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Leads to

Gauge coupling unification

Plausible dark matter candidate (with RP, independently motivated)

Calculable theory, can be extrapolated up to MPl 

Needs to be broken, hopefully spontaneously

Effective description in terms of O(100) parameters

Most of the parameter space not viable 

FCNC and CPV: useful constraint on supersymmetry breaking

LHC, unavoidable FT (depending on messenger scale)

M3 > 1.2 TeV 

LHC, avoidable FT

msq > 1.4 TeV (but m1,2 ≠ m3)

mH ≈ 125 GeV? (but NMSSM, λSUSY)
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†ũc
j + (m̃2

dc)ij(d̃c
i )

†d̃c
j + (m̃2

l )ij l̃
†
i l̃j

+ (m̃2
ec)ij(ẽc
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Origin of supersymmetry breaking



A wide class of models of supersymmetry breaking

Hidden 
sector

Observable 
sector

SUSY breaking MSSM?

Z chiral superfield
<Z> = Fθ2

F » (MZ)2
SM singlet

Q chiral superfield
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A wide class of models of supersymmetry breaking

Hidden 
sector

Observable 
sector

SUSY breaking MSSM?



A useful guideline: the supertrace constraint

Str M2 ≡ ∑bosons m2 - ∑fermions m2 (weighted by # of dofs)

Ren. Kähler + tree level + Tr(Ta) = 0: 

Holds separately for each set of conserved quantum numbers

MSSM: incompatible with (Str M2)f,MSSM = ∑sfermions m2 - ∑fermions m2 > 0

G = GSM: incompatible with                                                      

                                                     

m̃2
lightest d-sfermion ⇥ m2

d �
1
3
g�DY

StrM2 = 0                                                     

(if DY < 0, consider up sfermions) 



Addressing the supertrace constraint

Ren. Kähler + tree level + Tr(Ta) = 0  → Str M2 = 0

Supergravity: non-renormalizable Kähler:  Str ≠ 0

“Loop” gauge-mediation: loop-induced:  Str ≠ 0$$ $

Anomalous U(1)’s: Tr(Ta) ≠ 0:  Str ≠ 0$ $ $ $ $ $

Tree-level gauge mediation: Str = 0 $ $ $ $ $ $

FCNC OK

FCNC OK

FCNC OK

FCNC ?



massive vector of a
spontaneously broken U(1)

G ⊃ GSM x U(1)

↑

Tree-level gauge mediation
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M ≈ MV scale of U(1) breaking m̃2
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F 2

M2
V /g

2



SU(5)xU(1) ⊆ G, flavour universal charges, qZ > 0 for definitess

(l, dc) = 5: $$ $ q5 > 0 $ (m25 > 0, tree level)
(q, uc, ec) = 10: $ q10 > 0$$ (m210 > 0, tree level)

SU(5)2xU(1) anomaly cancellation: $$ $ $ 0 = 3(q5 + 3q10)

(guaranteed if SU(5)xU(1) is embedded in SO(10))

Masses2 (before EWSB)

$ $ $ $ $ 5 + 10$$ $ $ $ extra = Φ+Φ 

$ fermions$ $ 0$ $ $ $ $ $ M2

$ scalars$ $ 0 + m2 $ $ $ $ M2 - m2 

Need of extra heavy (through U(1) breaking) fields

-
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_-
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M from U(1) breaking



U(1) breaking:$ $ $ <Y> = M

SUSY breaking:$ $ <Z> = Fθ2$

In concrete models: qZ = qY

h Y Φ Φ $ → MΦ = hM $

k Z Φ Φ$ →$$ $ $ $

The extra heavy fields as chiral messengers
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A wide class of models of supersymmetry breaking

Hidden 
sector

Observable 
sector

SUSY breaking MSSM

?



Phenomenologically viable supersymmetric models          
not always are theoretically complete

Theoretically complete models of susy breaking            
not always are phenomenologically viable

Phenomenologically viable and theoretically complete 
models not always are extremely simple



Reminder

Non-renormalization: $ Wcl = Wall orders in PT $$ $

W = Wcl + WNP

“Classical”
breaking

“Dynamical”
breaking

 

MSUSY ≈ M0 e-(2π/α b)



The (problematic) role of the R-symmetry

An exact R-symmetry prevents (Majorana) gaugino masses

Nelson-Seiberg: R-symmetry needed in a susy-breaking model where

i) the susy-breaking minimum is stable and 

ii) the superpotential is generic

Non vanishing gaugino masses then require

non generic superpotential (R-breaking) $or

metastable susy-breaking minima$ $ $ or

spontaneous R-breaking$ $ $ $ $ $ or

Dirac gaugino masses



as if it that were not enough..

Spontaneous R-breaking in generalized O’R models needs R ≠ 0,2         
(e.g. ISS flows to R = 0,2)

Even if R ≠ 0,2: the stability (everywhere) of the pseudoflat direction 
along which the R-symmetry is spontaneously broken forces Mg = 0 
at 1-loop

More gaugino screening takes place (semi-direct)

Shih, hep-th/0703196
Curtin Komargodski Shih Tsai, 1202.5331

Komargodski Shih, 0902.0030

Arkani-Hamed Giudice Luty Rattazzi, hep-ph/9803290
Argurio Bertolini Ferretti Mariotti, 0912.0743



 A simple, viable, dynamical model:
3-2 + messenger/observable fields

[N=1 global, canonical K, no FI]



Reminder: 3-2 model
SU(3) strong at Λ3 where SU(2) weak

h « 1: calculability

SU(3) x SU(2) broken at M = Λ3/h1/7 » Λ3

SUSY broken at F = h M2 « M2 

<L2> = 0.3 M + 1.3 Fθ2 $$ <L1> = 0

SU(3) SU(2) G ◆ GSM

Q 3 2 1
U c 3 1 1
Dc 3 1 1
L 1 2 1

Wcl = hQDcL WNP =
⇤7
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[Affleck Dine Seiberg]
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non trivial, Mg = 0

Messengers
+MSSM

Coupling to observable fields: semi-direct GM
[Seiberg, Volansky, Wecht]
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Our model
[Caracciolo, R]

[no explicit mass term]

f = MSSM fields

W = L�i �i ! M�i�i + F✓2�i�i
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Yukawa interactions and Higgs

Yukawa interactions

SM fermions have T3 = -1/2 → Higgs doublets have T3 = 1 (triplets)

WY = λuij Φi Φj Hu + λdij Φi Φj Hd 

The Higgs sector 

Is model dependent

Two additional Higgs pairs not coupled to the SM fermions

The Higgs pair interacting with fermions has negative soft masses



Do arise from δK =

Because of the embedding of the messenger U(1) in a larger group 
(SU(2), SO(10))

Numerically: 

A-terms
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(no A-m2 problem) 



In order to get a 125 GeV Higgs
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2-loop corrections to sfermion masses

“Minimal” gauge mediation:$ $ O(1%)$$ flavour-blind

Matter-messenger couplings:$ O(3%)$$ flavour-safe



More details

mediation ones can be hardly larger than O (1%) and are flavour blind. The ones due
to the couplings in eq. (24) are also small enough to be ignored in the computation of
sfermion masses (for y↵ ⇠ 1, they give a O (3%) correction), but they can be relevant
for flavour processes. More precisely, the second and third couplings in eq. (24) are
proportional to the MSSM Yukawas and therefore only give rise to harmless minimal
flavour violating [21] (MFV) contributions. The first coupling, on the other hand, is
proportional to unknown Yukawas y↵, which can in principle be largely off-diagonal in the
basis in which the MSSM Yukawas are diagonal, thus providing non-MFV contributions
to the soft masses. To show that the latter are also under control, let us write them, in
matrix form, as follows:

�m̃2
f = 2

y⇤fy
T
f

(4⇡)2

 
T

2(4⇡)2
� 2crf

g2r
(4⇡)2

+

y⇤fy
T
f

(4⇡)2

!✓
FL

ML

◆2

, (29)

where f = q, uc, dc, l, nc, ec,
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and crf is the quadratic Casimir of the representation f with respect to the SM gauge
factor r.

We are now in the position of studying the bounds on the off-diagonal elements of
�m̃2 from flavour physics. The off-diagonal elements have to be computed of course in
the basis in which the mass matrix of the fermions involved in the process is diagonal.
By using the bounds in [22] we find, in the squark sector
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where D and U denote the bases in which the up quark and down quark mass matrices
are diagonal respectively. The weaker bounds assume that only one insertion at a time
is considered, with the others set to zero. The stronger ones assume that the left- and
right-handed insertions are both non-vanishing and equal in size. Analogous limits can
be obtained in the slepton sector. In the limit in which all yukawa are equal, yq = yu =

yd = yl = yn = ye ⌘ y, and neglecting the negligible (for the purpose setting the limits
below) gauge contribution, we get
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Summary
Supersymmetry breaking remains the key of phenomenologically and 
theoretically successful supersymmetry models

Phenomenological issues/guidelines: FCNC, fine-tuning

Theoretical issues/guidelines: Str, R-symmetry

A simple, theoretically complete, and phenomenologically viable option

Susy breaking is communicated by extra, SB gauge interactions

Messenger and observable fields are charged under the hidden 
sector gauge group 

Positive sfermion masses arise at the tree level, in a dynamical 
realization of TGM, but are not hierarchically larger than gaugino’s 

A-terms are generated, and are possibly sizeable


