow \tau_{\rm lep} \tau_{\rm lep}$	$H \rightarrow \tau_{\rm lep} \tau_{\rm had}$	$H \rightarrow \tau_{\rm had} \tau_{\rm had}$				
$Z \rightarrow \tau^+ \tau^-$							
Embedding	1-4% (S)	2–4% (S)	1–4% (S)				
Tau Energy Scale	_	4–15% (S)	3–8% (S)				
Tau Identification	_	4–5%	1–2%				
Trigger Efficiency	2–4%	2–5%	2–4%				
Normalisation	5%	4% (non-VBF), 16% (VBF)	9–10%				
	Signal						
Jet Energy Scale	1-5% (S)	3–9% (S)	2–4% (S)				
Tau Energy Scale	_	2–9% (S)	4-6% (S)				
Tau Identification	_	4–5%	10%				
Theory	8–28%	18–23%	3–20%				
Trigger Efficiency	small	small	5%				

Production mode categories CL_s

p₀ and process dependence

Still not enough sensitive to probe SM prediction, but it provides good constraint in VBF and ggF plane

$H \rightarrow WW$

H→WW

- H → WW → ℓvℓv is one of the more abundant Higgs final states at 125 GeV
- Provides best current probe of HWW coupling
- In July: 2.8 σ evidence for signal using 7 and 8 TeV data (expected 2.3 σ)
- Today: an updated measurement of the H → WW production rate with **13 fb**⁻¹ of 8 TeV data

H→WW→IvIv Search

- Signature: ℓℓ₽_⊤
 - Major backgrounds are continuum WW, top production, W+jets with a fake lepton, Z/ γ * + fake E_{τ} , W $\gamma^{(*)}$
- We use only the "different flavor" channel $e\nu\mu\nu$ to avoid the contamination of $Z/\gamma^* \to ee,\,\mu\mu$
 - Pileup \rightarrow bad \mathbb{P}_{T} resolution for Z/ γ^* rejection
- Higgs decays kinematically different from backgrounds, allows definition of signal-rich and control regions
 - Most signal-rich region blinded until control regions understood

blind region of 93.75 < m_T < 125 GeV after all other cuts

14 Nov 2012

Event selection.

 $\mathbb{E}_T^{rel} = \mathbb{E}_T \sin\min(\Delta\phi_m, \pi/2)$

 $\Delta \phi_m \equiv \min \Delta \phi(\ell \text{ or } j, \not\!\!E_T)$

- opposite sign eµ candidates, M(ll) > 10 GeV
- $\mathbb{E}_{\tau}^{rel} > 25 \text{ GeV to remove } Z \rightarrow \tau \tau$
- ≤ 1 jet to remove top quark background

Higgs candidate selection 0 jet

- Expect leptons to preferentially have small separation
 - high total momentum, small azimuthal separation, small invariant mass

Z+jets

200

150

– Require \mathbb{F}_{τ} in opposite hemisphere from dilepton system

14 Nov 2012

Events / 10 GeV

400

300

200

100

0

50

500 ATLAS Preliminary

 $\sqrt{s} = 8 \text{ TeV}, \int \text{Ldt} = 13.0 \text{ fb}^{-1}$

 $\stackrel{-}{-}$ H \rightarrow WW^(*) \rightarrow ev μ v/ μ vev (0 jets)

100

I jet selection

- jet cannot be b-tagged
- $Z \rightarrow \tau \tau$ veto using collinear approximation
- Require small m(ℓℓ) and Δφ(ℓ,ℓ) as in o jet bin

14 Nov 2012

Top Control Region.

Reverse b-jet veto in 1 jet bin. Nice agreement out of the box.

WW normalisation.

 Normalization differences to MC evident, taken into account in the signal yield fit

Top contribution normalized via top CR
 worse absolute normalisation with Powheg+Pytha8 than MC@NLO+Herwig (ICHEP)
 but better description of m₁₁ and Δφ₁₁ variables used for extrapolaton

Peter Onyisi

Same sign validation.

- Checks W+jets and non-WW diboson processes (in particular W $\gamma^{(\ast)}$)

Fit model

- Fit the m_T spectrum of the signal region and the normalizations of (blue) control regions
 - systematics included as nuisance parameters

Signal region plots

14 Nov 2012

Peter Onvisi

A picture to the signal.

14 Nov 2012

Peter Onyisi

Results

m₁ = 125 GeV

signal strength (ratio to SM rate) $\mu = 1.5 \pm 0.6$

(much more stable than μ , μ still usefull for 2011+2012 combination and channel combinations)

Systematics

Systematic uncertainty on the signal and background yield.

Systematic uncertainty on μ .

Source (0-jet)	Signal (%)	Bkg. (%)		1	
Inclusive ggF signal ren./fact. scale	13	-	Source	Upward uncertainty (%)	Downward uncertainty (%)
1-jet incl. ggF signal ren./fact. scale	10	-	Statistical uncertainty	+23	
PDF model (signal only)	8	-	Statistical uncertainty S_{i}^{i} and S_{i}^{i} and S_{i}^{i}	+23	-22
QCD scale (acceptance)	4	-	Signal yield $(\sigma \cdot B)$	+14	-9
Jet energy scale and resolution	4	2	Signal acceptance	+9	-6
W+jets take factor	-	5	WW normalisation, theory	+20	-20
w w theoretical model	-		Other backgrounds, theory	+9	-9
Source (1-jet)	Signal (%)	Bkg. (%)	W+jets fake rate	+11	-12
1-jet incl. ggF signal ren./fact. scale	26	-	Experimental + bkg subtraction	+14	-11
2-jet incl. ggF signal ren./fact. scale	15	-	MC statistics	+8	-8
Parton shower/ U.E. model (signal only)	10	-	Total uncertainty	±/1	
<i>b</i> -tagging efficiency	- 7	11		++1	-30
OCD scale (signal only)		- 2			
Let energy scale and resolution	4				
W+iets fake factor		° ≝ ⊽⊤ 1∩⁵ –		(n)	
WW theoretical model	cal		LAS Preliminary $(0/1 \text{ isote})$	- f 6	
		$10^3 = -$	$\rightarrow ev\mu v/\mu vev (0/1] els)$		<u>Η→₩</u> ₩\`´→eνμν/μνeν (0
		10 [°] ∎ √s =	WW backg	round extrapolistion	Incertaint fees TeV: JLdt = 13 fb ⁻¹
		10	Obs. Exp. Sca	le PDFs PS/UA	Modelling $2 \ln \lambda(\mu) < 1$
		1	01-2-5	70 13 .7% 4 .5%	3.5% -2 ln $\lambda(\mu) < 1$
		10^{-2}	WW = 2.0	$\frac{1}{29}$ 00 1.5 0	
		10 ⁻³	α_{WW} 4%	$0 \neq 2.9\% + 4.5\%$	3.0%
		10 ⁻⁴			and the second s
		10 ⁻⁵			and the second s
		10 ⁻⁶	<u> </u>		
The result is	svste	amat	ically dominated	we need to	
	5/50				T20 126 1 30 135 140
stratogy for Mariand					
		SU d	Legy IOI THORIOID	•••	

m_H - μ correlation.

Why we don't combine with 2011?

- I. We discovered it, why should we combine? :-)
- 2. We changed the WW modeling, this affects μ_{2012} by ~ 0.5 σ_{sys} (reanalysis 2011 with the same modelling)
- 3. We realised that the high statistics in the CR was constraining systematics (this is a not desired effect of the profiling, 2012 analysis has been corrected by reducing the numbers of CR, we need to do the same for 2011)
- 4. The profiling doesn't impact so much μ (0.01 effect in 2012) but artificially reduces the systematics, also when combining with 2011.

Combination

ATLAS combination.

- □ H→bb, ττ and WW* analyses have been updated using 13fb⁻¹ data collected at 8 TeV in 2012.
- □ Higgs decays to $\gamma\gamma$, ZZ* and WW* are established, but H → bb, $\tau\tau$ still lack of statistics to draw definitive conclusion.

Best-fit signal strength: $\mu = 1.3 \pm 0.3$

Best—fit Higgs mass m_H : 126.0 ± 0.4 (stat) ± 0.4 (syst) GeV

VBF/ggF prod mode.

→ The signal strength ratios cancel the branching ratios of different channels so that the results can be compared directly.

Measuremet of Higgs couplings

□ Assumptions (LHC HXSWG, arXiv:1209.0040):

- -The signal observed in different channels originate from a single narrow resonance with mass near 125 GeV.
- The width of the assumed Higgs boson near 125 GeV is neglected, hence the signal cross section can be decomposed in the following for all channels:

$$(\sigma \cdot \mathrm{BR}) (ii \to \mathrm{H} \to ff) = \frac{\sigma_{ii} \cdot \Gamma_{ff}}{\Gamma_{\mathrm{H}}}$$

Only modifications of couplings strengths are taken into account, while the tensor structure of the couplings is assumed to be same as in the SM prediction (CP-even scalar). [ATLAS-CONF-2012-127]

Higgs coupling structure

Depending on the benchmark model, κ_g , κ_γ and κ_H are either functions of other couplings or independent parameters.

 $\Box \text{ Notation for } g \rightarrow H \rightarrow \gamma \gamma$

Higgs couplings..

■No BSM particle contributions to gg→H, H→ $\gamma\gamma$ and the total width. Two coupling scale factors κ_F for fermions and κ_V for bosons,

$$\kappa_{F} = \kappa_{t} = \kappa_{b} = 1$$
68% CL intervals
$$\kappa_{V} = \kappa_{W} = \kappa_{Z}$$

$$\kappa_{F} \in [-1.0, -0.7] \cup [0.7, 1.3]$$

$$\kappa_{V} \in [0.9, 1.0] \cup [1.1, 1.3]$$

Same as above, but without the assumption on the total width
 λ_{FV}=κ_F/κ_V, κ_{VV}=κ_V·κ_V/κ_H
 68% CL intervals

$$\begin{array}{ll} \lambda_{FV} & \in & [-1.1, -0.7] \cup [0.6, 1.1] \\ \kappa_{VV} = 1.2^{+0.3}_{-0.6} \end{array}$$

Probing custodial symmetry.

Similar to previous benchmark model, but κ_V → κ_W and κ_Z, so there are three free parameters κ_W, κ_Z and κ_F. Identical couplings scale factors for the W and Z are required within tight bounds by SU(2) custodial symmetry and ρ parameter.
 The VBF process is parametrized with κ_W and κ_Z according to the Standard Model.

Probing potential BSM contrbutions

□ For H→ $\gamma\gamma$ and gg→H vertices, effective scale factors κ_{γ} and κ_{g} are introduced (two free parameters). Non-SM particles can contribute to H→ $\gamma\gamma$ and gg→H loops or in new final states.

Conclusions...

- Stay tuned for ZZ and $\gamma\gamma$
- Moriond we will hopefully see something in the fermionic channels
- The combination of 2011+2012 WW, plus reorganisation of the analysis (we need to reduce the impact of the systematics)
- The search time has gone, now we are in the measurement phase... (plus VBF and fermionic channel observation)