Thanksgiving Day Anyons Liam Fitzpatrick Stanford University 1205.6816 ALF, Kachru, Kaplan, Katz, Wacker

Outline

- 1) Anyons Review
- 2) EFT and the Fermi Surface
- 3) Coupling a Fermion to a massless z=2 ($\omega \sim k^2$) scalar
- 4) A Semi-classical Theory of Anyons
- 5) A Quantum Theory of Anyons
- 6) Relation to Lifshitz-Chern-Simons theory

7) Conclusions

Statistics of Particles

The statistics of particles is defined by the change in their wavefunction when we move them around each other

Usually, this just generates the

permutation group: represented by + or -

Statistics of Particles

In 2+1 dimensions, particle interchange generates the Braid Group, with richer structure

Leinaas, Myrheim, 1977

Anyons

This is related to non-trivial phases that can be generated when one particle encircles another

$$\psi(r_1, r_2) \rightarrow e^{i\vartheta_a} \psi(r_1, r_2)$$
Boson
 $\vartheta_a = 0$
Fermion
 $\vartheta_a = \pi$

Anyons in Field Theory

Anyons have a well-known elegant implementation in QFT through Chern-Simons theory

$$\mathcal{L} = kA \wedge dA + A^{\mu}j_{\mu}$$

Anyons in Field Theory

$$B = \frac{1}{k} \psi^{\dagger} \psi$$

The result is that after particle interchange, there is an anyonic phase (think of Aharonov-Bohm):

 $\vartheta_a = \frac{n}{k}$ Relevant for fractional quantum hall effect

Wilzek, Zee

Another Theory of Anyons?

The standard Chern-Simons description is very elegant, but it is not clear that it is the only way to make a theory of anyons. Can we build others?

Controllable IR Modifications

One way of understanding new phases of materials is as the modified IR behavior of a Fermi surface due to interactions In the IR, normal Fermi liquid theory can break down when the interaction becomes strong

 $\delta^{d} (\delta k_{3} + \delta k_{4} + \delta \ell_{3} + \delta \ell_{4}) \\ \sim s^{0} \qquad \sim s^{1}$

antipodal points have a marginal interaction Polchinski '92

One of the simplest things one can try is coupling the Fermi surface to a massless boson through a Yukawa

But not controlled in IR even at large N! $\mathcal{L} = \psi_j^{\dagger} (\partial_t - i\partial_x - \partial_y^2) \psi_j + \frac{e}{\sqrt{N}} \phi \psi_j^{\dagger} \psi_j + (\partial \phi)^2$

One-loop renormalization changes ϕ scaling

But not controlled in IR even at large N!

Substituting back into fermion 1-loop propagator gives bizarre ψ scaling

$$\sim \frac{i}{N} \operatorname{sgn}(k_0) |k_0|^{2/3} + ik_0 + k_x + k_y^2$$
S.S. Lee, '09

As shown by Lee, and Metlitski and Sachdev, the Large N expansion breaks down (due to IR divergences in 1/N subleading terms)

Fermi Surface and Scalars

General goal: explore systems of bosons coupled to fermions with only marginal interactions so they are calculable over a wide of scales. Look for interesting IR phases.

Simple boson generalization: z=2

$$\mathcal{L} \supset \dot{\phi}^2 - \kappa (\nabla^2 \phi)^2$$

Arises in physical critical points where $(\nabla \phi)^2$ term has essentially be tuned to zero

Coupling to a Gapless Scalar

For simplicity, we will couple this to a free nonrelativistic fermion (not to a Fermi surface).

$$\mathcal{L} \supset -\psi^{\dagger} i \partial_t \psi - \gamma |\vec{\nabla} \psi|^2$$

How shall we couple these? The z=2 scalar has a

large symmetry group

$$\begin{aligned} \mathcal{L} \supset \dot{\phi}^2 - \kappa (\nabla^2 \phi)^2 \\ \phi \rightarrow \phi + ct \\ \phi \rightarrow \phi - v(x, y) \end{aligned}$$
for any harmonic function $\nabla^2 v = 0$

What interaction can we add that preserves these symmetries?

$$\begin{array}{l} \phi \to \phi + ct \\ \phi \to \phi - v(x, y) \end{array} \quad \nabla^2 v = 0 \end{array}$$

We can add

$$g(
abla^2\phi)\psi^\dagger\psi$$

Fermi Surface and EFT $\begin{array}{l} \phi \to \phi + ct \\ \phi \to \phi - v(x, y) \end{array} \quad \nabla^2 v = 0 \end{array}$ Make ψ transform like $\psi \to e^{i\alpha u(x,y)}\psi$ with $\nabla_i u = \epsilon_{ij} \nabla^j v$ Define Covariant derivative $\mathcal{D}^{i} = \nabla^{i} + i\alpha\epsilon^{ij}\nabla_{j}\phi$ $\mathcal{D}^i\psi\to e^{i\alpha u(x,y)}\mathcal{D}^i\psi$ So we can add $-\gamma |\mathcal{D}\psi|^2$

Scaling

$$\mathcal{L} \supset \gamma |(\nabla_i + i\alpha\epsilon_{ij}\nabla^j\phi)\psi|^2 + g(\nabla^2\phi)\psi^{\dagger}\psi$$

This theory is (classically) scale-invariant under the following scaling

 $dt \to s^{-1}dt, \ dx \to s^{-\frac{1}{2}}dx, \ \phi \to s^0\phi, \ \psi \to s^{\frac{1}{2}}\psi$

All couplings are marginal, so weakly coupled theory remains under control over a wide range of scales

Symmetry

 $\mathcal{L} \supset \gamma |(\nabla_i + i\alpha \epsilon_{ij} \nabla^j \phi) \psi|^2 + g(\nabla^2 \phi) \psi^{\dagger} \psi$

We can group the space-dependent shift boson and fermion shift symmetry together:

$$f(x,y) = u(x,y) + iv(x,y)$$

$$f(z = x + iy) \leftrightarrow \nabla_i u = \epsilon_{ij} \nabla^j v$$

"Cauchy-Riemann (gauge) Symmetry"

Semi-classical Anyons

The theory has the global symmetry:

$$\psi \to e^{i\alpha u}\psi$$

constant u

$$\begin{array}{ll} \psi \text{ number} & \psi \text{ momentum} \\ \swarrow & \swarrow & \swarrow \\ \text{Noether current: } J_N^0 = \psi^{\dagger}\psi & J_N^i = -i\gamma\psi^{\dagger}\overleftrightarrow^i\psi \end{array}$$

Semi-classical Anyons

Each ψ will source the ϕ field

$$\ddot{\phi} + \nabla^4 \phi = g \nabla^2 J_N^0 - \alpha \epsilon_{ij} \nabla^i J_N^j$$

Semi-Classical Anyons

Take a static density of ψ

$$\rho = \psi^{\dagger}\psi = J_N^0$$

Each
$$\psi$$
 will source the ϕ field $\nabla^2 \phi(x) = g \rho(x)$

 ψ particles produce a long range potential

$$\phi(\vec{x}) = \frac{g}{2\pi} \log |\vec{x}|$$

Semi-Classical Anyons Now, let's look at the phase as we move one $\sqrt{2}$ around another The ψ one-particle action contains $iS_{\psi} \supset -i\alpha \int d\tau \left(\vec{v} \times \vec{\nabla} \phi \right)$

Moving a ψ in a loop generates the phase

$$i\vartheta_a = -i\alpha \oint_{\partial M} d\theta (\hat{n} \times \vec{\nabla}\phi)$$

Semi-Classical Anyons

$$i\vartheta_a = -i\alpha \oint_{\partial M} d\theta (\hat{n} \times \vec{\nabla}\phi)$$

Using Stokes Theorem and the equations of motion, we find that if one ψ encircles another, it picks up an anyonic phase

$$\vartheta_a = \alpha \int_M d^2 x \nabla^2 \phi = g \alpha \int_M d^2 x \rho(x)$$

 $= g \alpha$ Anyons!

Quantum Anyons

The phase is generated through interaction with a dynamical, massless boson One might worry that the quantum effects of this degree of freedom significantly change the physics In particular, how do the marginal couplings (and in turn, ϑ_{a}) run in this theory?

Feynman rules are simple:

The RG is greatly simplified by the fact that the fermion is non-relativistic:

Consequently - no ϕ propagator renormalization

 $\mathcal{L} \supset \gamma |(\nabla_i + i\alpha\epsilon_{ij}\nabla^j\phi)\psi|^2 + g(\nabla^2\phi)\psi^{\dagger}\psi$

The "Cauchy-Riemann" symmetry protects the gauge coupling α

(Since ϕ has no wavefunction renormalization)

$$\mathcal{L} \supset \gamma |(\nabla_i + i\alpha\epsilon_{ij}\nabla^j\phi)\psi|^2 + g(\nabla^2\phi)\psi^{\dagger}\psi$$

Furthermore, g is protected by combination of symmetry and dynamics: Global symmetry: $\phi \rightarrow \phi - v$ constant v

Noether current: $J_{\phi}^{i} = (-\nabla^{i}\nabla^{2}\phi - \alpha\epsilon^{ij}J_{N}^{j} + g\nabla^{i}J_{N}^{0})$

Thursday, November 29, 12

(We also checked explicitly that Thus g and α do not run! the 1-loop beta functions vanish) $\vartheta_a = q\alpha$ so phase is RG-invariant! However, the "mass" $\gamma = \frac{1}{2m_{\psi}}$ term runs $\xrightarrow{k} \xrightarrow{k} \beta_{\gamma} > 0$ so mass runs to be heavy in IR

Relation to Lifshitz-Chern-Simon Theory

Our theory has a massless, dynamical scalar mode, and cannot be related to Chern-Simons theory

However, it *can* be related to a critical point of z=2 Lifshitz-Chern-Simons Theory via a non-local map

$$\mathcal{L}_{\text{Lif}-\text{CS}} = -\psi^{\dagger} i D_t \psi - \Gamma |D_i \psi|^2 + \kappa A \wedge dA$$
$$+ E^i (\dot{A}_i - \nabla_i A_0) - c^2 k_0^2 E^2 - \frac{c^2}{2} (\nabla_i E_j)^2 - \frac{f^2}{2} (\nabla \times A)^2$$

Relation to Lifshitz-Chern-Simon Theory $\mathcal{L}_{\text{Lif}-\text{CS}} \supset -c^2 k_0^2 E^2$

Relation to Lifshitz-Chern-Simon Theory $\mathcal{L}_{\text{Lif}-\text{CS}} \supset -c^2 k_0^2 E^2 = 0$ our anyons Use equations of motion to perform nonlocal "Mulligan duality" A ______ Scalar Mediated Anyons $\mathcal{L}_{A}[\psi, A]$

Relation to Lifshitz-Chern-Simon Theory 1) Scalar description break

down in IR if we deform away

from
$$k_0 = 0$$

 $\mathcal{L}_{\text{non-critical}} \sim rac{
abla^2}{
abla^2 - k_0^2} \dot{\phi}^2$

2) Phase is not given by Lif-Chern-Simons level κ

3) Local operators in Lif-CS description are nonlocal in ϕ description and vice versa

Conclusions

Does this scalar mode exist physically?

Some naive comments: ϕ has the symmetries

$$\phi \rightarrow \phi + c$$
 (~translations)
 $\phi \rightarrow \phi + vt$ (~boosts)

 \oint could be a height field of a membrane $R\psi^{\dagger}\psi \sim (\nabla^{2}\phi)\psi^{\dagger}\psi$ would occur naturally $\mathcal{L} = \dot{\phi}^{2} - T(\nabla\phi)^{2} - \kappa(\nabla^{2}\phi)^{2}$ tension extrinsic curvature

Conclusions What's the ultimate goal here?

Once you discard Lorentz invariance, many new possibilities for IR behavior and phase transitions emerge

We studied a simple theory with a massless z=2 scalar coupled through marginal interactions

A systematic exploration of fermions coupled to massless modes in a controllable way is wellmotivated and hopefully there are many interesting new phenomena waiting to be discovered

The End