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Einstein-Hilbert action

GRAVITY IN D = 2+1
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← constant curvature!
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T a ⇥ dea + ⇤a
b ⇤ eb = 0

2 CS formulation

[Ja, Jb] = �abcJ
c [J̃a, J̃b] = �abcJ̃

c (2.1)

A = Aµ
aJa dx

µ ⌃A = ⌃Aµ
aJa dx

µ (2.2)
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�
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Rµ⇥ ⇥ 2hµ⇥ � ( ⇧µ⇧ · h⇥ + ⇧⇥⇧ · hµ ) + ⇧µ⇧⇥h�
� = 0 (2.3)

Fµ1... µs ⇥ 2⌅µ1...ms � ⇧(µ1⇧ · ⌅µ2... µs) + ⇧(µ1⇧µ2⌅µ3... µs)�
� = 0 (2.4)
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A couple of useful tricks...
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so(2,2) ≃ so(1,2) ⊕ so(1,2) ≃ sl(2,R) ⊕ sl(2,R)
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Natural generalization of the gravity frame action
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For g = sl(N,R) describes fields of “spin” 2,3,...,N
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More in general: take any Lie algebra g with a non-degenerate 
Killing form and branch it under the adjoint action of sl(2,R)↪g

have the same structure (i.e. the same fibre indices), and one can consider linear combina-
tions of them as in (2.4). This eventually allows one to build bosonic massless higher-spin
gauge theories out of G ⇥ G Chern-Simons theories [1]. The action has the same form as
(2.1), but now the gauge fields A and  A take values in a (possibly infinite-dimensional)
Lie algebra g admitting a non-degenerate bilinear invariant form. Vielbeine and spin
connections are identified through (2.4), while the invariance of the action under

�A = dA + [ A , ⇥ ] , �  A = d  A + [  A ,  ⇥ ] (2.5)

leads to two di✓erent kinds of gauge transformations generated by the parameters

⇤ = l

2
�

⇥ �  ⇥
⇥

, � = 1
2
�

⇥ +  ⇥
⇥

. (2.6)

Those generated by ⇤ correspond to local translations in pure gravity (that in D = 2 + 1
are equivalent to di✓eomorphisms [35]), while those generated by � extend the usual local
Lorentz transformations:

�e = d⇤ + [ ⌅ , ⇤ ] + [ e , � ] , (2.7a)

�⌅ = d� + [ ⌅ , � ] + 1
l2 [ e , ⇤ ] . (2.7b)

Even if no local fluctuations are present, one can define the “spectrum” of the theory
by looking at the transformation properties of the fields under Lorentz transformations.
It is thus fixed by the choice of a sl(2,R) subalgebra in g that – together with the
corresponding one coming from the second copy of g – identifies the gravitational sector.
Once this selection is made one can consider the branching of g under the adjoint action
of the “gravitational” sl(2,R), so that

g = sl(2,R) ⇤
⇤

⇧
⌥

⌅ , a

g(⌅,a)

⌅

⌃ . (2.8)

Each g(⌅,a) has dimension 2� + 1 with 2� ⌅ N, while the index a accounts for possible
multiplicities. For infinite-dimensional algebras we thus discard by hypothesis sl(2) em-
beddings that would bring on infinite-dimensional irreducible representations in (2.8).
The branching of g induces the decomposition

A(x) = Aµ
i(x)Ji dxµ +

�

⌅ , a

⌅�
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A[a] ⌅,m
µ (x) (W ⌅

m)[a] dxµ , (2.9)

and a similar one for  A. Here the (W ⌅
m)[a] generate g(⌅,a), while the Ji generate sl(2,R) as

in pure gravity. Let us now focus for a while on sl(2) embeddings that do not involve any
half-integer �. In this case the dimension of each g(⌅,a) equals the number of independent
o✓-shell fiber components of the vielbein or of the spin connection associated to a fully
symmetric tensor ⇧ [a]

µ1... µ�+1 [45, 46]. As a result, for any integer � the 1-forms

e[a] ⌅,m
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2
�
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µ

⇥
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µ = 1
2
�
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µ +  A[a] ⌅,m

µ

⇥
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Simple characterization in terms of Chern-Simons 
theories (for gauge fields)

Field equations → flatness conditions

Simple field equations, but rich space of solutions on AdS

Non-trivial topology → black holes

Boundary conditions → boundary dynamics,  AdS/CFT...

How to select “non-singular” solutions?

4

and the higher-spin generators Ta1... as�1 . Since they are contracted with the forms (2.19),
these generators must transform as irreducible so(1, 2) ⇤ sl(2,R) tensors. Therefore, they
must be traceless and they must satisfy

�
Ja , Tb1... bs�1

⇥
= ⇥ma(b1Tb2... bs�1)m . (2.22) pre_TT

In fact, if the resulting Lie algebra admits a non-degenerate bilinear form (denoted in the
following by Tr) one can consider the Chern-Simons action

SCS[A] =
k

4⇤

⇧
Tr

⇤
A ⌅ dA +

2

3
A ⌅ A ⌅ A

⌅
(2.23)

with

k =
R

4G
, (2.24)

and in [12] it was pointed out that the combination

S = SCS[A]� SCS[ ⌃A] , (2.25) action

reduces to the Einstein-Hilbert action when A only contains the gravitational fields. We
shall now see that the linearization of the zero-curvature equations of motion following
from eq. (6.21) describes the free-propagation of ⇧µ1... µs on an AdS3 background, thus
ensuring that the full-interacting theory actually describes the coupling of ⇧µ1... µs to
gravity.

To linearize the curvatures F = dA + A ⌅ A one has to separate the background
gravitational vielbein hµ

a and spin connection wµ
a from a first order correction

eµ
a = hµ

a + ēµ
a , ⌅µ

a = wµ
a + ⌅̄µ

a , (2.26)

and to treat the higher-spin fields as first order corrections. Notice that the commutator
of two higher-spin generators does not play any role in the linearized field equations, since
it will lead to second order terms quadratic in the higher-spin fields. When expressed in
terms of the vielbeins and the spin connections the lienarized equations of motion then
reads

T a ⇥ (2.27) torsion_gravity

Ra ⇥ (2.28)

T a1... as ⇥ (2.29) torsion_s

Ra1... as ⇥ (2.30)

where for brevity we omitted the form indices. The field equations are gauge invariant
under the transformations

� ⇥a = (2.31)

� ⌅a = (2.32)

� ⇥a1... as�1 = (2.33)

� ⌅a1... as�1 = (2.34) lorentzlin
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by suitable boundary conditions [25, 26]. These translate into the Drinfeld-Sokolov (DS)

constraint on the centrally extended loop algebra that appears on the boundary of a CS

theory. Therefore, asymptotic symmetries are described by the W-algebras that arise from

the DS reduction. In this section we first review the DS reduction in the context of HS

gauge theories. We then provide an algorithm to perform it in the highest-weight gauge,

from which one obtains W-algebras in a basis where all fields are primaries with respect to

the lowest spin ones.

2.1 Higher-spin gauge theories in D = 2 + 1

In D = 2 + 1 Einstein gravity with a negative cosmological constant is equivalent to a

SL(2, R) × SL(2, R) Chern-Simons theory [48, 49]. In fact, up to boundary terms, one can

rewrite the Einstein-Hilbert action as

S = SCS [A] − SCS [Ã] , (2.1)

with

SCS[A] =
k

4π

∫
tr

(
A ∧ dA +

2

3
A ∧ A ∧ A

)
. (2.2)

The fields A and Ã are sl(2, R)-valued differential forms so that, for instance, A =

Aµ
i Ji dxµ, where the Ji generate the sl(2, R) algebra. We normalise the invariant form

entering the CS action such that

tr (JiJj) =
1

2
η ij ⇒ k =

l

4G
, (2.3)

where l denotes the AdS radius and G is Newton’s constant. The standard first-order

formulation of gravity is recovered by considering the combinations

e =
l

2

(
A − Ã

)
, ω =

1

2

(
A + Ã

)
, (2.4)

that identify the dreibein and the spin connection.

In a similar fashion, the first-order formulation of the free dynamics of massless bosonic

symmetric fields ϕµ1... µs with s ≥ 2 involves a vielbein-like 1-form and an auxiliary 1-form

which generalises the spin connection [66, 67]. In D = 2+1 these two differential forms have

the same structure (i.e. the same fibre indices), and one can consider linear combinations

of them as in (2.4). This eventually allows one to build bosonic massless higher-spin gauge

theories out of G × G Chern-Simons theories [1].1 The action has the same form as (2.1),

but now the gauge fields A and Ã take values in a (possibly infinite-dimensional) Lie algebra

g admitting a non-degenerate bilinear invariant form. Vielbeine and spin connections are

identified through (2.4), while the invariance of the action under

δA = dA + [A , λ ] , δÃ = dÃ + [ Ã , λ̃ ] (2.5)

1Topologically massive higher-spin gauge theories were also recently proposed in [68, 69], but are not

described by this setup.
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Aµ
i Ji dxµ, where the Ji generate the sl(2, R) algebra. We normalise the invariant form

entering the CS action such that

tr (JiJj) =
1

2
η ij ⇒ k =

l

4G
, (2.3)

where l denotes the AdS radius and G is Newton’s constant. The standard first-order

formulation of gravity is recovered by considering the combinations

e =
l

2

(
A − Ã

)
, ω =

1

2

(
A + Ã

)
, (2.4)

that identify the dreibein and the spin connection.

In a similar fashion, the first-order formulation of the free dynamics of massless bosonic

symmetric fields ϕµ1... µs with s ≥ 2 involves a vielbein-like 1-form and an auxiliary 1-form

which generalises the spin connection [66, 67]. In D = 2+1 these two differential forms have

the same structure (i.e. the same fibre indices), and one can consider linear combinations

of them as in (2.4). This eventually allows one to build bosonic massless higher-spin gauge

theories out of G × G Chern-Simons theories [1].1 The action has the same form as (2.1),

but now the gauge fields A and Ã take values in a (possibly infinite-dimensional) Lie algebra

g admitting a non-degenerate bilinear invariant form. Vielbeine and spin connections are

identified through (2.4), while the invariance of the action under

δA = dA + [A , λ ] , δÃ = dÃ + [ Ã , λ̃ ] (2.5)

1Topologically massive higher-spin gauge theories were also recently proposed in [68, 69], but are not

described by this setup.
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Lie algebra hs[λ],1 which can be seen as a continuation of sl(N) where N → λ [12] as we

will review below. The Prokushkin-Vasiliev field equations admit a consistent truncation

to the sector where only the massless fields of spin 2 and higher are turned on [13]. This

subsector is governed by a Chern-Simons theory with hs[λ] gauge symmetry [14, 15]. When

λ = N the Killing form of hs[λ] degenerates and the Chern-Simons action reduces to that

of a sl(N) theory.

In this note we discuss a class of smooth solutions of the hs[λ] Chern-Simons field

equations that naturally generalize to arbitrary values of λ the conical solutions of the

sl(N) Chern-Simons theory proposed in [16] (for subsequent work on conical solutions

see [17–20]). To this end we will first elaborate upon an explicit matrix description of hs[λ]

that allows one to accomodate our solutions and then we will present them. We eventually

provide evidence for their identification with specific primary states of the W∞[λ] algebra

in a particular classical limit.

2 Chern-Simons subsector of Vasiliev theory

The consistent truncation of the Vasiliev theories that describes the sector where only

massless fields of spin 2 and higher are turned on is governed by a Chern-Simons theory

with hs[λ] gauge symmetry. We will here consider AdS higher spin gauge theories in

Euclidean signature, which means that we will take as the gauge algebra a single complex

hs[λ] algebra rather than a direct sum of two copies of one of the real forms of hs[λ] [21].

The reason for this choice is that, as explained in [16], it leads to a richer spectrum of

classical solutions which matches the dual CFT spectrum more closely. The equations of

motion simply state that the connection is flat:

F = dA+A ∧A = 0 . (2.1)

We will now review some properties of the infinite-dimensional algebra hs[λ], see [22]

or the recent [9, 23] for a more complete discussion. We label the hs[λ] generators as T !
m

with integer spin (" ≥ 1) and mode (|m| ≤ ") indices.2 In order to deal with the Lie

algebra hs[λ] it is useful to add an “identity” element T 0
0 and consider the enlarged vector

space gl[λ] = C ⊕ hs[λ], where C corresponds to the component along T 0
0 . The resulting

vector space can be identified with a suitable quotient of the enveloping algebra of sl(2)

and therefore it is naturally an associative algebra. The product of two generators can be

described as [22]

T i
m # T j

n ≡
1

2

i+j
∑

k= |i−j|

fλ

(

i j k

m n m+ n

)

T k
m+n , (2.2)

where the fλ are the structure constants given explicitly in appendix A. The element T 0
0

plays the role of #-identity. The Lie bracket is simply the #-commutator
[

T i
m , T j

n

]

≡ T i
m # T j

n − T j
n # T i

m . (2.3)

1We will not consider here the cases in which the higher spin algebra is a subalgebra of hs[λ], such as

the even spin projections considered in [10, 11].
2We thus follow the conventions of [22, 23], while our generators can be mapped in the V s

m of [9] by

V s
m = T s−1

m .
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FRAME-LIKE DESCRIPTION FOR HS

HS “vielbeins” and “spin connections”

7

eµ
a1... as�1 �µ

b,a1... as�1
eµ

a1... as�1 �µ
b,a1... as�1⇒ ⇒

Everything is traceless, then in D=2+1...

            ≈                     (example:                               )

“Vielbeins” and “spin connections” have the same structure            

Structure of the higher-spin generators:

eab... traceless  ⇒  Tab... traceless in ab...

eab... irreducible  ⇒ 

eµ
a1... as�1 �µ

b,a1... as�1!µ
a =

1

2
✏abc !µ

b,c

1 AdS/CFT

⇧t± = RT± +
R3

2r2
�2
x±T± +O(r�4)

⇧�± = ±RT± ⇥ R3

2r2
�2
x±T± +O(r�4)

⇧r± = �r �x±T± +O(r�1)

x± = t± ⇤

T± = T±(x±)

2 HS in D=+1

Aµ
a1... as�1 = ⌥µ

a1... as�1+
1

R
eµ

a1... as�1 Ãµ
a1... as�1 = ⌥µ

a1... as�1� 1

R
eµ

a1... as�1 (2.1)

A =
�
Aµ

aJa + Aµ
a1... as�1Ta1... as�1

⇥
dxµ (2.2)

[ Ja , Tb1... bs�1 ] = �ma(b1Tb2... bs�1)m (2.3)

3 Chern-Simons with boundary

GA
0 =

k

8⌃
�ijFA

ij ⇤ 0 (3.1)

G(⌅) =

⇤

�

⌅AG
A
0 +Q(⌅) {G(⌅) , AA

i } = Di⌅
A (3.2)

{G(⇥) , G(⌅)} = G([⇥,⌅]) +
k

4⌃

⇤

⇥�

⇥Ad⌅
A (3.3)

1



Consider traceless and symmetric polynomials in  

                                     (+ traceless projection in the an indices)

N-dim repr. for    ⇒ N2
 - 1ind. traceless matrices out of T’s with s<N

SL(N) HIGHER-SPIN THEORIES

For sl(3,R) the Jacobi identity fixes the algebra but... 

                                             ⇒

3-dim repr. for      ⇒

8

General lesson to build higher-spin algebras: 
choose a representation of so(1,2) ≃ sl(2,R)      

and compute products of the representatives

2.3 The spin-3 example
sec:algebra

In the spin-3 case eqs. (2.20) and (2.21) allow for the introduction of a non-trivial com-
mutator between the higher-spin generators Tab. The resulting non-Abelian Lie algebra
issl3

[ Ja , Jb ] = �abc J
c , (2.40a) JJ

[ Ja , Tbc ] = �ma(bTc)m , (2.40b) JT

[Tab , Tcd ] = ⇤
�
⇥a(c�d)bm + ⇥b(c�d)am

⇥
Jm , (2.40c) TT

where the Tab are traceless and symmetric in a, b. Notice that the right-hand side of
eq. (2.40b) is traceless in the indices b, c, while the right-hand side of eq. (2.40c) is traceless
in a, b and c, d. Imposing T a

a = 0 is thus consistent. The algebra (2.40) has the quadratic
Casimir

C = JaJ
a � 1

2 ⇤
Tab T

ab , (2.41) casimir

that enables to define a non-degenerate bilinear form on it. Actually, one can show that
(2.40) is isomorphic to sl(3,C), and thus matches the corresponding algebra obtained
from the construction discussed at the end of the previous section. One can build its
fundamental representation by defining the Tab generators as

Tab =
⌅
�⇤

⇤
J(aJb) �

2

3
⇥ab JcJ

c

⌅
, (2.42)

where the Ja are the sl(2) generators in the spin-3 representation. The sign of ⇤ selects
one of the two non-compact real forms of sl(3,C). In fact, the non-compact subalgebra
sl(2,R) rules out the compact real form, while a real rescaling of the generators Tab can
modify the absolute value of ⇤ but not its sign. In particular, ⇤ > 0 corresponds to
su(1, 2), while ⇤ < 0 corresponds to sl(3,R). Notice that the analogy with the spin-2
case is not su�cient to single out one of the two real forms of sl(3,C). In fact, sl(2,C)
admits only a single non-compact real form since su(1, 1) ⇤ sl(2,R).

Since the algebra (2.40) is isomorphic to sl(3,C), it is convenient to rewrite it in a
more standard basis where one does not have to deal with the trace constraints on the
generators. In particular, in the following we shall use the basissl3can

[Li , Lj ] = (i� j)Li+j , (2.43a) LL

[Li , Wm ] = (2 i�m)Wi+m , (2.43b) LW

[Wm , Wn ] =
⇤

3
(m� n) ( 2m2 + 2n2 �mn� 8 )Lm+n , (2.43c) WW

where �1 ⇥ i, j ⇥ 1 and �2 ⇥ m,n ⇥ 2. It can be related to the previous one via the
isomorphism

J0 =
1

2
(L1 + L�1) , J1 =

1

2
(L1 � L�1) , J2 = L0 , (2.44) iso1

13

[Tab , Tcd ] = ⇤
�
⇥a(c�d)bm + ⇥b(c�d)am

�
Jm

Tab =
p
�⇥

⇣
J(aJb) �

2

3
�abJcJ

c
⌘

Ja

Ja

Ta1... as ⇠ J(a1
. . . Jas)

Ja

Hoppe (1982)
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Representations of hs[�]
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In this note we extend to hs[�] the construction of the fundamental representation
of sl(N,R) based on a N ⇥ N matrix representation of sl(2,R). The basic idea is that
quotienting out (C2 � µ1) from the universal enveloping algebra of sl(2,R) (where C2 is
the sl(2) quadratic Casimir) is equivalent to taking products of representatives of sl(2,R)
which satisfy C2 = µ1.
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1 Conventions

We use the conventions of [1] for the sl(2,R) algebra, i.e.

[ J+ , J� ] = 2J0 , [ J± , J0 ] = ± J± , (1.1)
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for which the quadratic Casimir takes the value

C2 = J2
0 −

1

2
(J+J− + J−J+) =

1

4
(λ2 − 1) . (2.11)

For noninteger λ, such a representation is necessarily infinite-dimensional. The basis el-

ements T !
m of gl[λ] are represented as elements of the enveloping algebra of this sl(2)

(following the conventions of [22]):

T !
m = (−1)!−m ("+m)!

(2")!

[

J−, . . . [ J−, [ J−
︸ ︷︷ ︸

!−m terms

, (J+)
! ]]
]

. (2.12)

Note that T 0
0 is the identity. The algebra hs[λ] is the subalgebra spanned by the generators

T !
m with " ≥ 1, and can be seen as a continuation of the special linear algebra sl(N) to

arbitrary N .

As recalled e.g. in [9], for each non-integer λ there are two highest weight representa-

tions of sl(2) with highest weight 1
2(±λ− 1). The corresponding conjugate representations

are lowest weight representations with lowest weight 1
2(∓λ+1). Each of these four represen-

tations can be used to build a faithful representation of hs[λ] through (2.12). Concretely,

we will use the following infinite matrices as representatives for the sl(2) elements [26]:

(J+)jk = δj, k+1 , (2.13)

(J−)jk = j(j − λ) δj+1, k , (2.14)

(J0)jk =
1

2
(λ+ 1− 2j) δj, k , (2.15)

where the range of the indices is j, k = 1, 2, . . .. One easily checks that these satisfy (2.10)

and (2.11), and that there is a highest weight vector of weight 1
2(λ − 1). From (2.12) one

obtains an explicit representation for the hs[λ] generators:

(T !
m)jk = (−1)!−m

!−m
∑

n=0

(
"−m

n

)
[ " ]n
[ 2" ]n

[ "− λ ]n [ j −m− 1 ]!−m−n δj, k+m , (2.16)

where [a]k denotes the descending Pochhammer symbol

[a]k = a(a− 1) · · · (a− k + 1) , with [a]0 ≡ 1 . (2.17)

From this expression, derived in appendix A, one sees that the T !
m, viewed as infinite

matrices, have some special properties. The nonzero elements (T !
m)j, j−m are m spaces

removed from the main diagonal, and furthermore they are polynomial in j. When λ is a

natural number N , the T !
m have the block form

T !
m =

(

τ !m 0

∗ ∗

)

(2.18)

where the τ !m are the generators of gl(N) in the N -dimensional representation. This shows

the appearance of the ideal mentioned earlier which is spanned by the generators T !
m for

" ≥ N . Quotienting by it corresponds to projecting onto the gl(N) generators τ !m.
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Casimir:

Any product of the matrices (2.1) is a 3⇥3 matrix, but in general it would not be traceless.
On the other hand, for ` = 2 eq. (1.5) produces the following five independent traceless
matrices:

W

2
2 = J

2
+ =

0

@
0 0 0
0 0 0
2 0 0

1

A
, (2.2a)

W

2
1 =

1

2
(J+J0 + J0J+) =

1

2

0

@
0 0 0
2 0 0
0 �1 0

1

A
, (2.2b)

W

2
0 =

1

6

�
4J2

0 + J+J� + J�J+
�
=

1

3

0

@
1 0 0
0 �2 0
0 0 1

1

A
, (2.2c)

W

2
�1 =

1

2
(J�J0 + J0J�) =

1

2

0

@
0 �1 0
0 0 2
0 0 0

1

A
, (2.2d)

W

2
�2 = J

2
� =

0

@
0 0 2
0 0 0
0 0 0

1

A
. (2.2e)

Note that W

2
�m can be obtained by turning + in � into W

2
m, and that we did not use

(1.2) in (2.2c) (contrary to (2.11) of [3]). Nevertheless, the matrices (2.1) and (2.2) form
a basis of sl(3,R). The generators are normalised such that, in the conventions of [4],
� = �1/4. Generic values of � can be obtained with

W

`
m := 2

p
�� (�1)`�m (`+m)!

(2`)!
L

`�m
� J

`
+ , ` � 1 , � `  m  ` . (2.3)

2.2 Finite dimensional representations of sl(2,R)

In this approach the only input needed by (1.5) is a representation of sl(2,R). The 3⇥ 3
representation (2.1) can be generalised to the N ⇥ N case with the following trick: one
can realise the algebra (1.1) as

J+ = y

@

@x

, J0 =
1

2

✓
x

@

@x

� y

@

@y

◆
, J� = � x

@

@y

. (2.4)

Acting on the space of monomials of degree N � 1 in the variables x and y,

vi = x

N�i�1
y

i
, 0  i  N � 1 , (2.5)

one obtains a representation of sl(2,R) of dimension N :

J+ vi = (N � i� 1) vi+1 , J0 vi =
N � 2i� 1

2
vi , J� vi = � i vi�1 . (2.6)

3

v0 and vN�1 are, respectively, the lowest and the highest weights of the representation
and one can easily build the conjugate representation by acting with (2.4) on

v̄i = x

i
y

N�i�1
, 0  i  N � 1 , (2.7)

Acting on both (2.5) and (2.7) the Ji are realised as N ⇥N traceless matrices and we
checked up to N = 5 that (1.5) gives a basis of sl(N,R).

3 Representations of hs[�]

In this section we first recall how one can systematically build infinite-dimensional rep-
resentations of sl(2,R) with a given eigenvalue for the Casimir operator. In particular,
we stress that in the infinite-dimensional case there are two pairs of conjugate represen-
tations with the same eigenvalue of the Casimir, consistently with the observations of [3].
Afterwards, we focus on a particular representation and we use it to construct a matrix
representation for all generators of hs[�].

3.1 Infinite-dimensional representations of sl(2,R)

The trick of sec. 2.2 can be used to build also infinite-dimensional representations of
sl(2,R). It is su�cient to act with (2.4) on

vi = x

i
y

��i�1
, v̄i = x

��i�1
y

i
, (3.1)

wi = x

i
y

�(�+i+1)
, w̄i = x

�(�+i+1)
y

i
, (3.2)

where in all cases i � 0. The resulting irreducible representations correspond to those
recalled in sec. 4.1 of [3]. In particular, acting on (3.1) one obtains the �� representation
and its conjugate �̄�, corresponding to the (0; f) and (0; f̄) representations in the ’t Hooft
limit of the minimal models. Acting on (3.2) one obtains the �+ representation and its
conjugate �̄+, corresponding to the (f̄ ; 0) and (f ; 0) representations of the minimal models.

• Representation �� $ (0; f):

J+ vi = i vi�1 , J0 vi =
2i+ 1� �

2
vi , J� vi = (i+ 1� �) vi+1 . (3.3)

HW state: v0, with conformal weight h� = 1
2 (1� �);

• Representation �̄� $ (0; f̄):

J+ v̄i = (�� i� 1) v̄i+1 , J0 v̄i = � 2i+ 1� �

2
v̄i , J� v̄i = � i v̄i�1 . (3.4)

4
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for which the quadratic Casimir takes the value

C2 = J2
0 −

1

2
(J+J− + J−J+) =

1

4
(λ2 − 1) . (2.11)

For noninteger λ, such a representation is necessarily infinite-dimensional. The basis el-

ements T !
m of gl[λ] are represented as elements of the enveloping algebra of this sl(2)

(following the conventions of [22]):

T !
m = (−1)!−m ("+m)!

(2")!

[

J−, . . . [ J−, [ J−
︸ ︷︷ ︸

!−m terms

, (J+)
! ]]
]

. (2.12)

Note that T 0
0 is the identity. The algebra hs[λ] is the subalgebra spanned by the generators

T !
m with " ≥ 1, and can be seen as a continuation of the special linear algebra sl(N) to

arbitrary N .

As recalled e.g. in [9], for each non-integer λ there are two highest weight representa-

tions of sl(2) with highest weight 1
2(±λ− 1). The corresponding conjugate representations

are lowest weight representations with lowest weight 1
2(∓λ+1). Each of these four represen-

tations can be used to build a faithful representation of hs[λ] through (2.12). Concretely,

we will use the following infinite matrices as representatives for the sl(2) elements [26]:

(J+)jk = δj, k+1 , (2.13)

(J−)jk = j(j − λ) δj+1, k , (2.14)

(J0)jk =
1

2
(λ+ 1− 2j) δj, k , (2.15)

where the range of the indices is j, k = 1, 2, . . .. One easily checks that these satisfy (2.10)

and (2.11), and that there is a highest weight vector of weight 1
2(λ − 1). From (2.12) one

obtains an explicit representation for the hs[λ] generators:

(T !
m)jk = (−1)!−m

!−m
∑

n=0

(
"−m

n

)
[ " ]n
[ 2" ]n

[ "− λ ]n [ j −m− 1 ]!−m−n δj, k+m , (2.16)

where [a]k denotes the descending Pochhammer symbol

[a]k = a(a− 1) · · · (a− k + 1) , with [a]0 ≡ 1 . (2.17)

From this expression, derived in appendix A, one sees that the T !
m, viewed as infinite

matrices, have some special properties. The nonzero elements (T !
m)j, j−m are m spaces

removed from the main diagonal, and furthermore they are polynomial in j. When λ is a

natural number N , the T !
m have the block form

T !
m =

(

τ !m 0

∗ ∗

)

(2.18)

where the τ !m are the generators of gl(N) in the N -dimensional representation. This shows

the appearance of the ideal mentioned earlier which is spanned by the generators T !
m for

" ≥ N . Quotienting by it corresponds to projecting onto the gl(N) generators τ !m.
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0 + J+J� + J�J+
�
=

1

3

0

@
1 0 0
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0 0 1

1

A
, (2.2c)

W

2
�1 =

1

2
(J�J0 + J0J�) =

1

2

0

@
0 �1 0
0 0 2
0 0 0

1

A
, (2.2d)

W

2
�2 = J

2
� =

0

@
0 0 2
0 0 0
0 0 0

1

A
. (2.2e)

Note that W

2
�m can be obtained by turning + in � into W

2
m, and that we did not use

(1.2) in (2.2c) (contrary to (2.11) of [3]). Nevertheless, the matrices (2.1) and (2.2) form
a basis of sl(3,R). The generators are normalised such that, in the conventions of [4],
� = �1/4. Generic values of � can be obtained with

W

`
m := 2

p
�� (�1)`�m (`+m)!

(2`)!
L

`�m
� J

`
+ , ` � 1 , � `  m  ` . (2.3)

2.2 Finite dimensional representations of sl(2,R)

In this approach the only input needed by (1.5) is a representation of sl(2,R). The 3⇥ 3
representation (2.1) can be generalised to the N ⇥ N case with the following trick: one
can realise the algebra (1.1) as

J+ = y

@

@x

, J0 =
1

2

✓
x

@

@x

� y

@

@y

◆
, J� = � x

@

@y

. (2.4)

Acting on the space of monomials of degree N � 1 in the variables x and y,

vi = x

N�i�1
y

i
, 0  i  N � 1 , (2.5)

one obtains a representation of sl(2,R) of dimension N :

J+ vi = (N � i� 1) vi+1 , J0 vi =
N � 2i� 1

2
vi , J� vi = � i vi�1 . (2.6)

3

v0 and vN�1 are, respectively, the lowest and the highest weights of the representation
and one can easily build the conjugate representation by acting with (2.4) on

v̄i = x

i
y

N�i�1
, 0  i  N � 1 , (2.7)

Acting on both (2.5) and (2.7) the Ji are realised as N ⇥N traceless matrices and we
checked up to N = 5 that (1.5) gives a basis of sl(N,R).

3 Representations of hs[�]

In this section we first recall how one can systematically build infinite-dimensional rep-
resentations of sl(2,R) with a given eigenvalue for the Casimir operator. In particular,
we stress that in the infinite-dimensional case there are two pairs of conjugate represen-
tations with the same eigenvalue of the Casimir, consistently with the observations of [3].
Afterwards, we focus on a particular representation and we use it to construct a matrix
representation for all generators of hs[�].

3.1 Infinite-dimensional representations of sl(2,R)

The trick of sec. 2.2 can be used to build also infinite-dimensional representations of
sl(2,R). It is su�cient to act with (2.4) on

vi = x

i
y

��i�1
, v̄i = x

��i�1
y

i
, (3.1)

wi = x

i
y

�(�+i+1)
, w̄i = x

�(�+i+1)
y

i
, (3.2)

where in all cases i � 0. The resulting irreducible representations correspond to those
recalled in sec. 4.1 of [3]. In particular, acting on (3.1) one obtains the �� representation
and its conjugate �̄�, corresponding to the (0; f) and (0; f̄) representations in the ’t Hooft
limit of the minimal models. Acting on (3.2) one obtains the �+ representation and its
conjugate �̄+, corresponding to the (f̄ ; 0) and (f ; 0) representations of the minimal models.

• Representation �� $ (0; f):

J+ vi = i vi�1 , J0 vi =
2i+ 1� �

2
vi , J� vi = (i+ 1� �) vi+1 . (3.3)

HW state: v0, with conformal weight h� = 1
2 (1� �);

• Representation �̄� $ (0; f̄):

J+ v̄i = (�� i� 1) v̄i+1 , J0 v̄i = � 2i+ 1� �

2
v̄i , J� v̄i = � i v̄i�1 . (3.4)
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for which the quadratic Casimir takes the value

C2 = J2
0 −

1

2
(J+J− + J−J+) =

1

4
(λ2 − 1) . (2.11)

For noninteger λ, such a representation is necessarily infinite-dimensional. The basis el-

ements T !
m of gl[λ] are represented as elements of the enveloping algebra of this sl(2)

(following the conventions of [22]):

T !
m = (−1)!−m ("+m)!

(2")!

[

J−, . . . [ J−, [ J−
︸ ︷︷ ︸

!−m terms

, (J+)
! ]]
]

. (2.12)

Note that T 0
0 is the identity. The algebra hs[λ] is the subalgebra spanned by the generators

T !
m with " ≥ 1, and can be seen as a continuation of the special linear algebra sl(N) to

arbitrary N .

As recalled e.g. in [9], for each non-integer λ there are two highest weight representa-

tions of sl(2) with highest weight 1
2(±λ− 1). The corresponding conjugate representations

are lowest weight representations with lowest weight 1
2(∓λ+1). Each of these four represen-

tations can be used to build a faithful representation of hs[λ] through (2.12). Concretely,

we will use the following infinite matrices as representatives for the sl(2) elements [26]:

(J+)jk = δj, k+1 , (2.13)

(J−)jk = j(j − λ) δj+1, k , (2.14)

(J0)jk =
1

2
(λ+ 1− 2j) δj, k , (2.15)

where the range of the indices is j, k = 1, 2, . . .. One easily checks that these satisfy (2.10)

and (2.11), and that there is a highest weight vector of weight 1
2(λ − 1). From (2.12) one

obtains an explicit representation for the hs[λ] generators:

(T !
m)jk = (−1)!−m

!−m
∑

n=0

(
"−m

n

)
[ " ]n
[ 2" ]n

[ "− λ ]n [ j −m− 1 ]!−m−n δj, k+m , (2.16)

where [a]k denotes the descending Pochhammer symbol

[a]k = a(a− 1) · · · (a− k + 1) , with [a]0 ≡ 1 . (2.17)

From this expression, derived in appendix A, one sees that the T !
m, viewed as infinite

matrices, have some special properties. The nonzero elements (T !
m)j, j−m are m spaces

removed from the main diagonal, and furthermore they are polynomial in j. When λ is a

natural number N , the T !
m have the block form

T !
m =

(

τ !m 0

∗ ∗

)

(2.18)

where the τ !m are the generators of gl(N) in the N -dimensional representation. This shows

the appearance of the ideal mentioned earlier which is spanned by the generators T !
m for

" ≥ N . Quotienting by it corresponds to projecting onto the gl(N) generators τ !m.
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Similar nice properties hold for finite linear combinations of the generators T !
m. How-

ever for our purposes (namely the Drinfeld-Sokolov reduction of hs[λ]) it will not suffice

to consider only finite linear combinations of the T !
m but we shall need to allow also some

well behaved infinite sums (see e.g. (3.2) below) as well as matrices where the polynomial

property is violated in a finite number of rows (see e.g. (C.1)). A characterization of the

resulting space of matrices was given in [26] which we will adhere to in this work. We will

consider a matrix v to belong to gl[λ] if it satisfies the following properties:

(a) There exists a number N such that vj, k = 0 if j > k +N .

(b) The matrix elements along a diagonal, vj, j+n for some fixed n, become polynomial in

j for sufficiently large j.

The trace (2.6) of an element of gl[λ] can also be computed in the matrix representation

as follows [26]:

tr v =
6

λ(λ2 − 1)
lim
N→λ

N
∑

j=1

vjj , (2.19)

with the proviso that N has to be taken large enough that the resulting polynomial in N

stabilizes. The property b ensures that such N always exists so that (2.19) is an unam-

biguous definition. The trace (2.19) is normalized such that it agrees with the alternative

definition (2.6) on products of the generators T !
m. Moreover, the "-product (2.2) agrees

with the matrix product, so that in the following we will often omit the " symbol.

3 Boundary and smoothness conditions

The hs[λ] Chern-Simons theory admits a vacuum solution describing global AdS3 without

higher spin fields. AdS3 is topologically a solid cylinder, on which we choose a radial

coordinate ρ such that the boundary is at ρ → ∞ and local complex coordinates z, z̄ which

parameterize a cylinder at surfaces of constant ρ. We will interpret the complex coordinate

as z ≡ φ+ itE where tE is the Euclidean time and φ an angular coordinate with periodicity

φ ∼ φ + 2π. More generally, we are interested in smooth connections defined on the solid

cylinder which approach the global AdS solution near the boundary. As explained in [7–

9, 23], after imposing AdS boundary conditions and fixing the so-called “highest weight”

gauge, the allowed flat connections are of the form

A = g−1a(z)g dz + g−1dg , g = eρT
1
0 , (3.1)

a(z) = αT 1
1 +

12π

c

∞
∑

!=1

α−!

N!
W!+1(z)T

!
−! , (3.2)

where α is an arbitrary real constant which can be absorbed in a shift of ρ, c = 3l
2G is

the Brown-Henneaux central charge, and the normalization constants are chosen to be

N! = trT !
! T

!
−!.

5 The allowed flat connections are characterized by holomorphic higher

5The explicit expression is

N! =
3 · 4−!√π Γ("+ 1)

(λ2 − 1)Γ("+ 3
2 )

(1− λ)!(1 + λ)! ,
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Lie algebra hs[λ],1 which can be seen as a continuation of sl(N) where N → λ [12] as we

will review below. The Prokushkin-Vasiliev field equations admit a consistent truncation

to the sector where only the massless fields of spin 2 and higher are turned on [13]. This

subsector is governed by a Chern-Simons theory with hs[λ] gauge symmetry [14, 15]. When

λ = N the Killing form of hs[λ] degenerates and the Chern-Simons action reduces to that

of a sl(N) theory.

In this note we discuss a class of smooth solutions of the hs[λ] Chern-Simons field

equations that naturally generalize to arbitrary values of λ the conical solutions of the

sl(N) Chern-Simons theory proposed in [16] (for subsequent work on conical solutions

see [17–20]). To this end we will first elaborate upon an explicit matrix description of hs[λ]

that allows one to accomodate our solutions and then we will present them. We eventually

provide evidence for their identification with specific primary states of the W∞[λ] algebra

in a particular classical limit.

2 Chern-Simons subsector of Vasiliev theory

The consistent truncation of the Vasiliev theories that describes the sector where only

massless fields of spin 2 and higher are turned on is governed by a Chern-Simons theory

with hs[λ] gauge symmetry. We will here consider AdS higher spin gauge theories in

Euclidean signature, which means that we will take as the gauge algebra a single complex

hs[λ] algebra rather than a direct sum of two copies of one of the real forms of hs[λ] [21].

The reason for this choice is that, as explained in [16], it leads to a richer spectrum of

classical solutions which matches the dual CFT spectrum more closely. The equations of

motion simply state that the connection is flat:

F = dA+A ∧A = 0 . (2.1)

We will now review some properties of the infinite-dimensional algebra hs[λ], see [22]

or the recent [9, 23] for a more complete discussion. We label the hs[λ] generators as T !
m

with integer spin (" ≥ 1) and mode (|m| ≤ ") indices.2 In order to deal with the Lie

algebra hs[λ] it is useful to add an “identity” element T 0
0 and consider the enlarged vector

space gl[λ] = C ⊕ hs[λ], where C corresponds to the component along T 0
0 . The resulting

vector space can be identified with a suitable quotient of the enveloping algebra of sl(2)

and therefore it is naturally an associative algebra. The product of two generators can be

described as [22]

T i
m # T j

n ≡
1

2

i+j
∑

k= |i−j|

fλ

(

i j k

m n m+ n

)

T k
m+n , (2.2)

where the fλ are the structure constants given explicitly in appendix A. The element T 0
0

plays the role of #-identity. The Lie bracket is simply the #-commutator
[

T i
m , T j

n

]

≡ T i
m # T j

n − T j
n # T i

m . (2.3)

1We will not consider here the cases in which the higher spin algebra is a subalgebra of hs[λ], such as

the even spin projections considered in [10, 11].
2We thus follow the conventions of [22, 23], while our generators can be mapped in the V s

m of [9] by

V s
m = T s−1

m .

– 2 –
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for which the quadratic Casimir takes the value

C2 = J2
0 −

1

2
(J+J− + J−J+) =

1

4
(λ2 − 1) . (2.11)

For noninteger λ, such a representation is necessarily infinite-dimensional. The basis el-

ements T !
m of gl[λ] are represented as elements of the enveloping algebra of this sl(2)

(following the conventions of [22]):

T !
m = (−1)!−m ("+m)!

(2")!

[

J−, . . . [ J−, [ J−
︸ ︷︷ ︸

!−m terms

, (J+)
! ]]
]

. (2.12)

Note that T 0
0 is the identity. The algebra hs[λ] is the subalgebra spanned by the generators

T !
m with " ≥ 1, and can be seen as a continuation of the special linear algebra sl(N) to

arbitrary N .

As recalled e.g. in [9], for each non-integer λ there are two highest weight representa-

tions of sl(2) with highest weight 1
2(±λ− 1). The corresponding conjugate representations

are lowest weight representations with lowest weight 1
2(∓λ+1). Each of these four represen-

tations can be used to build a faithful representation of hs[λ] through (2.12). Concretely,

we will use the following infinite matrices as representatives for the sl(2) elements [26]:

(J+)jk = δj, k+1 , (2.13)

(J−)jk = j(j − λ) δj+1, k , (2.14)

(J0)jk =
1

2
(λ+ 1− 2j) δj, k , (2.15)

where the range of the indices is j, k = 1, 2, . . .. One easily checks that these satisfy (2.10)

and (2.11), and that there is a highest weight vector of weight 1
2(λ − 1). From (2.12) one

obtains an explicit representation for the hs[λ] generators:

(T !
m)jk = (−1)!−m

!−m
∑

n=0

(
"−m

n

)
[ " ]n
[ 2" ]n

[ "− λ ]n [ j −m− 1 ]!−m−n δj, k+m , (2.16)

where [a]k denotes the descending Pochhammer symbol

[a]k = a(a− 1) · · · (a− k + 1) , with [a]0 ≡ 1 . (2.17)

From this expression, derived in appendix A, one sees that the T !
m, viewed as infinite

matrices, have some special properties. The nonzero elements (T !
m)j, j−m are m spaces

removed from the main diagonal, and furthermore they are polynomial in j. When λ is a

natural number N , the T !
m have the block form

T !
m =

(

τ !m 0

∗ ∗

)

(2.18)

where the τ !m are the generators of gl(N) in the N -dimensional representation. This shows

the appearance of the ideal mentioned earlier which is spanned by the generators T !
m for

" ≥ N . Quotienting by it corresponds to projecting onto the gl(N) generators τ !m.
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Similar nice properties hold for finite linear combinations of the generators T !
m. How-

ever for our purposes (namely the Drinfeld-Sokolov reduction of hs[λ]) it will not suffice

to consider only finite linear combinations of the T !
m but we shall need to allow also some

well behaved infinite sums (see e.g. (3.2) below) as well as matrices where the polynomial

property is violated in a finite number of rows (see e.g. (C.1)). A characterization of the

resulting space of matrices was given in [26] which we will adhere to in this work. We will

consider a matrix v to belong to gl[λ] if it satisfies the following properties:

(a) There exists a number N such that vj, k = 0 if j > k +N .

(b) The matrix elements along a diagonal, vj, j+n for some fixed n, become polynomial in

j for sufficiently large j.

The trace (2.6) of an element of gl[λ] can also be computed in the matrix representation

as follows [26]:

tr v =
6

λ(λ2 − 1)
lim
N→λ

N
∑

j=1

vjj , (2.19)

with the proviso that N has to be taken large enough that the resulting polynomial in N

stabilizes. The property b ensures that such N always exists so that (2.19) is an unam-

biguous definition. The trace (2.19) is normalized such that it agrees with the alternative

definition (2.6) on products of the generators T !
m. Moreover, the "-product (2.2) agrees

with the matrix product, so that in the following we will often omit the " symbol.

3 Boundary and smoothness conditions

The hs[λ] Chern-Simons theory admits a vacuum solution describing global AdS3 without

higher spin fields. AdS3 is topologically a solid cylinder, on which we choose a radial

coordinate ρ such that the boundary is at ρ → ∞ and local complex coordinates z, z̄ which

parameterize a cylinder at surfaces of constant ρ. We will interpret the complex coordinate

as z ≡ φ+ itE where tE is the Euclidean time and φ an angular coordinate with periodicity

φ ∼ φ + 2π. More generally, we are interested in smooth connections defined on the solid

cylinder which approach the global AdS solution near the boundary. As explained in [7–

9, 23], after imposing AdS boundary conditions and fixing the so-called “highest weight”

gauge, the allowed flat connections are of the form

A = g−1a(z)g dz + g−1dg , g = eρT
1
0 , (3.1)

a(z) = αT 1
1 +

12π

c

∞
∑

!=1

α−!

N!
W!+1(z)T

!
−! , (3.2)

where α is an arbitrary real constant which can be absorbed in a shift of ρ, c = 3l
2G is

the Brown-Henneaux central charge, and the normalization constants are chosen to be

N! = trT !
! T

!
−!.

5 The allowed flat connections are characterized by holomorphic higher

5The explicit expression is

N! =
3 · 4−!√π Γ("+ 1)

(λ2 − 1)Γ("+ 3
2 )

(1− λ)!(1 + λ)! ,
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Lie algebra hs[λ],1 which can be seen as a continuation of sl(N) where N → λ [12] as we

will review below. The Prokushkin-Vasiliev field equations admit a consistent truncation

to the sector where only the massless fields of spin 2 and higher are turned on [13]. This

subsector is governed by a Chern-Simons theory with hs[λ] gauge symmetry [14, 15]. When

λ = N the Killing form of hs[λ] degenerates and the Chern-Simons action reduces to that

of a sl(N) theory.

In this note we discuss a class of smooth solutions of the hs[λ] Chern-Simons field

equations that naturally generalize to arbitrary values of λ the conical solutions of the

sl(N) Chern-Simons theory proposed in [16] (for subsequent work on conical solutions

see [17–20]). To this end we will first elaborate upon an explicit matrix description of hs[λ]

that allows one to accomodate our solutions and then we will present them. We eventually

provide evidence for their identification with specific primary states of the W∞[λ] algebra

in a particular classical limit.

2 Chern-Simons subsector of Vasiliev theory

The consistent truncation of the Vasiliev theories that describes the sector where only

massless fields of spin 2 and higher are turned on is governed by a Chern-Simons theory

with hs[λ] gauge symmetry. We will here consider AdS higher spin gauge theories in

Euclidean signature, which means that we will take as the gauge algebra a single complex

hs[λ] algebra rather than a direct sum of two copies of one of the real forms of hs[λ] [21].

The reason for this choice is that, as explained in [16], it leads to a richer spectrum of

classical solutions which matches the dual CFT spectrum more closely. The equations of

motion simply state that the connection is flat:

F = dA+A ∧A = 0 . (2.1)

We will now review some properties of the infinite-dimensional algebra hs[λ], see [22]

or the recent [9, 23] for a more complete discussion. We label the hs[λ] generators as T !
m

with integer spin (" ≥ 1) and mode (|m| ≤ ") indices.2 In order to deal with the Lie

algebra hs[λ] it is useful to add an “identity” element T 0
0 and consider the enlarged vector

space gl[λ] = C ⊕ hs[λ], where C corresponds to the component along T 0
0 . The resulting

vector space can be identified with a suitable quotient of the enveloping algebra of sl(2)

and therefore it is naturally an associative algebra. The product of two generators can be

described as [22]

T i
m # T j

n ≡
1

2

i+j
∑

k= |i−j|

fλ

(

i j k

m n m+ n

)

T k
m+n , (2.2)

where the fλ are the structure constants given explicitly in appendix A. The element T 0
0

plays the role of #-identity. The Lie bracket is simply the #-commutator
[

T i
m , T j

n

]

≡ T i
m # T j

n − T j
n # T i

m . (2.3)

1We will not consider here the cases in which the higher spin algebra is a subalgebra of hs[λ], such as

the even spin projections considered in [10, 11].
2We thus follow the conventions of [22, 23], while our generators can be mapped in the V s

m of [9] by

V s
m = T s−1

m .
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for which the quadratic Casimir takes the value

C2 = J2
0 −

1

2
(J+J− + J−J+) =

1

4
(λ2 − 1) . (2.11)

For noninteger λ, such a representation is necessarily infinite-dimensional. The basis el-

ements T !
m of gl[λ] are represented as elements of the enveloping algebra of this sl(2)

(following the conventions of [22]):

T !
m = (−1)!−m ("+m)!

(2")!

[

J−, . . . [ J−, [ J−
︸ ︷︷ ︸

!−m terms

, (J+)
! ]]
]

. (2.12)

Note that T 0
0 is the identity. The algebra hs[λ] is the subalgebra spanned by the generators

T !
m with " ≥ 1, and can be seen as a continuation of the special linear algebra sl(N) to

arbitrary N .

As recalled e.g. in [9], for each non-integer λ there are two highest weight representa-

tions of sl(2) with highest weight 1
2(±λ− 1). The corresponding conjugate representations

are lowest weight representations with lowest weight 1
2(∓λ+1). Each of these four represen-

tations can be used to build a faithful representation of hs[λ] through (2.12). Concretely,

we will use the following infinite matrices as representatives for the sl(2) elements [26]:

(J+)jk = δj, k+1 , (2.13)

(J−)jk = j(j − λ) δj+1, k , (2.14)

(J0)jk =
1

2
(λ+ 1− 2j) δj, k , (2.15)

where the range of the indices is j, k = 1, 2, . . .. One easily checks that these satisfy (2.10)

and (2.11), and that there is a highest weight vector of weight 1
2(λ − 1). From (2.12) one

obtains an explicit representation for the hs[λ] generators:

(T !
m)jk = (−1)!−m

!−m
∑

n=0

(
"−m

n

)
[ " ]n
[ 2" ]n

[ "− λ ]n [ j −m− 1 ]!−m−n δj, k+m , (2.16)

where [a]k denotes the descending Pochhammer symbol

[a]k = a(a− 1) · · · (a− k + 1) , with [a]0 ≡ 1 . (2.17)

From this expression, derived in appendix A, one sees that the T !
m, viewed as infinite

matrices, have some special properties. The nonzero elements (T !
m)j, j−m are m spaces

removed from the main diagonal, and furthermore they are polynomial in j. When λ is a

natural number N , the T !
m have the block form

T !
m =

(

τ !m 0

∗ ∗

)

(2.18)

where the τ !m are the generators of gl(N) in the N -dimensional representation. This shows

the appearance of the ideal mentioned earlier which is spanned by the generators T !
m for

" ≥ N . Quotienting by it corresponds to projecting onto the gl(N) generators τ !m.
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. (2.12)

Note that T 0
0 is the identity. The algebra hs[λ] is the subalgebra spanned by the generators

T !
m with " ≥ 1, and can be seen as a continuation of the special linear algebra sl(N) to

arbitrary N .

As recalled e.g. in [9], for each non-integer λ there are two highest weight representa-

tions of sl(2) with highest weight 1
2(±λ− 1). The corresponding conjugate representations

are lowest weight representations with lowest weight 1
2(∓λ+1). Each of these four represen-

tations can be used to build a faithful representation of hs[λ] through (2.12). Concretely,

we will use the following infinite matrices as representatives for the sl(2) elements [26]:

(J+)jk = δj, k+1 , (2.13)

(J−)jk = j(j − λ) δj+1, k , (2.14)

(J0)jk =
1

2
(λ+ 1− 2j) δj, k , (2.15)

where the range of the indices is j, k = 1, 2, . . .. One easily checks that these satisfy (2.10)

and (2.11), and that there is a highest weight vector of weight 1
2(λ − 1). From (2.12) one

obtains an explicit representation for the hs[λ] generators:

(T !
m)jk = (−1)!−m

!−m
∑

n=0

(
"−m

n

)
[ " ]n
[ 2" ]n

[ "− λ ]n [ j −m− 1 ]!−m−n δj, k+m , (2.16)

where [a]k denotes the descending Pochhammer symbol

[a]k = a(a− 1) · · · (a− k + 1) , with [a]0 ≡ 1 . (2.17)

From this expression, derived in appendix A, one sees that the T !
m, viewed as infinite

matrices, have some special properties. The nonzero elements (T !
m)j, j−m are m spaces

removed from the main diagonal, and furthermore they are polynomial in j. When λ is a

natural number N , the T !
m have the block form

T !
m =

(

τ !m 0

∗ ∗

)

(2.18)

where the τ !m are the generators of gl(N) in the N -dimensional representation. This shows

the appearance of the ideal mentioned earlier which is spanned by the generators T !
m for

" ≥ N . Quotienting by it corresponds to projecting onto the gl(N) generators τ !m.
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Similar nice properties hold for finite linear combinations of the generators T !
m. How-

ever for our purposes (namely the Drinfeld-Sokolov reduction of hs[λ]) it will not suffice

to consider only finite linear combinations of the T !
m but we shall need to allow also some

well behaved infinite sums (see e.g. (3.2) below) as well as matrices where the polynomial

property is violated in a finite number of rows (see e.g. (C.1)). A characterization of the

resulting space of matrices was given in [26] which we will adhere to in this work. We will

consider a matrix v to belong to gl[λ] if it satisfies the following properties:

(a) There exists a number N such that vj, k = 0 if j > k +N .

(b) The matrix elements along a diagonal, vj, j+n for some fixed n, become polynomial in

j for sufficiently large j.

The trace (2.6) of an element of gl[λ] can also be computed in the matrix representation

as follows [26]:

tr v =
6

λ(λ2 − 1)
lim
N→λ

N
∑

j=1

vjj , (2.19)

with the proviso that N has to be taken large enough that the resulting polynomial in N

stabilizes. The property b ensures that such N always exists so that (2.19) is an unam-

biguous definition. The trace (2.19) is normalized such that it agrees with the alternative

definition (2.6) on products of the generators T !
m. Moreover, the "-product (2.2) agrees

with the matrix product, so that in the following we will often omit the " symbol.

3 Boundary and smoothness conditions

The hs[λ] Chern-Simons theory admits a vacuum solution describing global AdS3 without

higher spin fields. AdS3 is topologically a solid cylinder, on which we choose a radial

coordinate ρ such that the boundary is at ρ → ∞ and local complex coordinates z, z̄ which

parameterize a cylinder at surfaces of constant ρ. We will interpret the complex coordinate

as z ≡ φ+ itE where tE is the Euclidean time and φ an angular coordinate with periodicity

φ ∼ φ + 2π. More generally, we are interested in smooth connections defined on the solid

cylinder which approach the global AdS solution near the boundary. As explained in [7–

9, 23], after imposing AdS boundary conditions and fixing the so-called “highest weight”

gauge, the allowed flat connections are of the form

A = g−1a(z)g dz + g−1dg , g = eρT
1
0 , (3.1)

a(z) = αT 1
1 +

12π

c

∞
∑

!=1

α−!

N!
W!+1(z)T

!
−! , (3.2)

where α is an arbitrary real constant which can be absorbed in a shift of ρ, c = 3l
2G is

the Brown-Henneaux central charge, and the normalization constants are chosen to be

N! = trT !
! T

!
−!.

5 The allowed flat connections are characterized by holomorphic higher

5The explicit expression is

N! =
3 · 4−!√π Γ("+ 1)

(λ2 − 1)Γ("+ 3
2 )

(1− λ)!(1 + λ)! ,
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consider a matrix v to belong to gl[λ] if it satisfies the following properties:

(a) There exists a number N such that vj, k = 0 if j > k +N .
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The trace (2.6) of an element of gl[λ] can also be computed in the matrix representation

as follows [26]:

tr v =
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λ(λ2 − 1)
lim
N→λ

N
∑
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vjj , (2.19)

with the proviso that N has to be taken large enough that the resulting polynomial in N

stabilizes. The property b ensures that such N always exists so that (2.19) is an unam-

biguous definition. The trace (2.19) is normalized such that it agrees with the alternative

definition (2.6) on products of the generators T !
m. Moreover, the "-product (2.2) agrees

with the matrix product, so that in the following we will often omit the " symbol.

3 Boundary and smoothness conditions

The hs[λ] Chern-Simons theory admits a vacuum solution describing global AdS3 without

higher spin fields. AdS3 is topologically a solid cylinder, on which we choose a radial

coordinate ρ such that the boundary is at ρ → ∞ and local complex coordinates z, z̄ which

parameterize a cylinder at surfaces of constant ρ. We will interpret the complex coordinate

as z ≡ φ+ itE where tE is the Euclidean time and φ an angular coordinate with periodicity

φ ∼ φ + 2π. More generally, we are interested in smooth connections defined on the solid

cylinder which approach the global AdS solution near the boundary. As explained in [7–

9, 23], after imposing AdS boundary conditions and fixing the so-called “highest weight”

gauge, the allowed flat connections are of the form

A = g−1a(z)g dz + g−1dg , g = eρT
1
0 , (3.1)

a(z) = αT 1
1 +

12π

c
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!=1
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−! , (3.2)

where α is an arbitrary real constant which can be absorbed in a shift of ρ, c = 3l
2G is

the Brown-Henneaux central charge, and the normalization constants are chosen to be

N! = trT !
! T

!
−!.

5 The allowed flat connections are characterized by holomorphic higher

5The explicit expression is

N! =
3 · 4−!√π Γ("+ 1)
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2 )
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Similar nice properties hold for finite linear combinations of the generators T !
m. How-

ever for our purposes (namely the Drinfeld-Sokolov reduction of hs[λ]) it will not suffice

to consider only finite linear combinations of the T !
m but we shall need to allow also some

well behaved infinite sums (see e.g. (3.2) below) as well as matrices where the polynomial

property is violated in a finite number of rows (see e.g. (C.1)). A characterization of the

resulting space of matrices was given in [26] which we will adhere to in this work. We will

consider a matrix v to belong to gl[λ] if it satisfies the following properties:

(a) There exists a number N such that vj, k = 0 if j > k +N .

(b) The matrix elements along a diagonal, vj, j+n for some fixed n, become polynomial in

j for sufficiently large j.

The trace (2.6) of an element of gl[λ] can also be computed in the matrix representation

as follows [26]:

tr v =
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λ(λ2 − 1)
lim
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vjj , (2.19)

with the proviso that N has to be taken large enough that the resulting polynomial in N

stabilizes. The property b ensures that such N always exists so that (2.19) is an unam-

biguous definition. The trace (2.19) is normalized such that it agrees with the alternative

definition (2.6) on products of the generators T !
m. Moreover, the "-product (2.2) agrees

with the matrix product, so that in the following we will often omit the " symbol.

3 Boundary and smoothness conditions

The hs[λ] Chern-Simons theory admits a vacuum solution describing global AdS3 without

higher spin fields. AdS3 is topologically a solid cylinder, on which we choose a radial

coordinate ρ such that the boundary is at ρ → ∞ and local complex coordinates z, z̄ which

parameterize a cylinder at surfaces of constant ρ. We will interpret the complex coordinate

as z ≡ φ+ itE where tE is the Euclidean time and φ an angular coordinate with periodicity

φ ∼ φ + 2π. More generally, we are interested in smooth connections defined on the solid

cylinder which approach the global AdS solution near the boundary. As explained in [7–

9, 23], after imposing AdS boundary conditions and fixing the so-called “highest weight”

gauge, the allowed flat connections are of the form

A = g−1a(z)g dz + g−1dg , g = eρT
1
0 , (3.1)

a(z) = αT 1
1 +

12π

c

∞
∑

!=1

α−!

N!
W!+1(z)T

!
−! , (3.2)

where α is an arbitrary real constant which can be absorbed in a shift of ρ, c = 3l
2G is

the Brown-Henneaux central charge, and the normalization constants are chosen to be

N! = trT !
! T

!
−!.

5 The allowed flat connections are characterized by holomorphic higher

5The explicit expression is

N! =
3 · 4−!√π Γ("+ 1)

(λ2 − 1)Γ("+ 3
2 )

(1− λ)!(1 + λ)! ,

– 5 –

Khesin, Malikov (1996)
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N!�

NX

j =1

vjj



PROPERTIES OF THE HS[  ] MATRICES

12

λ
Properties of the hs[λ] matrices:

∃ N such that                if j > k+N

The matrix elements along a diagonal,             for some fixed n, 
become polynomial in j for sufficiently large j

p
r
o
o
f
s
 
J
H
E
P
_
0
9
5
P
_
0
3
1
3

Similar nice properties hold for finite linear combinations of the generators T !
m. How-
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Lie algebra hs[λ],1 which can be seen as a continuation of sl(N) where N → λ [12] as we

will review below. The Prokushkin-Vasiliev field equations admit a consistent truncation

to the sector where only the massless fields of spin 2 and higher are turned on [13]. This

subsector is governed by a Chern-Simons theory with hs[λ] gauge symmetry [14, 15]. When

λ = N the Killing form of hs[λ] degenerates and the Chern-Simons action reduces to that

of a sl(N) theory.

In this note we discuss a class of smooth solutions of the hs[λ] Chern-Simons field

equations that naturally generalize to arbitrary values of λ the conical solutions of the

sl(N) Chern-Simons theory proposed in [16] (for subsequent work on conical solutions

see [17–20]). To this end we will first elaborate upon an explicit matrix description of hs[λ]

that allows one to accomodate our solutions and then we will present them. We eventually

provide evidence for their identification with specific primary states of the W∞[λ] algebra

in a particular classical limit.

2 Chern-Simons subsector of Vasiliev theory

The consistent truncation of the Vasiliev theories that describes the sector where only

massless fields of spin 2 and higher are turned on is governed by a Chern-Simons theory

with hs[λ] gauge symmetry. We will here consider AdS higher spin gauge theories in

Euclidean signature, which means that we will take as the gauge algebra a single complex

hs[λ] algebra rather than a direct sum of two copies of one of the real forms of hs[λ] [21].

The reason for this choice is that, as explained in [16], it leads to a richer spectrum of

classical solutions which matches the dual CFT spectrum more closely. The equations of

motion simply state that the connection is flat:

F = dA+A ∧A = 0 . (2.1)

We will now review some properties of the infinite-dimensional algebra hs[λ], see [22]

or the recent [9, 23] for a more complete discussion. We label the hs[λ] generators as T !
m

with integer spin (" ≥ 1) and mode (|m| ≤ ") indices.2 In order to deal with the Lie

algebra hs[λ] it is useful to add an “identity” element T 0
0 and consider the enlarged vector

space gl[λ] = C ⊕ hs[λ], where C corresponds to the component along T 0
0 . The resulting

vector space can be identified with a suitable quotient of the enveloping algebra of sl(2)

and therefore it is naturally an associative algebra. The product of two generators can be

described as [22]

T i
m # T j

n ≡
1

2

i+j
∑

k= |i−j|

fλ

(

i j k

m n m+ n

)

T k
m+n , (2.2)

where the fλ are the structure constants given explicitly in appendix A. The element T 0
0

plays the role of #-identity. The Lie bracket is simply the #-commutator
[

T i
m , T j

n

]

≡ T i
m # T j

n − T j
n # T i

m . (2.3)

1We will not consider here the cases in which the higher spin algebra is a subalgebra of hs[λ], such as

the even spin projections considered in [10, 11].
2We thus follow the conventions of [22, 23], while our generators can be mapped in the V s

m of [9] by

V s
m = T s−1

m .
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Similar nice properties hold for finite linear combinations of the generators T !
m. How-

ever for our purposes (namely the Drinfeld-Sokolov reduction of hs[λ]) it will not suffice

to consider only finite linear combinations of the T !
m but we shall need to allow also some

well behaved infinite sums (see e.g. (3.2) below) as well as matrices where the polynomial

property is violated in a finite number of rows (see e.g. (C.1)). A characterization of the

resulting space of matrices was given in [26] which we will adhere to in this work. We will

consider a matrix v to belong to gl[λ] if it satisfies the following properties:

(a) There exists a number N such that vj, k = 0 if j > k +N .

(b) The matrix elements along a diagonal, vj, j+n for some fixed n, become polynomial in

j for sufficiently large j.

The trace (2.6) of an element of gl[λ] can also be computed in the matrix representation

as follows [26]:

tr v =
6

λ(λ2 − 1)
lim
N→λ

N
∑

j=1

vjj , (2.19)

with the proviso that N has to be taken large enough that the resulting polynomial in N

stabilizes. The property b ensures that such N always exists so that (2.19) is an unam-

biguous definition. The trace (2.19) is normalized such that it agrees with the alternative

definition (2.6) on products of the generators T !
m. Moreover, the "-product (2.2) agrees

with the matrix product, so that in the following we will often omit the " symbol.

3 Boundary and smoothness conditions

The hs[λ] Chern-Simons theory admits a vacuum solution describing global AdS3 without

higher spin fields. AdS3 is topologically a solid cylinder, on which we choose a radial

coordinate ρ such that the boundary is at ρ → ∞ and local complex coordinates z, z̄ which

parameterize a cylinder at surfaces of constant ρ. We will interpret the complex coordinate

as z ≡ φ+ itE where tE is the Euclidean time and φ an angular coordinate with periodicity

φ ∼ φ + 2π. More generally, we are interested in smooth connections defined on the solid

cylinder which approach the global AdS solution near the boundary. As explained in [7–

9, 23], after imposing AdS boundary conditions and fixing the so-called “highest weight”

gauge, the allowed flat connections are of the form

A = g−1a(z)g dz + g−1dg , g = eρT
1
0 , (3.1)

a(z) = αT 1
1 +

12π

c

∞
∑

!=1

α−!

N!
W!+1(z)T

!
−! , (3.2)

where α is an arbitrary real constant which can be absorbed in a shift of ρ, c = 3l
2G is

the Brown-Henneaux central charge, and the normalization constants are chosen to be

N! = trT !
! T

!
−!.

5 The allowed flat connections are characterized by holomorphic higher

5The explicit expression is

N! =
3 · 4−!√π Γ("+ 1)

(λ2 − 1)Γ("+ 3
2 )

(1− λ)!(1 + λ)! ,

– 5 –
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biguous definition. The trace (2.19) is normalized such that it agrees with the alternative
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m. Moreover, the "-product (2.2) agrees
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N! =
3 · 4−!√π Γ("+ 1)

(λ2 − 1)Γ("+ 3
2 )

(1− λ)!(1 + λ)! ,
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Similar nice properties hold for finite linear combinations of the generators T !
m. How-

ever for our purposes (namely the Drinfeld-Sokolov reduction of hs[λ]) it will not suffice

to consider only finite linear combinations of the T !
m but we shall need to allow also some

well behaved infinite sums (see e.g. (3.2) below) as well as matrices where the polynomial

property is violated in a finite number of rows (see e.g. (C.1)). A characterization of the

resulting space of matrices was given in [26] which we will adhere to in this work. We will

consider a matrix v to belong to gl[λ] if it satisfies the following properties:

(a) There exists a number N such that vj, k = 0 if j > k +N .

(b) The matrix elements along a diagonal, vj, j+n for some fixed n, become polynomial in

j for sufficiently large j.

The trace (2.6) of an element of gl[λ] can also be computed in the matrix representation

as follows [26]:

tr v =
6

λ(λ2 − 1)
lim
N→λ

N
∑

j=1

vjj , (2.19)

with the proviso that N has to be taken large enough that the resulting polynomial in N

stabilizes. The property b ensures that such N always exists so that (2.19) is an unam-

biguous definition. The trace (2.19) is normalized such that it agrees with the alternative

definition (2.6) on products of the generators T !
m. Moreover, the "-product (2.2) agrees

with the matrix product, so that in the following we will often omit the " symbol.

3 Boundary and smoothness conditions

The hs[λ] Chern-Simons theory admits a vacuum solution describing global AdS3 without

higher spin fields. AdS3 is topologically a solid cylinder, on which we choose a radial

coordinate ρ such that the boundary is at ρ → ∞ and local complex coordinates z, z̄ which

parameterize a cylinder at surfaces of constant ρ. We will interpret the complex coordinate

as z ≡ φ+ itE where tE is the Euclidean time and φ an angular coordinate with periodicity

φ ∼ φ + 2π. More generally, we are interested in smooth connections defined on the solid

cylinder which approach the global AdS solution near the boundary. As explained in [7–

9, 23], after imposing AdS boundary conditions and fixing the so-called “highest weight”

gauge, the allowed flat connections are of the form

A = g−1a(z)g dz + g−1dg , g = eρT
1
0 , (3.1)

a(z) = αT 1
1 +

12π

c

∞
∑

!=1

α−!

N!
W!+1(z)T

!
−! , (3.2)

where α is an arbitrary real constant which can be absorbed in a shift of ρ, c = 3l
2G is

the Brown-Henneaux central charge, and the normalization constants are chosen to be

N! = trT !
! T

!
−!.

5 The allowed flat connections are characterized by holomorphic higher

5The explicit expression is

N! =
3 · 4−!√π Γ("+ 1)

(λ2 − 1)Γ("+ 3
2 )

(1− λ)!(1 + λ)! ,
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spin currents Ws(z), which can be expanded in Fourier modes:

Ws(z) =
1

2π

∑
(

W s
n −

c

24
δs,2δn,0

)

e−inz. (3.3)

It was shown in [9, 23] that under Poisson brackets the modes W s
n generate the classical

Wcl
∞[λ] algebra6 with central charge c. We also remark that the connection with all W s

n = 0

describes the global AdS vacuum.

We are interested in solutions preserving time-translation and rotational invariance,

and will therefore restrict to gauge fields where only the zero modes W s
0 are allowed to be

different from zero, in other words where a is a constant element of hs[λ]. In what follows

we will also present solutions written down in a different gauge than the highest weight

gauge (3.2). To read off charges in more general gauges, we need invariant expressions. For

example, one can check from (3.2) that, for constant a, the energy and spin 3 charge are

given by

h ≡ W 2
0 =

c

12

(

tr(a2) +
1

2

)

, (3.4)

W 3
0 =

c

18
tr(a3) . (3.5)

The relation between higher spin charges and trace invariants can be extended recursively

to arbitrary high spin using the identities (4.49) in [23]. One useful property is that

sending a → −a is equivalent to changing the sign of all the odd charges W 2t+1
0 . This is

because (3.2) implies the identity

− a{W 2t
0 ,W 2t+1

0 } = eiπT
1
0 a{W 2t

0 ,−W 2t+1
0 }e

−iπT 1
0 . (3.6)

Next we review the condition imposed on the Chern-Simons gauge field by requiring

it to be smooth [16]. Recall that in our parameterization the φ-circle is contractible, hence

the requirement that the gauge field is smooth imposes that its holonomy H along the

φ-cycle is a trivial gauge transformation. Here, trivial means that it acts trivially on all

gauge fields, i.e. HT "
mH−1 = T "

m for all %,m. Schur’s lemma implies that H should be

proportional to the unit element

H = e2πa = eiϕ0 T 0
0 , (3.7)

for some (a priori complex) number ϕ0.

4 Conical solutions from !-projectors

We now turn to the construction of smooth solutions in the hs[λ] Chern-Simons theory.

We will not construct our solutions in the highest weight gauge (3.2) but rather in a

gauge where the connection a is a linear combination of the zero modes T "
0 only. This is

where (x)n = Γ(x+ n)/Γ(x) is the ascending Pochhammer symbol. In particular, we have N1 = −1.
6The procedure of constructing the Poisson brackets on the reduced phase space of asymptotically AdS

connections is mathematically equivalent to the classical Drinfeld-Sokolov reduction [27] of hs[λ].
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From the above considerations it follows that the Chern-Simons equations are formally

invariant under finite gauge transformations of the form

A → g−1 ! (A+ d) ! g , (2.4)

where g = ev! is the !-exponential of an element of hs[λ]. We will in this work skirt around

thorny questions such as for which linear combinations of the generators the !-exponential

makes sense and if the resulting elements form a Lie group. We would like to point out

however that the !-exponential is well-defined on a multiple of a projector P of the !-algebra

satisfying P ! P = P , giving the result

ecP! = T 0
0 + (ec − 1)P. (2.5)

This observation will play an important role in our construction of smooth solutions in

section 4.3

Another important operation in the characterization of gl[λ] is the trace. For an

element v ∈ gl[λ] it is defined to be proportional to the coefficient of T 0
0 :

tr v =
6

(λ2 − 1)
v |T !

m=0 for "> 0 . (2.6)

The normalisation is chosen such that tr(T 1
1 T 1

−1) = −1. The definition of the trace gives a

natural definition of the determinant of a !-exponential:

det ev! ≡ etr v . (2.7)

With this definition, if v belongs to hs[λ], the corresponding finite gauge transformation

g = ev! has unit determinant.

The trace also induces an hs[λ]-invariant inner product (u, v) = tr(u ! v) [25], that

allows to define a Chern-Simons action and for which the chosen basis {T "
m} is orthogonal.

For generic λ this inner product is nondegenerate, but when λ is equal to an integer N

with N %= −1, 0, 1,4 it degenerates:

tr(T i
m ! T j

n ) = 0 for i, j ≥ N . (2.8)

This implies that an ideal appears, spanned by the generators T "
m for # ≥ N . Quotienting

by this ideal truncates to the algebra sl(N).

It will also be useful to have at our disposal a concrete representation of hs[λ] in terms

of infinite matrices. A representation of hs[λ] (analogous to the defining representation of

sl(N)) can be constructed from a representation of sl(2) with commutation relations

[ J+ , J− ] = 2J0 , (2.9)

[ J0 , J± ] = ∓J± , (2.10)

3For a review on the use of projectors in the construction of solutions of higher-spin field equations see

e.g. [24].
4The normalization convention for the trace in (2.6) was in fact chosen such that the inner product is

nondegenerate for λ = −1, 0, 1.
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From the above considerations it follows that the Chern-Simons equations are formally

invariant under finite gauge transformations of the form

A → g−1 ! (A+ d) ! g , (2.4)

where g = ev! is the !-exponential of an element of hs[λ]. We will in this work skirt around

thorny questions such as for which linear combinations of the generators the !-exponential

makes sense and if the resulting elements form a Lie group. We would like to point out

however that the !-exponential is well-defined on a multiple of a projector P of the !-algebra

satisfying P ! P = P , giving the result

ecP! = T 0
0 + (ec − 1)P. (2.5)

This observation will play an important role in our construction of smooth solutions in

section 4.3

Another important operation in the characterization of gl[λ] is the trace. For an

element v ∈ gl[λ] it is defined to be proportional to the coefficient of T 0
0 :

tr v =
6

(λ2 − 1)
v |T !

m=0 for "> 0 . (2.6)

The normalisation is chosen such that tr(T 1
1 T 1

−1) = −1. The definition of the trace gives a

natural definition of the determinant of a !-exponential:

det ev! ≡ etr v . (2.7)

With this definition, if v belongs to hs[λ], the corresponding finite gauge transformation

g = ev! has unit determinant.

The trace also induces an hs[λ]-invariant inner product (u, v) = tr(u ! v) [25], that

allows to define a Chern-Simons action and for which the chosen basis {T "
m} is orthogonal.

For generic λ this inner product is nondegenerate, but when λ is equal to an integer N

with N %= −1, 0, 1,4 it degenerates:

tr(T i
m ! T j

n ) = 0 for i, j ≥ N . (2.8)

This implies that an ideal appears, spanned by the generators T "
m for # ≥ N . Quotienting

by this ideal truncates to the algebra sl(N).

It will also be useful to have at our disposal a concrete representation of hs[λ] in terms

of infinite matrices. A representation of hs[λ] (analogous to the defining representation of

sl(N)) can be constructed from a representation of sl(2) with commutation relations

[ J+ , J− ] = 2J0 , (2.9)

[ J0 , J± ] = ∓J± , (2.10)

3For a review on the use of projectors in the construction of solutions of higher-spin field equations see

e.g. [24].
4The normalization convention for the trace in (2.6) was in fact chosen such that the inner product is

nondegenerate for λ = −1, 0, 1.
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From the above considerations it follows that the Chern-Simons equations are formally

invariant under finite gauge transformations of the form

A → g−1 ! (A+ d) ! g , (2.4)

where g = ev! is the !-exponential of an element of hs[λ]. We will in this work skirt around

thorny questions such as for which linear combinations of the generators the !-exponential

makes sense and if the resulting elements form a Lie group. We would like to point out

however that the !-exponential is well-defined on a multiple of a projector P of the !-algebra

satisfying P ! P = P , giving the result

ecP! = T 0
0 + (ec − 1)P. (2.5)

This observation will play an important role in our construction of smooth solutions in

section 4.3

Another important operation in the characterization of gl[λ] is the trace. For an

element v ∈ gl[λ] it is defined to be proportional to the coefficient of T 0
0 :

tr v =
6

(λ2 − 1)
v |T !

m=0 for "> 0 . (2.6)

The normalisation is chosen such that tr(T 1
1 T 1

−1) = −1. The definition of the trace gives a

natural definition of the determinant of a !-exponential:

det ev! ≡ etr v . (2.7)

With this definition, if v belongs to hs[λ], the corresponding finite gauge transformation

g = ev! has unit determinant.

The trace also induces an hs[λ]-invariant inner product (u, v) = tr(u ! v) [25], that

allows to define a Chern-Simons action and for which the chosen basis {T "
m} is orthogonal.

For generic λ this inner product is nondegenerate, but when λ is equal to an integer N

with N %= −1, 0, 1,4 it degenerates:

tr(T i
m ! T j

n ) = 0 for i, j ≥ N . (2.8)

This implies that an ideal appears, spanned by the generators T "
m for # ≥ N . Quotienting

by this ideal truncates to the algebra sl(N).

It will also be useful to have at our disposal a concrete representation of hs[λ] in terms

of infinite matrices. A representation of hs[λ] (analogous to the defining representation of

sl(N)) can be constructed from a representation of sl(2) with commutation relations

[ J+ , J− ] = 2J0 , (2.9)

[ J0 , J± ] = ∓J± , (2.10)

3For a review on the use of projectors in the construction of solutions of higher-spin field equations see

e.g. [24].
4The normalization convention for the trace in (2.6) was in fact chosen such that the inner product is

nondegenerate for λ = −1, 0, 1.
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From the above considerations it follows that the Chern-Simons equations are formally

invariant under finite gauge transformations of the form

A → g−1 ! (A+ d) ! g , (2.4)

where g = ev! is the !-exponential of an element of hs[λ]. We will in this work skirt around

thorny questions such as for which linear combinations of the generators the !-exponential

makes sense and if the resulting elements form a Lie group. We would like to point out

however that the !-exponential is well-defined on a multiple of a projector P of the !-algebra

satisfying P ! P = P , giving the result

ecP! = T 0
0 + (ec − 1)P. (2.5)

This observation will play an important role in our construction of smooth solutions in

section 4.3

Another important operation in the characterization of gl[λ] is the trace. For an

element v ∈ gl[λ] it is defined to be proportional to the coefficient of T 0
0 :

tr v =
6

(λ2 − 1)
v |T !

m=0 for "> 0 . (2.6)

The normalisation is chosen such that tr(T 1
1 T 1

−1) = −1. The definition of the trace gives a

natural definition of the determinant of a !-exponential:

det ev! ≡ etr v . (2.7)

With this definition, if v belongs to hs[λ], the corresponding finite gauge transformation

g = ev! has unit determinant.

The trace also induces an hs[λ]-invariant inner product (u, v) = tr(u ! v) [25], that

allows to define a Chern-Simons action and for which the chosen basis {T "
m} is orthogonal.

For generic λ this inner product is nondegenerate, but when λ is equal to an integer N

with N %= −1, 0, 1,4 it degenerates:

tr(T i
m ! T j

n ) = 0 for i, j ≥ N . (2.8)

This implies that an ideal appears, spanned by the generators T "
m for # ≥ N . Quotienting

by this ideal truncates to the algebra sl(N).

It will also be useful to have at our disposal a concrete representation of hs[λ] in terms

of infinite matrices. A representation of hs[λ] (analogous to the defining representation of

sl(N)) can be constructed from a representation of sl(2) with commutation relations

[ J+ , J− ] = 2J0 , (2.9)

[ J0 , J± ] = ∓J± , (2.10)

3For a review on the use of projectors in the construction of solutions of higher-spin field equations see

e.g. [24].
4The normalization convention for the trace in (2.6) was in fact chosen such that the inner product is

nondegenerate for λ = −1, 0, 1.
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the most convenient gauge to compute !-exponentials of a and verify (3.7) since, as we

will see below, a can be written as a combination of commuting projection operators or,

equivalently, a is diagonal in the matrix representation introduced in section 2. From the

discussion in the previous sections, the sought-for diagonal gauge connections must satisfy

the following requirements:

1. They are smooth, i.e. they satisfy (3.7).

2. They can be brought to the highest weight gauge expression (3.2) by a nonsingular

gauge transformation.

3. When viewed as infinite matrices, they belong to the class discussed in section 2.

In the diagonal gauge this means that the condition b must be satisfied on the

main diagonal.

Of these conditions, 2 is the most difficult to verify, since it involves checking invertibility

of an infinite matrix. One can however derive necessary conditions for 2 to hold, which we

do in appendix C. Therefore, in practice we will replace condition 2 with

2’ All eigenvalues of the diagonal connections are distinct and, for λ non-integer, different

from zero (see appendix C). Furthermore, 2 is satisfied when λ is taken to be an

integer N (for N sufficiently large, in a sense to be discussed below, in particular

above (4.14)).

We will now construct the most general diagonal gauge connection that satisfies the

requirements 1, 2’ and 3. As we shall see, the simplest class of such solutions is specified by

a Young diagram, and these are the natural generalizations to hs[λ] of the sl(N) conical

solutions constructed in [16].

First we address the requirement 1. Instead of expanding in the standard basis {T !
0},

it will be useful to expand in a different basis for the diagonal gauge, namely the operators

{Pj} which, in the matrix representation, are simply

(Pj)kl = δjkδjl . (4.1)

The main advantage of the new basis is that the Pj are mutually commuting !-algebra

projectors:

PjPk = Pjδjk . (4.2)

This property is of course most easily verified in the matrix representation. Their trace,

using (2.19) is7

trPj =
6

λ(λ2 − 1)
. (4.3)

The most general hs[λ] element in the diagonal gauge can then be expanded as

a = − i
∑

j

mjPj +
λ2 − 1

6
i tr

(
∑

j

mjPj

)

T 0
0 (4.4)

7Although the trace is distributive over a finite combination of Pj ’s, we should warn the reader that this

is not the case for infinite sums of Pj ’s. For example, one has tr
∑∞

j=1 j
rPj = 6

λ(λ2−1)
H(−r)

λ , where H(r)
n

are the harmonic numbers.
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From the above considerations it follows that the Chern-Simons equations are formally

invariant under finite gauge transformations of the form

A → g−1 ! (A+ d) ! g , (2.4)

where g = ev! is the !-exponential of an element of hs[λ]. We will in this work skirt around

thorny questions such as for which linear combinations of the generators the !-exponential

makes sense and if the resulting elements form a Lie group. We would like to point out

however that the !-exponential is well-defined on a multiple of a projector P of the !-algebra

satisfying P ! P = P , giving the result

ecP! = T 0
0 + (ec − 1)P. (2.5)

This observation will play an important role in our construction of smooth solutions in

section 4.3

Another important operation in the characterization of gl[λ] is the trace. For an

element v ∈ gl[λ] it is defined to be proportional to the coefficient of T 0
0 :

tr v =
6

(λ2 − 1)
v |T !

m=0 for "> 0 . (2.6)

The normalisation is chosen such that tr(T 1
1 T 1

−1) = −1. The definition of the trace gives a

natural definition of the determinant of a !-exponential:

det ev! ≡ etr v . (2.7)

With this definition, if v belongs to hs[λ], the corresponding finite gauge transformation

g = ev! has unit determinant.

The trace also induces an hs[λ]-invariant inner product (u, v) = tr(u ! v) [25], that

allows to define a Chern-Simons action and for which the chosen basis {T "
m} is orthogonal.

For generic λ this inner product is nondegenerate, but when λ is equal to an integer N

with N %= −1, 0, 1,4 it degenerates:

tr(T i
m ! T j

n ) = 0 for i, j ≥ N . (2.8)

This implies that an ideal appears, spanned by the generators T "
m for # ≥ N . Quotienting

by this ideal truncates to the algebra sl(N).

It will also be useful to have at our disposal a concrete representation of hs[λ] in terms

of infinite matrices. A representation of hs[λ] (analogous to the defining representation of

sl(N)) can be constructed from a representation of sl(2) with commutation relations

[ J+ , J− ] = 2J0 , (2.9)

[ J0 , J± ] = ∓J± , (2.10)

3For a review on the use of projectors in the construction of solutions of higher-spin field equations see

e.g. [24].
4The normalization convention for the trace in (2.6) was in fact chosen such that the inner product is

nondegenerate for λ = −1, 0, 1.
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From the above considerations it follows that the Chern-Simons equations are formally

invariant under finite gauge transformations of the form

A → g−1 ! (A+ d) ! g , (2.4)

where g = ev! is the !-exponential of an element of hs[λ]. We will in this work skirt around

thorny questions such as for which linear combinations of the generators the !-exponential

makes sense and if the resulting elements form a Lie group. We would like to point out

however that the !-exponential is well-defined on a multiple of a projector P of the !-algebra

satisfying P ! P = P , giving the result

ecP! = T 0
0 + (ec − 1)P. (2.5)

This observation will play an important role in our construction of smooth solutions in

section 4.3

Another important operation in the characterization of gl[λ] is the trace. For an

element v ∈ gl[λ] it is defined to be proportional to the coefficient of T 0
0 :

tr v =
6

(λ2 − 1)
v |T !

m=0 for "> 0 . (2.6)

The normalisation is chosen such that tr(T 1
1 T 1

−1) = −1. The definition of the trace gives a

natural definition of the determinant of a !-exponential:

det ev! ≡ etr v . (2.7)

With this definition, if v belongs to hs[λ], the corresponding finite gauge transformation

g = ev! has unit determinant.

The trace also induces an hs[λ]-invariant inner product (u, v) = tr(u ! v) [25], that

allows to define a Chern-Simons action and for which the chosen basis {T "
m} is orthogonal.

For generic λ this inner product is nondegenerate, but when λ is equal to an integer N

with N %= −1, 0, 1,4 it degenerates:

tr(T i
m ! T j

n ) = 0 for i, j ≥ N . (2.8)

This implies that an ideal appears, spanned by the generators T "
m for # ≥ N . Quotienting

by this ideal truncates to the algebra sl(N).

It will also be useful to have at our disposal a concrete representation of hs[λ] in terms

of infinite matrices. A representation of hs[λ] (analogous to the defining representation of

sl(N)) can be constructed from a representation of sl(2) with commutation relations

[ J+ , J− ] = 2J0 , (2.9)

[ J0 , J± ] = ∓J± , (2.10)

3For a review on the use of projectors in the construction of solutions of higher-spin field equations see

e.g. [24].
4The normalization convention for the trace in (2.6) was in fact chosen such that the inner product is

nondegenerate for λ = −1, 0, 1.
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the most convenient gauge to compute !-exponentials of a and verify (3.7) since, as we

will see below, a can be written as a combination of commuting projection operators or,

equivalently, a is diagonal in the matrix representation introduced in section 2. From the

discussion in the previous sections, the sought-for diagonal gauge connections must satisfy

the following requirements:

1. They are smooth, i.e. they satisfy (3.7).

2. They can be brought to the highest weight gauge expression (3.2) by a nonsingular

gauge transformation.

3. When viewed as infinite matrices, they belong to the class discussed in section 2.

In the diagonal gauge this means that the condition b must be satisfied on the

main diagonal.

Of these conditions, 2 is the most difficult to verify, since it involves checking invertibility

of an infinite matrix. One can however derive necessary conditions for 2 to hold, which we

do in appendix C. Therefore, in practice we will replace condition 2 with

2’ All eigenvalues of the diagonal connections are distinct and, for λ non-integer, different

from zero (see appendix C). Furthermore, 2 is satisfied when λ is taken to be an

integer N (for N sufficiently large, in a sense to be discussed below, in particular

above (4.14)).

We will now construct the most general diagonal gauge connection that satisfies the

requirements 1, 2’ and 3. As we shall see, the simplest class of such solutions is specified by

a Young diagram, and these are the natural generalizations to hs[λ] of the sl(N) conical

solutions constructed in [16].

First we address the requirement 1. Instead of expanding in the standard basis {T !
0},

it will be useful to expand in a different basis for the diagonal gauge, namely the operators

{Pj} which, in the matrix representation, are simply

(Pj)kl = δjkδjl . (4.1)

The main advantage of the new basis is that the Pj are mutually commuting !-algebra

projectors:

PjPk = Pjδjk . (4.2)

This property is of course most easily verified in the matrix representation. Their trace,

using (2.19) is7

trPj =
6

λ(λ2 − 1)
. (4.3)

The most general hs[λ] element in the diagonal gauge can then be expanded as

a = − i
∑

j

mjPj +
λ2 − 1

6
i tr

(
∑

j

mjPj

)

T 0
0 (4.4)

7Although the trace is distributive over a finite combination of Pj ’s, we should warn the reader that this

is not the case for infinite sums of Pj ’s. For example, one has tr
∑∞

j=1 j
rPj = 6

λ(λ2−1)
H(−r)

λ , where H(r)
n

are the harmonic numbers.
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where the second term is needed to ensure that a is traceless and hence belongs to hs[λ].

Note that, from the relations
∑

j Pj = T 0
0 , trT 0

0 = 6/(λ2 − 1), the coefficients mj are only

determined up to an overall shift mj → mj + α which leaves a invariant. We can now

exponentiate (4.4) using (4.2) and (2.5), to obtain

e2πa = e2π
λ2−1

6 i tr(
∑

j mjPj)
(

T 0
0 +

∑

j

(e−2πimj − 1)Pj

)

. (4.5)

This is proportional to the identity T 0
0 if and only if, up to the overall shift freedom

discussed above, the mj are integers. This conclusion could of course also be reached

by using the matrix representation (4.1). We shall in what follows partially fix the shift

freedom so that the mj are integers. This still leaves the freedom to shift all the mj by

an overall integer. The connection then satisfies the trivial holonomy condition (3.7) with

ϕ0 = 2π λ2−1
6 tr(

∑

j mjPj).

Now we turn to the further conditions imposed by requirements 2’ and 3. As discussed

in appendix C, 2’ imposes that all the mj are distinct and that, for λ non-integer, the

‘eigenvalues’ mj −
λ2−1
6 tr(

∑

j mjPj) are different from zero. Condition 3 imposes that, for

j sufficiently large, the mj are given by a polynomial in j. The latter requirement implies

that the mj are bounded, either from above or below. Indeed, because the mj become

polynomial for large j, depending on the sign of the coefficient of the highest power of j,

there must exist an integer M such that the mj are either monotonically decreasing or

increasing for j > M . In the first case the mj are bounded above by sup {mj}j≤M and in

the second case they are bounded below by inf{mj}j≤M .

Let’s first consider the case where the integers mj are bounded from above. By per-

forming a gauge transformation which permutes only the first M eigenvalues, which can be

achieved by embedding the appropriate sl(M) Lie algebra element in hs[λ], we can arrange

for the mj to form a strictly ordered set

m1 > m2 > . . . (4.6)

We then define new integers sj
sj = mj + j (4.7)

which form an ordered set:

s1 ≥ s2 ≥ . . . (4.8)

Substituting (4.7) into (4.9) and using the expression for T 1
0 in (2.10) gives

a = − i
∑

j

sjPj +
λ2 − 1

6
i tr

(
∑

j

sjPj

)

T 0
0 − i T 1

0 . (4.9)

The condition 3 requires that the sj become polynomial in j for sufficiently large j.

The simplest class of solutions, which will have a natural interpretation in the dual CFT,

is where this polynomial is simply a constant integer S. The sj are then equivalent, upon

performing an overall shift by S, to the positive natural numbers

rj = sj − S. (4.10)
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From the above considerations it follows that the Chern-Simons equations are formally

invariant under finite gauge transformations of the form

A → g−1 ! (A+ d) ! g , (2.4)

where g = ev! is the !-exponential of an element of hs[λ]. We will in this work skirt around

thorny questions such as for which linear combinations of the generators the !-exponential

makes sense and if the resulting elements form a Lie group. We would like to point out

however that the !-exponential is well-defined on a multiple of a projector P of the !-algebra

satisfying P ! P = P , giving the result

ecP! = T 0
0 + (ec − 1)P. (2.5)

This observation will play an important role in our construction of smooth solutions in

section 4.3

Another important operation in the characterization of gl[λ] is the trace. For an

element v ∈ gl[λ] it is defined to be proportional to the coefficient of T 0
0 :

tr v =
6

(λ2 − 1)
v |T !

m=0 for "> 0 . (2.6)

The normalisation is chosen such that tr(T 1
1 T 1

−1) = −1. The definition of the trace gives a

natural definition of the determinant of a !-exponential:

det ev! ≡ etr v . (2.7)

With this definition, if v belongs to hs[λ], the corresponding finite gauge transformation

g = ev! has unit determinant.

The trace also induces an hs[λ]-invariant inner product (u, v) = tr(u ! v) [25], that

allows to define a Chern-Simons action and for which the chosen basis {T "
m} is orthogonal.

For generic λ this inner product is nondegenerate, but when λ is equal to an integer N

with N %= −1, 0, 1,4 it degenerates:

tr(T i
m ! T j

n ) = 0 for i, j ≥ N . (2.8)

This implies that an ideal appears, spanned by the generators T "
m for # ≥ N . Quotienting

by this ideal truncates to the algebra sl(N).

It will also be useful to have at our disposal a concrete representation of hs[λ] in terms

of infinite matrices. A representation of hs[λ] (analogous to the defining representation of

sl(N)) can be constructed from a representation of sl(2) with commutation relations

[ J+ , J− ] = 2J0 , (2.9)

[ J0 , J± ] = ∓J± , (2.10)

3For a review on the use of projectors in the construction of solutions of higher-spin field equations see

e.g. [24].
4The normalization convention for the trace in (2.6) was in fact chosen such that the inner product is

nondegenerate for λ = −1, 0, 1.
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From the above considerations it follows that the Chern-Simons equations are formally

invariant under finite gauge transformations of the form

A → g−1 ! (A+ d) ! g , (2.4)

where g = ev! is the !-exponential of an element of hs[λ]. We will in this work skirt around

thorny questions such as for which linear combinations of the generators the !-exponential

makes sense and if the resulting elements form a Lie group. We would like to point out

however that the !-exponential is well-defined on a multiple of a projector P of the !-algebra

satisfying P ! P = P , giving the result

ecP! = T 0
0 + (ec − 1)P. (2.5)

This observation will play an important role in our construction of smooth solutions in

section 4.3

Another important operation in the characterization of gl[λ] is the trace. For an

element v ∈ gl[λ] it is defined to be proportional to the coefficient of T 0
0 :

tr v =
6

(λ2 − 1)
v |T !

m=0 for "> 0 . (2.6)

The normalisation is chosen such that tr(T 1
1 T 1

−1) = −1. The definition of the trace gives a

natural definition of the determinant of a !-exponential:

det ev! ≡ etr v . (2.7)

With this definition, if v belongs to hs[λ], the corresponding finite gauge transformation

g = ev! has unit determinant.

The trace also induces an hs[λ]-invariant inner product (u, v) = tr(u ! v) [25], that

allows to define a Chern-Simons action and for which the chosen basis {T "
m} is orthogonal.

For generic λ this inner product is nondegenerate, but when λ is equal to an integer N

with N %= −1, 0, 1,4 it degenerates:

tr(T i
m ! T j

n ) = 0 for i, j ≥ N . (2.8)

This implies that an ideal appears, spanned by the generators T "
m for # ≥ N . Quotienting

by this ideal truncates to the algebra sl(N).

It will also be useful to have at our disposal a concrete representation of hs[λ] in terms

of infinite matrices. A representation of hs[λ] (analogous to the defining representation of

sl(N)) can be constructed from a representation of sl(2) with commutation relations

[ J+ , J− ] = 2J0 , (2.9)

[ J0 , J± ] = ∓J± , (2.10)

3For a review on the use of projectors in the construction of solutions of higher-spin field equations see

e.g. [24].
4The normalization convention for the trace in (2.6) was in fact chosen such that the inner product is

nondegenerate for λ = −1, 0, 1.
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the most convenient gauge to compute !-exponentials of a and verify (3.7) since, as we

will see below, a can be written as a combination of commuting projection operators or,

equivalently, a is diagonal in the matrix representation introduced in section 2. From the

discussion in the previous sections, the sought-for diagonal gauge connections must satisfy

the following requirements:

1. They are smooth, i.e. they satisfy (3.7).

2. They can be brought to the highest weight gauge expression (3.2) by a nonsingular

gauge transformation.

3. When viewed as infinite matrices, they belong to the class discussed in section 2.

In the diagonal gauge this means that the condition b must be satisfied on the

main diagonal.

Of these conditions, 2 is the most difficult to verify, since it involves checking invertibility

of an infinite matrix. One can however derive necessary conditions for 2 to hold, which we

do in appendix C. Therefore, in practice we will replace condition 2 with

2’ All eigenvalues of the diagonal connections are distinct and, for λ non-integer, different

from zero (see appendix C). Furthermore, 2 is satisfied when λ is taken to be an

integer N (for N sufficiently large, in a sense to be discussed below, in particular

above (4.14)).

We will now construct the most general diagonal gauge connection that satisfies the

requirements 1, 2’ and 3. As we shall see, the simplest class of such solutions is specified by

a Young diagram, and these are the natural generalizations to hs[λ] of the sl(N) conical

solutions constructed in [16].

First we address the requirement 1. Instead of expanding in the standard basis {T !
0},

it will be useful to expand in a different basis for the diagonal gauge, namely the operators

{Pj} which, in the matrix representation, are simply

(Pj)kl = δjkδjl . (4.1)

The main advantage of the new basis is that the Pj are mutually commuting !-algebra

projectors:

PjPk = Pjδjk . (4.2)

This property is of course most easily verified in the matrix representation. Their trace,

using (2.19) is7

trPj =
6

λ(λ2 − 1)
. (4.3)

The most general hs[λ] element in the diagonal gauge can then be expanded as

a = − i
∑

j

mjPj +
λ2 − 1

6
i tr

(
∑

j

mjPj

)

T 0
0 (4.4)

7Although the trace is distributive over a finite combination of Pj ’s, we should warn the reader that this

is not the case for infinite sums of Pj ’s. For example, one has tr
∑∞

j=1 j
rPj = 6

λ(λ2−1)
H(−r)

λ , where H(r)
n

are the harmonic numbers.
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where the second term is needed to ensure that a is traceless and hence belongs to hs[λ].

Note that, from the relations
∑

j Pj = T 0
0 , trT 0

0 = 6/(λ2 − 1), the coefficients mj are only

determined up to an overall shift mj → mj + α which leaves a invariant. We can now

exponentiate (4.4) using (4.2) and (2.5), to obtain

e2πa = e2π
λ2−1

6 i tr(
∑

j mjPj)
(

T 0
0 +

∑

j

(e−2πimj − 1)Pj

)

. (4.5)

This is proportional to the identity T 0
0 if and only if, up to the overall shift freedom

discussed above, the mj are integers. This conclusion could of course also be reached

by using the matrix representation (4.1). We shall in what follows partially fix the shift

freedom so that the mj are integers. This still leaves the freedom to shift all the mj by

an overall integer. The connection then satisfies the trivial holonomy condition (3.7) with

ϕ0 = 2π λ2−1
6 tr(

∑

j mjPj).

Now we turn to the further conditions imposed by requirements 2’ and 3. As discussed

in appendix C, 2’ imposes that all the mj are distinct and that, for λ non-integer, the

‘eigenvalues’ mj −
λ2−1
6 tr(

∑

j mjPj) are different from zero. Condition 3 imposes that, for

j sufficiently large, the mj are given by a polynomial in j. The latter requirement implies

that the mj are bounded, either from above or below. Indeed, because the mj become

polynomial for large j, depending on the sign of the coefficient of the highest power of j,

there must exist an integer M such that the mj are either monotonically decreasing or

increasing for j > M . In the first case the mj are bounded above by sup {mj}j≤M and in

the second case they are bounded below by inf{mj}j≤M .

Let’s first consider the case where the integers mj are bounded from above. By per-

forming a gauge transformation which permutes only the first M eigenvalues, which can be

achieved by embedding the appropriate sl(M) Lie algebra element in hs[λ], we can arrange

for the mj to form a strictly ordered set

m1 > m2 > . . . (4.6)

We then define new integers sj
sj = mj + j (4.7)

which form an ordered set:

s1 ≥ s2 ≥ . . . (4.8)

Substituting (4.7) into (4.9) and using the expression for T 1
0 in (2.10) gives

a = − i
∑

j

sjPj +
λ2 − 1

6
i tr

(
∑

j

sjPj

)

T 0
0 − i T 1

0 . (4.9)

The condition 3 requires that the sj become polynomial in j for sufficiently large j.

The simplest class of solutions, which will have a natural interpretation in the dual CFT,

is where this polynomial is simply a constant integer S. The sj are then equivalent, upon

performing an overall shift by S, to the positive natural numbers

rj = sj − S. (4.10)
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the most convenient gauge to compute !-exponentials of a and verify (3.7) since, as we

will see below, a can be written as a combination of commuting projection operators or,

equivalently, a is diagonal in the matrix representation introduced in section 2. From the

discussion in the previous sections, the sought-for diagonal gauge connections must satisfy

the following requirements:

1. They are smooth, i.e. they satisfy (3.7).

2. They can be brought to the highest weight gauge expression (3.2) by a nonsingular

gauge transformation.

3. When viewed as infinite matrices, they belong to the class discussed in section 2.

In the diagonal gauge this means that the condition b must be satisfied on the

main diagonal.

Of these conditions, 2 is the most difficult to verify, since it involves checking invertibility

of an infinite matrix. One can however derive necessary conditions for 2 to hold, which we

do in appendix C. Therefore, in practice we will replace condition 2 with

2’ All eigenvalues of the diagonal connections are distinct and, for λ non-integer, different

from zero (see appendix C). Furthermore, 2 is satisfied when λ is taken to be an

integer N (for N sufficiently large, in a sense to be discussed below, in particular

above (4.14)).

We will now construct the most general diagonal gauge connection that satisfies the

requirements 1, 2’ and 3. As we shall see, the simplest class of such solutions is specified by

a Young diagram, and these are the natural generalizations to hs[λ] of the sl(N) conical

solutions constructed in [16].

First we address the requirement 1. Instead of expanding in the standard basis {T !
0},

it will be useful to expand in a different basis for the diagonal gauge, namely the operators

{Pj} which, in the matrix representation, are simply

(Pj)kl = δjkδjl . (4.1)

The main advantage of the new basis is that the Pj are mutually commuting !-algebra

projectors:

PjPk = Pjδjk . (4.2)

This property is of course most easily verified in the matrix representation. Their trace,

using (2.19) is7

trPj =
6

λ(λ2 − 1)
. (4.3)

The most general hs[λ] element in the diagonal gauge can then be expanded as

a = − i
∑

j

mjPj +
λ2 − 1

6
i tr

(
∑

j

mjPj

)

T 0
0 (4.4)

7Although the trace is distributive over a finite combination of Pj ’s, we should warn the reader that this

is not the case for infinite sums of Pj ’s. For example, one has tr
∑∞

j=1 j
rPj = 6

λ(λ2−1)
H(−r)

λ , where H(r)
n

are the harmonic numbers.
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where the second term is needed to ensure that a is traceless and hence belongs to hs[λ].

Note that, from the relations
∑

j Pj = T 0
0 , trT 0

0 = 6/(λ2 − 1), the coefficients mj are only

determined up to an overall shift mj → mj + α which leaves a invariant. We can now

exponentiate (4.4) using (4.2) and (2.5), to obtain

e2πa = e2π
λ2−1

6 i tr(
∑

j mjPj)
(

T 0
0 +

∑

j

(e−2πimj − 1)Pj

)

. (4.5)

This is proportional to the identity T 0
0 if and only if, up to the overall shift freedom

discussed above, the mj are integers. This conclusion could of course also be reached

by using the matrix representation (4.1). We shall in what follows partially fix the shift

freedom so that the mj are integers. This still leaves the freedom to shift all the mj by

an overall integer. The connection then satisfies the trivial holonomy condition (3.7) with

ϕ0 = 2π λ2−1
6 tr(

∑

j mjPj).

Now we turn to the further conditions imposed by requirements 2’ and 3. As discussed

in appendix C, 2’ imposes that all the mj are distinct and that, for λ non-integer, the

‘eigenvalues’ mj −
λ2−1
6 tr(

∑

j mjPj) are different from zero. Condition 3 imposes that, for

j sufficiently large, the mj are given by a polynomial in j. The latter requirement implies

that the mj are bounded, either from above or below. Indeed, because the mj become

polynomial for large j, depending on the sign of the coefficient of the highest power of j,

there must exist an integer M such that the mj are either monotonically decreasing or

increasing for j > M . In the first case the mj are bounded above by sup {mj}j≤M and in

the second case they are bounded below by inf{mj}j≤M .

Let’s first consider the case where the integers mj are bounded from above. By per-

forming a gauge transformation which permutes only the first M eigenvalues, which can be

achieved by embedding the appropriate sl(M) Lie algebra element in hs[λ], we can arrange

for the mj to form a strictly ordered set

m1 > m2 > . . . (4.6)

We then define new integers sj
sj = mj + j (4.7)

which form an ordered set:

s1 ≥ s2 ≥ . . . (4.8)

Substituting (4.7) into (4.9) and using the expression for T 1
0 in (2.10) gives

a = − i
∑

j

sjPj +
λ2 − 1

6
i tr

(
∑

j

sjPj

)

T 0
0 − i T 1

0 . (4.9)

The condition 3 requires that the sj become polynomial in j for sufficiently large j.

The simplest class of solutions, which will have a natural interpretation in the dual CFT,

is where this polynomial is simply a constant integer S. The sj are then equivalent, upon

performing an overall shift by S, to the positive natural numbers

rj = sj − S. (4.10)
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where the second term is needed to ensure that a is traceless and hence belongs to hs[λ].

Note that, from the relations
∑

j Pj = T 0
0 , trT 0

0 = 6/(λ2 − 1), the coefficients mj are only

determined up to an overall shift mj → mj + α which leaves a invariant. We can now

exponentiate (4.4) using (4.2) and (2.5), to obtain
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(
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0 +
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)

. (4.5)

This is proportional to the identity T 0
0 if and only if, up to the overall shift freedom

discussed above, the mj are integers. This conclusion could of course also be reached

by using the matrix representation (4.1). We shall in what follows partially fix the shift

freedom so that the mj are integers. This still leaves the freedom to shift all the mj by

an overall integer. The connection then satisfies the trivial holonomy condition (3.7) with

ϕ0 = 2π λ2−1
6 tr(

∑

j mjPj).

Now we turn to the further conditions imposed by requirements 2’ and 3. As discussed

in appendix C, 2’ imposes that all the mj are distinct and that, for λ non-integer, the

‘eigenvalues’ mj −
λ2−1
6 tr(

∑

j mjPj) are different from zero. Condition 3 imposes that, for

j sufficiently large, the mj are given by a polynomial in j. The latter requirement implies

that the mj are bounded, either from above or below. Indeed, because the mj become

polynomial for large j, depending on the sign of the coefficient of the highest power of j,

there must exist an integer M such that the mj are either monotonically decreasing or

increasing for j > M . In the first case the mj are bounded above by sup {mj}j≤M and in

the second case they are bounded below by inf{mj}j≤M .

Let’s first consider the case where the integers mj are bounded from above. By per-

forming a gauge transformation which permutes only the first M eigenvalues, which can be

achieved by embedding the appropriate sl(M) Lie algebra element in hs[λ], we can arrange

for the mj to form a strictly ordered set

m1 > m2 > . . . (4.6)

We then define new integers sj
sj = mj + j (4.7)

which form an ordered set:

s1 ≥ s2 ≥ . . . (4.8)

Substituting (4.7) into (4.9) and using the expression for T 1
0 in (2.10) gives

a = − i
∑

j

sjPj +
λ2 − 1

6
i tr

(
∑

j

sjPj

)

T 0
0 − i T 1

0 . (4.9)

The condition 3 requires that the sj become polynomial in j for sufficiently large j.

The simplest class of solutions, which will have a natural interpretation in the dual CFT,

is where this polynomial is simply a constant integer S. The sj are then equivalent, upon

performing an overall shift by S, to the positive natural numbers

rj = sj − S. (4.10)
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where the second term is needed to ensure that a is traceless and hence belongs to hs[λ].

Note that, from the relations
∑

j Pj = T 0
0 , trT 0

0 = 6/(λ2 − 1), the coefficients mj are only

determined up to an overall shift mj → mj + α which leaves a invariant. We can now

exponentiate (4.4) using (4.2) and (2.5), to obtain

e2πa = e2π
λ2−1

6 i tr(
∑

j mjPj)
(

T 0
0 +

∑

j

(e−2πimj − 1)Pj

)

. (4.5)

This is proportional to the identity T 0
0 if and only if, up to the overall shift freedom

discussed above, the mj are integers. This conclusion could of course also be reached

by using the matrix representation (4.1). We shall in what follows partially fix the shift

freedom so that the mj are integers. This still leaves the freedom to shift all the mj by

an overall integer. The connection then satisfies the trivial holonomy condition (3.7) with

ϕ0 = 2π λ2−1
6 tr(

∑

j mjPj).

Now we turn to the further conditions imposed by requirements 2’ and 3. As discussed

in appendix C, 2’ imposes that all the mj are distinct and that, for λ non-integer, the

‘eigenvalues’ mj −
λ2−1
6 tr(

∑

j mjPj) are different from zero. Condition 3 imposes that, for

j sufficiently large, the mj are given by a polynomial in j. The latter requirement implies

that the mj are bounded, either from above or below. Indeed, because the mj become

polynomial for large j, depending on the sign of the coefficient of the highest power of j,

there must exist an integer M such that the mj are either monotonically decreasing or

increasing for j > M . In the first case the mj are bounded above by sup {mj}j≤M and in

the second case they are bounded below by inf{mj}j≤M .

Let’s first consider the case where the integers mj are bounded from above. By per-

forming a gauge transformation which permutes only the first M eigenvalues, which can be

achieved by embedding the appropriate sl(M) Lie algebra element in hs[λ], we can arrange

for the mj to form a strictly ordered set

m1 > m2 > . . . (4.6)

We then define new integers sj
sj = mj + j (4.7)

which form an ordered set:

s1 ≥ s2 ≥ . . . (4.8)

Substituting (4.7) into (4.9) and using the expression for T 1
0 in (2.10) gives

a = − i
∑

j

sjPj +
λ2 − 1

6
i tr

(
∑

j

sjPj

)

T 0
0 − i T 1

0 . (4.9)

The condition 3 requires that the sj become polynomial in j for sufficiently large j.

The simplest class of solutions, which will have a natural interpretation in the dual CFT,

is where this polynomial is simply a constant integer S. The sj are then equivalent, upon

performing an overall shift by S, to the positive natural numbers

rj = sj − S. (4.10)
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Since the rj are decreasing and become zero for sufficiently large j, they define a Young

diagram Λ with a finite number of boxes, containing rj boxes in the j-th row. In summary

we have constructed a subclass of smooth solutions in one-to-one correspondence with

Young diagrams Λ given by

aΛ = − i
∑

j

rjPj +
iB

λ
T 0
0 − i T 1

0 (4.11)

where B denotes the total number of boxes in Λ and we have used (4.3).

We still have to verify the part of the condition 2’ which imposes that, for λ non-integer,

none of the eigenvalues are zero. For a given Young diagram this happens for a discrete set

of values of λ, however the range 0 < λ < 1 is special: for λ in this range the eigenvalues

are always nonzero.8 This is also the range of λ where the asymptotic symmetry algebra

governing the Vasiliev theory is the same as the one governing the Gaberdiel-Gopakumar-’t

Hooft limit of the WN minimal models. We will discuss this in more detail in section 6.

Likewise, one can analyze the class of solutions where {mj} are bounded from below.

In this case we can apply the steps of the previous paragraphs to the connection −a. Hence

to every Young diagram Λ we can associate a second smooth solution, namely

aΛ = − aΛ = i
∑

j

rjPj −
iB

λ
T 0
0 + i T 1

0 . (4.12)

From the remark above (3.6) we infer that aΛ has the same even spin charges as aΛ but

that their odd spin charges have opposite signs.

Let’s take a closer look at the sign of the energy of the solutions (4.11), (4.12). The

explicit expression for the energy is, from (3.4),

h(aΛ) = −

(

B2 − λ2B + λ
∑

j

(c2j − r2j )

)
c

2λ2(1− λ2)
(4.13)

where rj(cj) denotes the number of boxes in the j-th row (column) and B is the total

number of boxes in Λ. Let’s first consider the regime |λ| > 1. There are then solutions for

which the energy is positive: it suffices to take B > λ2 and
∑

j c
2
j >

∑

j r
2
j . This should

be compared to the the sl(N) case, where all the conical solutions have negative energy.

Once again the range |λ| ≤ 1 is special: the energy is always negative there, since the

expression between brackets in (4.13) is positive. This can be seen by using the inequality

B2 ≥
∑

j r
2
j + 2B for 0 ≤ λ ≤ 1 and the inequality B2 ≥

∑

j c
2
j + 2B for −1 ≤ λ ≤ 0.

We conclude the discussion of the solutions (4.11), (4.12) with the important remark

that they are natural continuations of the conical sl(N) solutions of [16]. When λ is taken

to be a positive integer N larger than the number of rows in Λ, projecting aΛ and aΛ to

the first N ×N block gives the sl(N) matrices

(bΛ)jk = − i

(

rj −
B

N
+

N + 1

2
− j

)

δjk; bΛ = −bΛ j, k = 1, . . . , N (4.14)

8Since the eigenvalues are −i(rj − j − B/λ + (λ + 1)/2), a possible zero eigenvalue occurs at λ± =
1
2 (2(j − rj) − 1 ±

√

(2(j − rj)− 1)2 + 8B). The value λ− is always negative, while λ+ ≥ 1. To show the

latter inequality, we use that when j − rj > 0 we have λ+ ≥ 2(j − rj)− 1 ≥ 1, while for j − rj ≤ 0 we use

that from B > rj − j it follows that 8B > 2|2(j − rj)− 1|+ 1.
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where the second term is needed to ensure that a is traceless and hence belongs to hs[λ].
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discussed above, the mj are integers. This conclusion could of course also be reached

by using the matrix representation (4.1). We shall in what follows partially fix the shift

freedom so that the mj are integers. This still leaves the freedom to shift all the mj by

an overall integer. The connection then satisfies the trivial holonomy condition (3.7) with

ϕ0 = 2π λ2−1
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Now we turn to the further conditions imposed by requirements 2’ and 3. As discussed

in appendix C, 2’ imposes that all the mj are distinct and that, for λ non-integer, the
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increasing for j > M . In the first case the mj are bounded above by sup {mj}j≤M and in

the second case they are bounded below by inf{mj}j≤M .

Let’s first consider the case where the integers mj are bounded from above. By per-

forming a gauge transformation which permutes only the first M eigenvalues, which can be

achieved by embedding the appropriate sl(M) Lie algebra element in hs[λ], we can arrange

for the mj to form a strictly ordered set

m1 > m2 > . . . (4.6)

We then define new integers sj
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which form an ordered set:
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Since the rj are decreasing and become zero for sufficiently large j, they define a Young

diagram Λ with a finite number of boxes, containing rj boxes in the j-th row. In summary

we have constructed a subclass of smooth solutions in one-to-one correspondence with

Young diagrams Λ given by

aΛ = − i
∑

j

rjPj +
iB

λ
T 0
0 − i T 1

0 (4.11)

where B denotes the total number of boxes in Λ and we have used (4.3).

We still have to verify the part of the condition 2’ which imposes that, for λ non-integer,

none of the eigenvalues are zero. For a given Young diagram this happens for a discrete set

of values of λ, however the range 0 < λ < 1 is special: for λ in this range the eigenvalues

are always nonzero.8 This is also the range of λ where the asymptotic symmetry algebra

governing the Vasiliev theory is the same as the one governing the Gaberdiel-Gopakumar-’t

Hooft limit of the WN minimal models. We will discuss this in more detail in section 6.

Likewise, one can analyze the class of solutions where {mj} are bounded from below.

In this case we can apply the steps of the previous paragraphs to the connection −a. Hence

to every Young diagram Λ we can associate a second smooth solution, namely

aΛ = − aΛ = i
∑

j

rjPj −
iB

λ
T 0
0 + i T 1

0 . (4.12)

From the remark above (3.6) we infer that aΛ has the same even spin charges as aΛ but

that their odd spin charges have opposite signs.

Let’s take a closer look at the sign of the energy of the solutions (4.11), (4.12). The

explicit expression for the energy is, from (3.4),

h(aΛ) = −

(

B2 − λ2B + λ
∑
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(c2j − r2j )

)
c

2λ2(1− λ2)
(4.13)

where rj(cj) denotes the number of boxes in the j-th row (column) and B is the total

number of boxes in Λ. Let’s first consider the regime |λ| > 1. There are then solutions for

which the energy is positive: it suffices to take B > λ2 and
∑

j c
2
j >

∑

j r
2
j . This should

be compared to the the sl(N) case, where all the conical solutions have negative energy.

Once again the range |λ| ≤ 1 is special: the energy is always negative there, since the

expression between brackets in (4.13) is positive. This can be seen by using the inequality

B2 ≥
∑
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2
j + 2B for 0 ≤ λ ≤ 1 and the inequality B2 ≥

∑
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2
j + 2B for −1 ≤ λ ≤ 0.

We conclude the discussion of the solutions (4.11), (4.12) with the important remark

that they are natural continuations of the conical sl(N) solutions of [16]. When λ is taken

to be a positive integer N larger than the number of rows in Λ, projecting aΛ and aΛ to

the first N ×N block gives the sl(N) matrices

(bΛ)jk = − i

(

rj −
B

N
+

N + 1

2
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)

δjk; bΛ = −bΛ j, k = 1, . . . , N (4.14)

8Since the eigenvalues are −i(rj − j − B/λ + (λ + 1)/2), a possible zero eigenvalue occurs at λ± =
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2 (2(j − rj) − 1 ±
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CONCLUSIONS & OUTLOOK

hs[λ] can be conveniently treated as an algebra of 
infinite matrices

Simple discussion of smoothness conditions

Applications:

Drinfeld-Sokolov reduction i.e. asymptotics

Conical solutions in Vasiliev theory

Perspectives:

Role on the CFT side of the smooth solution that are not 
classified by finite Young tableaux? (see talk by J. Raeymaekers)

New thermodynamical branches built on these solutions?
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