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GRAVITY IN D=2+

¢ Einstein-Hilbert action
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¢ Field equations
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¢ Rewriting in terms of the metric
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¢ A couple of useful tricks...
1

ali el a b,c

2
¢ 50(2,2) = so(1,2) ® so(l,2) = sl(2,R) @ sI(2,R)

¢ Rewriting in terms of the metric

; 2
uw = Nab €y = 167TG/d3$V (R+12>



GRAVITY IN D=2+

¢ Einstein-Hilbert action

1 It
I:% (e AT R +@eabce A e /\6)

¢ A couple of useful tricks...
1

ali el a b,c

2
¢ 50(2,2) = so(1,2) ® so(l,2) = sl(2,R) @ sI(2,R)

¢ Rewriting in terms of the metric

2
uw = Nab €y = 167TG/d3$V (R+12>



GRAVITY IN D=2+

P ElnSteln'Hllbe rt aCtlon Achucarro, Townsend (1986); Witten (1988)
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GRAVITY IN D=2+

P ElnSteln'Hllbe rt aCtIOn Achucarro, Townsend (1986); Witten (1988)
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¢ A couple of useful tricks...
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¢ 50(2,2) = so(1,2) ® so(l,2) = sl(2,R) @ sI(2,R)

% Chern-Simons formulation on AdS3
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HIGHER SPINS IN D=2+

¢ Natural generalization of the gravity frame action siencowe (1989)
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¢ For g = sl(N,R) describes fields of “spin” 2,3,..,N
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¢ Example: the sl(3,R) algebra
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HIGHER SPINS IN D=2+

¢ Natural generalization of the gravity frame action siencowe (1989)

1 |
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¢ For g = sl(N,R) describes fields of “spin” 2,3,..,N
e GMAJACZZC’U — (eM“Ja—FeM“bTabﬂL---) dxt
e wMA TR — (wﬂaJa —I—wuabTab + - ) dx*

¢ More in general: take any Lie algebra g with a non-degenerate
Killing form and branch it under the adjoint action of sl(2,R)“g

g = sl(2,R) & g(f"")) o el g




HIGHER SPINS IN D=2+

¢ Simple characterization in terms of Chern-Simons
theories (for gauge fields)

e:%(A—Z),w:%(A%—E) —

Fi=dAGF ANA =0 F=dA+ANA
¢ Simple field equations, but rich space of solutions on AdS

“ Non-trivial topology — black holes Gutperle, Kraus (2011)

Gaberdiel, Gopakumar

* Boundary conditions = boundary dynamics, AdS/CFT... (2010)

Gutperle, Kraus (201 1)

Castro, Gopakumar, Gutperle,
Raeymaekers (201 I)

* How to select “non-singular” solutions!?



OUTLINE
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Coupling o spins: hs[A] Chern-Simons theories

Smoothness criteria for asymptotically AdS solutions
“Analytic continuation” of the sl(N) conical surpluses

Conclusion
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FRAME-LIKE DESCRIPTION FOR HS

¢ HS “vielbeins” and “spin connections”

CUSIY- <Gl g2 b,al...as_l <4

© Everything is traceless, then in D=2+1...

& L s (Uit 4 8- REL b,C
6 ~ (example: w,," = 5 €pcwy )

“ “Vielbeins” and “spin connections” have the same structure

¢ Structure of the higher-spin generators:

¢ e2- traceless = Tab. traceless in ab...

o e®-irreducible = |[Ju, Ty, b,y | = € a1 Tbo...bo1)m



SL(N) HIGHER-SPIN THEORIES

¢ For sl(3,R) the Jacobi identity fixes the algebra but...

2 m
@ Iyp=v—0 (J(an) ik §77ab=]c=]c) = [Jav TbC] s a(bTC)m

e 3-dim repr.for J, = [Tas, Tea] = 0 (Na(c€a)pm + Micayam ) I

¢ Consider traceless and symmetric polynomials in J,
SRR ,](a1 s Jas) (+ traceless projection in the a, indices)

¢ N-dim repr. for J,= NZ2-lind. traceless matrices out of T’s with s<N
Hoppe (1982)

General lesson to build higher-spin algebras: ¢
choose a representation of so(l,2) = sl(2,R) i

and compute products of the representatives



HIGHEST WEIGHT IRREPS OF SL(2,R)

®'Sl(2.R) algebra: ™fommein=— 27, . [J. Tl —a T
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¢ A#=N = two pairs of conjugate irreps

¢ Realize the generators as e.g.
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®'Sl(2.R) algebra: ™fommein=— 27, . [J. Tl —a T

S 1 1
¢ Casimir: Co = J§ — 5 (I +J-J4) = Z(AQ =)

¢ A#=N = two pairs of conjugate irreps

¢ Realize the generators as e.g.
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A FAITHFUL MATRIX REPR. OF HS[A]

(J+)jk = 05, k+1

¢ Irrep of sl(2,R) with highest
weight ;(\ —1): (J=)jk = 3 — A) G418

(To)ik = 5(A+1-24) 85
¢ Building the hs[A] generators: Pope, Romans, Shen (1990)
(2 t—m (£ +m)! (
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S EXPI'Clt I"eallzatlont A.C., Prochazka, Raeymaekers (201 3)
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A HS[\] CHERN-SIMONS THEORY

o The T, satisfy [J;, Ty, ] = (i — m) T

m-1
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¢ Chern-Simons theory with hs[A]®hs[A] gauge algebra
as a model for the interactions of spins 2,...,00

Bergshoeff, Blencowe, Stelle (1990); Vasiliev (1991)

¢ Field equations:

F=dA+ANA=0 F=dA+ANA=0
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o The T, satisfy [J;, Ty, ] = (i — m) T
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¢ Chern-Simons theory with hs[A]®hs[A] gauge algebra
as a model for the interactions of spins 2,...,00

Bergshoeff, Blencowe, Stelle (1990); Vasiliev (1991)

¢ Field equations:

F=dA+ANA=0 F=dA+ANA=0

® What are the “admissible” connections?



PROPERTIES OF THE HS[A] MATRICES

* Properties of the hs[A] matrices:

¢ The non-zero elements belong to the diagonal (Tf,gz)j,j—m

¢ The (T%); j—_m are polynomials in |

¢ Is that enough?! What kinds of linear combinations
do we have to consider? What are their properties!?

12



PROPERTIES OF THE HS[A] MATRICES

* Properties of the hs[A] matrices: Khesin, Malikov (199€)

¢ 3 Nsuch that v; , = 0 if j > k+N

¢ The matrix elements along a diagonal, v; ;1 for some fixed n,
become polynomial in j for sufficiently large j
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PROPERTIES OF THE HS[A] MATRICES

* Properties of the hs[A] matrices: Khesin, Malikov (1996)

® 3 N such that v; , = 0 if j > k+N

¢ The matrix elements along a diagonal, v; ;1 for some fixed n,
become polynomial in j for sufficiently large j
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PROPERTIES OF THE HS[A] MATRICES

* Properties of the hs[A] matrices: Khesin, Malikov (1996)

® 3 N such that v; , = 0 if j > k+N

¢ The matrix elements along a diagonal, v; ;1 for some fixed n,
become polynomial in j for sufficiently large j

N

* The trace trv ~ lim » wj; is still well defined
N—A

J=1

“ One can perform the substitution N— )\ provided
that NV is large enough

12



SMOOTHASYMPTOTICALLY

ADS SOLUTIONS




ASYMPTOTICALLY ADS SOLUTIONS

¢ Focus on a single chiral sector: F =

¢ Radial gauge fixing:

¢ Boundary conditions

dA+ANA=0

127 = o~ =
allz) — o : Z s T s e al

N
L

— W« [A] algebra on the boundary

Henneaux, Rey (2010)
A.C., Fredenhagen, Pfenninger, Theisen (2010)

Gaberdiel, Hartman (201 1)
A.C., Fredenhagen, Pfenninger (201 1)



SMOOTH SOLUTIONS?

* How to identify smooth solutions!?

¢ The metric is no longer gauge invariant: the usual regularity
conditions do not apply

“ One can ask that the gauge field A is non singular
¢ Gauge invariant characterization: holonomies
H(A) — 7) EXP \% A — g_l eXp(27TCL) 0] Gutperle, Kraus (2011)

“ Smooth solutions = trivial holonomy around @

H L 21ma L ZSOO TO < Castro, Gopakumar, Gutperle, Raeymaekers (201 I)
—e""" =e¢ 0

A.C., Prochazka, Raeymaekers (201 3)
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“ HS[A] PROJECTORS

¢ How to control exponentials of hs[A] elements?

¢ A simple class under control: the gl[A] projectors
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HS[A] PROJECTORS

¢ How to control exponentials of hs[A] elements!?

¢ A simple class under control: the gl[A] projectors
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¢ General hs[A] element in diagonal gauge
| A -1 o 3
a = —1 ;m]PJ i 6 1 tr ;m]PJ TO ‘
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HS[A] PROJECTORS

¢ How to control exponentials of hs[A] elements?
¢ A simple class under control: the gI[A] projectors

PxPepP i = 20 g8 (e )P

¢ General hs[A] element in diagonal gauge

)\2_1 ,
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j J
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HS[A] PROJECTORS

¢ How to control exponentials of hs[A] elements?

¢ A simple class under control: the gl[A] projectors
PxPepP i = 20 g8 (e )P

¢ General hs[A] element in diagonal gauge

,XZ —1 !
a:—iZm]’Pj | ; itr(ijPj>T8 i
j J

e, ol 7
* Holonomy: ¥ = 275 it mﬂpﬂ)<Tc§) .




THE COUNTERPARTS OF THE

SL(N) CONICAL SOLUTIONS




REWRITING OF THE SOLUTION

¢ General gauge connection that exponentiate to |
, = by 0
(s == ;mjpj i 6 1 tr ;mjpj TO

¢ Order the integer m; and define s; = m; + |

¢ solution specified by an ordered list of integers s|=s>>...

¢ the sj must become polynomials in j for large enough j

© Looking at the matrix realization of Jo ~ T leads to

A —1
a:—iZSij | 6 itr<ZSij)T(g)_iT01

j 9

18



CONICAL SOLUTIONS

¢ General gauge connection that exponentiate to |

Dl
a:—iZsijJ. G itr(Zsij>Tg—iT01

J J

¢ The s; must become polynomials in j for j large
¢ Simplest solution: sj=3S forj> N

¢ Smooth connections < Young tableaux

¢ length of the rows of A = rj=s5;-S

19
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CONICAL SOLUTIONS

* General gauge connection that exponentiate to |

Dl
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J J

* The s must become polynomials in j for j large
* Simplest solution: s;=S forj> N

¢ Smooth connections <> Young tableaux

© length of the rows of A = rj=5;-S

i B 4 A =N = conical solutions of

: 0 -l
ap — — 1 E Tij | \ 1y — 11y Castro, Gopakumar, Gutperle,
j Raeymaekers (201 1)

R —
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CONCLUSIONS & OUTLOOK

¢ hs[A] can be conveniently treated as an algebra of
infinite matrices

Kraus, Perlmutter (201 1)

¢ Simple discussion of smoothness conditions A.C. Prochiziei Raeyieaakars (2013)

© Applications:

Khesin, Malikov (1996)

¢ Drinfeld-Sokolov reduction i.e. asymptotics M Hheden o sin Bronninas @01 13

¢ Conical solutions in Vasiliev theory A.C., Prochazka, Raeymaekers (2013)

¢ Perspectives:

¢ Role on the CFT side of the smooth solution that are not
classified by finite Young tableaux? (see talk by J. Raeymaekers)

“ New thermodynamical branches built on these solutions?

20



