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Main features

”Integrable” Vasiliev theory of
infinite-dimensional multiplet of massless/gauge
fields of all spins

Klebanov-Polyakov, Sezgin-Sundell: one and the
same Vasiliev theory is dual to the simplest CFT
ever and to a phenomenologically interesting
interacting model - free/critial vector model

∂ν jνµ2,...µs
= 0 HS ’currents’

The duality does not rely on supersymmetry

The spectrum of fields/operators is simpler...



Main features

HS algebra is infinite-dimensional extension of
AdS/conformal algebra ∼ Virasoro

By contrast to 2d-Virasoro HS algebra is rigid

Rigidity results in CFT being free if the HS
symmetry is exact in d > 2
(Maldacena-Zhiboedov, 3d)

If the symmetry is broken in a smart way
(deformed) then the CFT is not free — critical
vector model (Maldacena-Zhiboedov)



HS symmetry appetizer (Giombi,...; Stanev; Zhiboedov...)

Decoupling of L−2 + αL2
−1 imposed on 〈O∆O∆1

O∆2
〉

relates ∆, ∆1 and ∆2

With HS symmetry L−2 + αL2
−1 gets replaced by ∂ν

〈jsO∆1
O∆2
〉 ∆1 = ∆2

〈js js ′O∆〉 ∆ = d + 0− 2 = 2d−2
2

〈js js ′Os ′′,∆〉
∆ = d + s ′′ − 2?

conserved current?

More nontrivial info is in Ward identities
(Maldacena-Zhiboedov)
One cannot mix massless HS theories with massive.
Either unbroken or completely broken HS symmetry.
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Free vector model

S =

∫
d3x∂µφ∂

µφ

φ⊗ φ = 1 + j0 + j2 + j4 + ...

j0 = φ2(x)

jµ1...µs = φ(x)(
←−
∂µ −

−→
∂µ)sφ(x) + ...

∂ν jνµ(s−1) = 0



Free vector model

S =

∫
d3x∂µφ∂

µφ

φ⊗ φ = 1 + J

j0 = φ2(x)

jµ1...µs = φ(x)(
←−
∂µ −

−→
∂µ)sφ(x) + ...

∂ν jνµ(s−1) = 0



Free vector model

S =

∫
d3x∂µφ∂

µφ

φ⊗ φ = 1 + J

jµ1...µs give HS charges

j sµ = jµ
ν(s−1)Kν(s−1)(x)

K is a Conformal Killing tensor



Free vector model

S =

∫
d3x∂µφ∂

µφ

φ⊗ φ = 1 + J

jµ1...µs give HS charges

j sµ = jµ
ν(s−1)Kν(s−1)(x)A(s−1),B(s−1)

s − 1
s − 1

(Eastwood)



Free vector model

S =

∫
d3x∂µφ∂

µφ

φ⊗ φ = 1 + J

jµ1...µs give HS charges

?j sµ = ΩA(s−1),B(s−1)

s − 1
s − 1



Free vector model

S =

∫
d3x∂µφ∂

µφ

φ⊗ φ = 1 + J

jµ1...µs give HS charges

∆S =
∫
φµ(s) jµ(s)

δφµ(s) = ∂µξµ(s−1) − traces

coupling to Fradkin-Tseytlin fields



Free vector model

S =

∫
d3x∂µφ∂

µφ

φ⊗ φ = 1 + J

jµ1...µs give HS charges

∆S =
∫

ΩA(s−1),B(s−1) ∧ W̄A(s−1),B(s−1)

δW̄A(s−1),B(s−1) = DξA(s−1),B(s−1)

conformal HS fields; Vasiliev

We can guess a dual theory to be the theory of WA(s−1),B(s−1)

W A,B ∼ {ea, ωa,b}



HS algebras

[TAB ,TCD ]? = TADηBC + 3more, TAB =

Vasiliev-Eastwood algebra is a quotient of the
universal enveloping algebra by a two-sided ideal

W (T ) =
∑
s

W A(k),B(k)TAB(k)
s − 1

hs(ν) of 3d HS theory too, U(sl2)/(C2 − ν)

Originally it came as associative algebras
(exact=free=linear equation=associative)

How rich is the U(TAB)?



HS algebras: universal enveloping algebra U of TAB
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• is the unit of U

represents TAB

• C2 = −1
2TAB ? T

AB

= T[AB ? TCD]

= T C
A ? TAC − 2

(d+1)ηAAC2

W A,B ∼ {ea, ωa,b}
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It is necessary to quotient red guys out, defining a
two-sided ideal I , (Eastwood; Vasiliev; Boulanger,
E.S.; Iazeolla,Sundell)
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It is necessary to quotient red guys out, defining a
two-sided ideal I , (Eastwood; Vasiliev; Boulanger,
E.S.; Iazeolla,Sundell)

I ∼= U ?

(
⊕

)
? U .

hs = U/I

C2 = C2(φ)



HS algebras: universal enveloping algebra U of TAB

•︸︷︷︸
0
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In general one has to get rid of (Vasiliev,E.S.)
as the corresponding gauge field W AA describes
partially-massless spin-two field. This fixes all higher
Casimirs as certain functions of C2.



HS algebras: universal enveloping algebra U of TAB

•︸︷︷︸
0
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︸ ︷︷ ︸

1

⊕

(
⊕ ⊕ ⊕ •

)
︸ ︷︷ ︸

2

⊕
(

⊕ . . .
)

︸ ︷︷ ︸
3

⊕ . . .

The most general HS algebra can be defined as
(Boulanger, E.S.)

hsd(ν) = U/ (U ? { ⊕ (C2 − ν)} ? U)

hs(ν) =
⊕

....



List of HS algebras

Large stock of HS algebras hsd(ν)

hs3(ν) exactly hs(ν) of 3d HS theory

hsd(− (d−1)(d−3)
4

) Vasiliev algebra for AdSd+1

hs5(ν) discussed by Günaydin

hs5(9) f.dim (Manvelyan, Mkrtchyan2, Theisen)

∗ algebras for p.-m. fields

∗ algebra of generalized free fields

There are finite-dim. truncations like in 3d
All algebras are consistent up to the cubic level
Mixed-symmetry fields in general

(Boulanger, E.S., 2011; Boulanger, E.S., Ponomarev, 2012)



Vas6 siliev invariants

Given an adjoint field of HS algebra

δΨi = [Ψi , ξ]

we can construct invariants

Inv(Ψ1, ...,Ψn) =
∑
Sn

Tr(Ψ1 ? ... ? Ψn)

These are invariant under full HS⊃conformal
symmetry. (Sundell et al)



Correlators as Invariants of HS symmetry

Invariants can give correlation functions if Ψ is
related to boundary-to-bulk propagator B ,
Ψ = B ? δ (Sundell, Colombo)

〈j ...j〉 =
∑
Sn

Tr(Ψ1 ? ... ? Ψn)

B is the twisted-adjoint field in the bulk
B generating function of conserved currents on the
boundary



Twistorial contact Witten diagram

X

x1

x2

xn zg L =
∑
N

∫
AdS

Tr(ΨN)

X is erased by trace.
Should work in 3d too!!



AdS/CFT dictionary

CFT AdS

〈j ...j〉 Tr(Ψ ? ... ? Ψ)

[Q, j ] =
∑
∂..∂j δΨ = [Ψ, ξ]

Q〈j ...j〉 = 0 δ Tr(Ψ ? ... ? Ψ) ≡ 0



HS propagators

dB + Ω ? B − B ? Ω̃ = 0

B intertwines HS master-field in the bulk and
generating function of conserved currents on the
boundary

B is a projector, B ? B = B
(V.Didenko, E.S.; P.Kraus, E.Permutter)

B is an extremal projector, e ? B = B ? f = 0,
(R.Gover, A.Waldron; V.Didenko, E.S.)



AdS4 HS algebra. sp(4) ∼ so(3, 2)

The Vasiliev HS algebra is a Moyal ?-product
algebra of functions of sp(4) vectors YA, A = 1..4

(f ? g)(Y ) = f (Y ) exp
{
i
←−
∂Aε

AB−→∂B
}
g(Y )

in particular
[YA,YB ]? = 2iεAB

and sp(4) generators in HS algebra read

TAB = − i

4
{YA,YB}?



AdS4 propagators: (Giombi, Yin)

Gaussians in ?-algebra

Φ(f AB , ξA, q) = K exp i
(

1
2YAf

ABYB + ξAYA + θ
)



AdS4 propagators: (Giombi, Yin)

Gaussians in ?-algebra

Φ(f AB , ξA, q) = K exp i
(

1
2YAf

ABYB + ξAYA + θ
)

K = z
z2+(x−x)2

f AB — wave-vector pointing to the boundary

ξA — parallel-transported polarization

θ — the phase in Vasiliev equations



AdS4 propagators: (Giombi, Yin)

Gaussians in ?-algebra

Φ(f AB , ξA, q) = K exp i
(

1
2YAf

ABYB + ξAYA + θ
)

Under the large so(3, 2) transformations
g−1 ? YA ? g = Λ B

A YB

f =
(

0 F
FT 0

)
Λ N
M =

(
A −B
−C D

)
we have Möbius-like transformations

K ′ =
K

det |A + FC |
,

F ′ = (A + FC )−1(FD + B) ,

ξ′ = (A + FC )−1ξ .



AdS4 propagators: (Giombi, Yin)

Gaussians in ?-algebra

Φ(f AB , ξA, q) = K exp i
(

1
2YAf

ABYB + ξAYA + θ
)

In the string field-theory one is interested in
computing Φ1 ? ... ? Φn (Bars et al)

(f , ξ, θ) is related to SpH(2M) = Sp(2M) n H(2M)
via the generalized Cayley transform

(U1, x1, c1) ◦ (U2, x2, c2) =
(U1U2, x1+U1x2, c1+c2+x1U1x2)
(V.Didenko, M.Vasiliev; E.S.,V.Didenko)



AdS4 propagators: (Giombi, Yin)

Gaussians in ?-algebra

Φ(f AB , ξA, q) = K exp i
(

1
2YAf

ABYB + ξAYA + θ
)

D-brane condition f 2 = I holds for propagators.
Cayley breaks down!!!
Product on square roots of I

f1 ◦ f2 = (f1 + f2)−1(2I + f2 − f1)

Still a
√
I (f1 ◦ f2)2 = I

Associativity f1 ◦ (f2 ◦ f3) = (f1 ◦ f2) ◦ f3

Forgetful f1 ◦ f2 ◦ f3 = f1 ◦ f3



Note on correlators (Rychkov et al, Yin et al)

〈O(x1, η1)...O(xn, ηn)〉 =
1

x12...xn1
f (r cdab |P ,Q, S)

n-point correlator of tensor operators depends on
conformally invariant ratios r cdab and conformally
invariant tensor structures: P , Q and S

Qa
bc depends on three points

Pab depends on two points

Sa
bc depends on three points and is odd



Main formula: long-trace of projectors

Tr(Φ1?...?Φn) =
∏
i

1

|fi + fi+1|1/4
exp i

∑
j

(Qj +Pj)

Qi =
1

8
ξi (fi+1 ◦ fi + fi ◦ fi−1) ξi

Pi =
1

4
ξi (I + fi+1 ◦ fi) ξi+1

|fi − fi+1|1/2 = |xi − xi+1|KiKi+1

Already decomposed into Q, P conformal invariants



3-point functions

Yin and Giombi, Sundell and Colombo

〈js js js〉b =
4

x12x23x31
cos(Q1 + Q2 + Q3) cos(P3) cos(P1) cos(P2)

〈js js js〉f =
4

x12x23x31
sin(Q1 + Q2 + Q3) sin(P3) sin(P1) sin(P2)〈

j̃0js js
〉
f

=
cos(Q2 + Q3)

x212x
2
31

S1 sinP1〈
j̃0 j̃0 j̃0

〉
f

= 0



n-point functions

〈js ...js〉 = cosn θ 〈js ...js〉b + sinn θ 〈js ...js〉f

〈js ...js〉b =
∑
Sn

4

x12...xn1
cos

(∑
i

Qi

)∏
j

cos(Pj)

〈js ...js〉f =
∑
Sn

4

x12...xn1
(co) sinn

(∑
i

Qi

)∏
j

sin(Pj)

V.Didenko, E.S., Jianwei Mei
HS algebra assigns a non-standard normalization to
two-point functions



Conclusions

1 There is a plenty of HS algebras

2 Propagators are extremal projectors in HS
algebra

3 Propagators form an algebra, infinity of
SpH(2M)

4 Unbroken Vasiliev theory should reduce to
simple contact diagrams

5 The bulk proof of AdS/CFT for HS?

6 Exact HS symmetry works nice

7 Broken HS symmetry?
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