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What is String Phenomenology!?




Particle Physics & Cosmology

® Deep connection, e.g., inflation, dark matter,; neutrinos...

® Both study the universe in the extreme conditions.




The Standard Model(s)
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Three Generations of Matter

Hierarchy problem Flatness, horizon, anisotropy
SUSY? Inflation? Dark Energy?




The Quiver Diagram

String Theory
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The Quiver Diagram
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Neutrinos, cosmic rays, ...
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The Quiver Diagram
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Are we ready for
String Phenomenology!?




The beginning of the unexpected ...




String Theory as a model of hadrons
done
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String theory began as a phenomenological model.

Massless spin 2 particle: graviton!




Lessons

|deas driven by phenomenological questions.

Need explicit models (c.f. QFT versus the
Standard Model).

Fixing problems that plague the theory often
leads to new and far-reaching ideas:

Extra spin-2 particle = graviton
Tachyon =) SUSY

Works better than expected.




Meet the Quintuplets




The Heterotic Supremacy

@ e [ype IIA/IIB: Difficult to implement non-

LN

Abelian gauge groups and chiral fermions. In

fact, a no-go theorem for constructing the
Standard Model.

® Heterotic E8xES8: naturally contains GUTss
(E6, SO(10), SU(5),...) and hidden sectors.

® T[ype | and Heterotic SO(32): two other
siblings that are largely ignored ...




String Phenomenology Begins
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1985




Calabi-Yau Compactification

6D Compact space
M

N=1 SUSY
* Calabi-Yau

Our 4D

® | ow energy physics (spectrum, couplings,...)
determined by topology & geometry of M.

® Building realistic heterotic string models: a
huge industry beginning in the mid 80s.




The Score Card

e E6,5SO(10),SU(5) GUTs & MSSM-like vacua.
e Rank < 22,
® Constraints on gauge groups & matter reps.
® Gauge unification.
® Exotic matter: Schellekens’ theorem.
Internal consistencies + phenomenological constraints
== 3 very tight system!

However, two nagging problems ...




Moduli Problem
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In 4D, this freedom implies moduli: scalar fields @;

V(gi) =0 Vo,




Moduli Problem

Loss of predictivity

e Different < ¢; > give inequivalent physics
(e.g., couplings, particle masses, ...)

Phenomenological problems

® Existence of light scalars:
- Equivalence principle violations.
- Time varying «.
- Energy in ¢, can ruin cosmology.




SUSY Breaking

® Assumptions:

- Non-perturbative effects (e.g., gaugino and/or
matter condensate) break SUSY.

- The same NP effects also lift all moduli.

- SUSY scale ~TeV (hierarchy problem).

e But ...

SUSY breaking effects on SM and moduli lifting
potential not computed in a controlled stringy way.




1995




“When you come to a fork in the road, take it.”
Yogi Berra




Return of the Lost Family




The Post-1995 Picture

heterotic on CY3

compactifications with flux

Horava—Witten

intersecting branes

M on G2

large extra dimensions Fon CY4

Worth taking a fresh look at these long-standing problems.




All (new) roads lead to branes

“Open string”| “Closed string”

N o

Duality between geometry and branes:

M-theory on G2, F-theory on CY4, Horava-Witten, ...
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Brane World
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Open Strings
® Pioneering work (before 1995) ‘\

® Recent review articles

Formalism: ‘\

Model Building:




Flux Compactification

® Just like particle couples to gauge field via

/ A
worldline

® Dp-brane couples to p+1 index gauge fields:

Apia
/Worldvolume .

® Thus pt+2-form field strengths:

Fppo = dAp




Flux Compactification

in M, we can turn on

€

® For each p-cyc

® Analogous to turning on a B-field

Energy ~ 8% / (E2 + B2)




Moduli Stabilization

® The energy cost of a given flux depends on
detailed geometry of M:

an,ng,...,nk (¢z)

where nj:/ F j=1,.... k.
>
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e Lift moduli ®; !




Type |IB Flux Vacua

® Superpotential induced by (G5 = F5 — 7Hs3

W= [ ane
M

® Stabilizes the dilaton and complex structure
moduli (shape) of M.

® Additional mechanism stabilizes the Kahler
moduli (size).




Flux Induced SIUSY
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Flux Induced SIUSY
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No soft terms




Flux Induced SIUSY
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Flux Induced SIUSY
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Non-trivial soft terms
Explicit calculations.




Can the Standard Model fit into
this picture?




Chiral D-brane Models

Two known ways to obtain chiral fermions:

® Branes at singularities




® |ntersecting branes

U(N)
2 (N,M) )
/ u(M)

TypellA
Number of generations given by:

[I1,] o [II;] = topological




® |ntersecting branes/magnetized D-branes
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Number of generations given by:

[I1,] o [II;] = topological




The Recipe

® Pick your M, and the associated sLAG 11,

® Chiral spectrum:

Representation Multiplicity
Ha % (T‘Ja O Ty =+ TO6 O 7Ta)
jun” = (7}, o Ty — To6 © )
(Daa Db) Tgq O Ty
(O, Op) Tl o,
® Tadpole cancellation (Gauss’s law):

> Ny (I, +1I1,) — 4o = 0

e K-theory constraints




K-theory Constraints

® D-brane charges are classified by K-theory.

® Discrete charges invisible in SUGRA, forbid
certain non-BPS branes to decay.

® Uncanceled K-theory charges can manifest
as Witten anomalies on D-brane probes.

® |mplications to the statistics of string vacua.

® Direct construction of such discrete charged
branes.




Toward Realistic D-brane Models

® Many toroidal orbifold/orientifold models.
® MSSM flux vacua.

® D-branes in general Calabi-Yau (less is
known about supersymmetric 11,).

® Gepner orientifolds




How about Cosmology!?




Inflation as a probe of stringy physics

e

® Almost scale invariant, Gaussian primordial
spectrum predicted by inflation is in good
agreement with data.

® A tantalizing upper bound on the energy
density during inflation:

V ~ Mayr ~ (101°GeV)?* e, H ~ 10"GeV




Planckian Microscope!
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Brane Inflation
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Brane Inflation
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Brane Inflation

Stringy signatures, e.g., gravitational waves ...
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Tye et al
Copeland, Myers, Polchinski




Brane Inflation
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2 Are the branes moving slowly enough?
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Warping by Fluxes




Warped Throats

® Fluxes back-react on the metric:

IR UV

“warped deformed conifold”




Warped Throats

DBI inflation
5= [atov=g (101 - 105 - Vo) - 1))

Casual speed limit: 2 < f(¢)~1  warp factor




Warped Throats
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® Cosmic strings spatially separated from SM
branes: not susceptible to breakage.

® Reheating via tunneling is efficient due to KK
versus graviton wavefunctions.




Non-Gaussianities

arge 3-point correlations that are potentially observable.
oreover, distinctive shape.

—54 < fnr < 114 (WMAP ~nL ~ 5 (PLANCK

Slow-roll ~ €




Have we gone too far!




The Landscape
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Number of vacua

.

i

i

(|

g

-

:

:

ed 101"

naively can exce

# vacua ~ NF

N?and k depend on the topology of M, roughly O(100).




Sightseeing in the Landscape

® These are candidate vacua (very few known
examples where all moduli are stabilized.)

® The open string landscape (relevant to
phenomenology!) is less understood.

® Realistic models are rare (QFT vs the
Standard Model).




Landscape: what is it good for?
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The Wave Function?

In the context of string landscape




Summary

® String phenomenology ~ 20+ year old baby
--not fully accomplished but no longer naive.

® TJoo early for string phenomenology? Part of
the SM was developed before gauge theories
were shown to be renormalizable.

° (e.g., Calabi-Yau, G2, mirror
symmetry, duality, topology change, ...).




Summary

® Fountain of new ideas/scenarios for particle
physics and cosmology:

SUSY: high/low, split, ...

Extra dimensions: large/small, warped/unwarped,
universal/brane world.

AdS/CFT

brane inflation, DBI inflation, ...
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Thank you




