One Symmetry to Rule Them All

Arjun Bagchi

University of Edinburgh

"Higher Spins, Strings and Duality", Galileo Galilei Institute, Florence. May 9, 2013

INTRODUCTION	GALILEAN CONFORMAL SYMMETRY	TENSIONLESS STRINGS	THE "DUAL" PICTURE	Remarks

OUTLINE

INTRODUCTION

GALILEAN CONFORMAL SYMMETRY

TENSIONLESS STRINGS

THE "DUAL" PICTURE

Remarks

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Conformal Symmetry: Primary tool in Theoretical Physics.
 - Central to understanding QFTs through RG fixed points.
 - Study of critical phenomena.

- ► Conformal Symmetry: Primary tool in Theoretical Physics.
 - Central to understanding QFTs through RG fixed points.
 - Study of critical phenomena.
- Especially powerful in 2 dimensions.
 - Symmetry algebra becomes infinite dimensional.
 - Theory constrained by symmetries.
 - No Lagrangian needed to fix correlation functions.

- ► Conformal Symmetry: Primary tool in Theoretical Physics.
 - Central to understanding QFTs through RG fixed points.
 - Study of critical phenomena.
- Especially powerful in 2 dimensions.
 - Symmetry algebra becomes infinite dimensional.
 - Theory constrained by symmetries.
 - No Lagrangian needed to fix correlation functions.
- ► 2d Conformal symmetry can be
 - Space-time symmetry: Extensively used in holographic studies as the symmetry of the field theory dual to AdS₃ (and dS₃).
 - *Gauge symmetry*: On the world-sheet of String Theory. Residual symmetry after fixing conformal gauge in the closed bosonic string.

- Conformal Symmetry: Primary tool in Theoretical Physics.
 - Central to understanding QFTs through RG fixed points.
 - Study of critical phenomena.
- Especially powerful in 2 dimensions.
 - Symmetry algebra becomes infinite dimensional.
 - Theory constrained by symmetries.
 - No Lagrangian needed to fix correlation functions.
- ► 2d Conformal symmetry can be
 - Space-time symmetry: Extensively used in holographic studies as the symmetry of the field theory dual to AdS₃ (and dS₃).
 - ► *Gauge symmetry*: On the world-sheet of String Theory. Residual symmetry after fixing conformal gauge in the closed bosonic string.
- Enormous success in both these avenues.

A DIFFERENT SYMMETRY

Another symmetry governed by the Galilean Conformal Algebra (GCA) has arisen in very different contexts recently.

- Constructed as a limit of the symmetries of a CFT.
- Infinite dimensional in all spacetime dimensions.

Today we will confine ourselves to 2 dimensions.

A DIFFERENT SYMMETRY

Another symmetry governed by the Galilean Conformal Algebra (GCA) has arisen in very different contexts recently.

- Constructed as a limit of the symmetries of a CFT.
- Infinite dimensional in all spacetime dimensions.

Today we will confine ourselves to 2 dimensions.

- ► 2d GCA can be a *Space-time symmetry*:
 - ► Symmetry of the field theory dual to a bulk Non-Relativistic AdS₃.
 - ► Symmetry of the field theory dual to 3d Minkowski spacetime.

A DIFFERENT SYMMETRY

Another symmetry governed by the Galilean Conformal Algebra (GCA) has arisen in very different contexts recently.

- Constructed as a limit of the symmetries of a CFT.
- Infinite dimensional in all spacetime dimensions.

Today we will confine ourselves to 2 dimensions.

- ► 2d GCA can be a *Space-time symmetry*:
 - ► Symmetry of the field theory dual to a bulk Non-Relativistic AdS₃.
 - ► Symmetry of the field theory dual to *3d Minkowski spacetime*.

Focus of the talk today:

[Reference: A Bagchi 1303.0291]

- 2d GCA can be realised as a *Gauge symmetry*.
- On the world-sheet of String Theory in the *Tensionless Limit*.
- Residual symmetry after fixing analogue of the conformal gauge in the closed tensionless bosonic string.

TENSIONLESS STRINGS: WHY BOTHER?

Tensionless strings have been studied since Schild in 1977.

• Limit expected to probe string theory at *very high energies*.

TENSIONLESS STRINGS: WHY BOTHER?

Tensionless strings have been studied since Schild in 1977.

- Limit expected to probe string theory at *very high energies*.
- Supposed to uncover a sector with larger symmetry.
 - String theory \Rightarrow infinite tower of massive particles of arbitrary spin.
 - In this limit all of them become massless.
 - Expect *higher spin symmetry structures* to arise.

TENSIONLESS STRINGS: WHY BOTHER?

Tensionless strings have been studied since Schild in 1977.

- Limit expected to probe string theory at *very high energies*.
- Supposed to uncover a sector with larger symmetry.
 - ► String theory ⇒ infinite tower of massive particles of arbitrary spin.
 - In this limit all of them become massless.
 - Expect *higher spin symmetry structures* to arise.
- Of interest to the recent higher spin dualities.

[Klebanov-Polyakov '02, Sezgin-Sundell '02, Gaberdiel-Gopakumar '10]

Folklore: Tensionless Type IIB strings on $AdS_5 \otimes S^5 \Rightarrow$ higher-spin gauge theory.

[Witten '01, Sundborg '01, ...]

TENSIONLESS STRINGS: WHY BOTHER?

Tensionless strings have been studied since Schild in 1977.

- Limit expected to probe string theory at *very high energies*.
- Supposed to uncover a sector with larger symmetry.
 - ► String theory ⇒ infinite tower of massive particles of arbitrary spin.
 - In this limit all of them become massless.
 - Expect higher spin symmetry structures to arise.
- Of interest to the recent higher spin dualities. [Klebanov-Polyakov '02, Sezgin-Sundell '02, Gaberdiel-Gopakumar '10]

Folklore: Tensionless Type IIB strings on $AdS_5 \otimes S^5 \Rightarrow$ higher-spin gauge theory. [Witten '01, Sundborg '01, ...]

- Aim(1): Understand string theory in this "ultra-stringy" regime.
- Aim(2): Make connection between tensionless strings and higher spins concrete.

TENSIONLESS STRINGS: WHY BOTHER?

Tensionless strings have been studied since Schild in 1977.

- Limit expected to probe string theory at *very high energies*.
- Supposed to uncover a sector with larger symmetry.
 - ► String theory ⇒ infinite tower of massive particles of arbitrary spin.
 - In this limit all of them become massless.
 - Expect higher spin symmetry structures to arise.
- Of interest to the recent higher spin dualities. [Klebanov-Polyakov '02, Sezgin-Sundell '02, Gaberdiel-Gopakumar '10]

Folklore: Tensionless Type IIB strings on $AdS_5 \otimes S^5 \Rightarrow$ higher-spin gauge theory. [Witten '01, Sundborg '01, ...]

- Aim(1): Understand string theory in this "ultra-stringy" regime.
- Aim(2): Make connection between tensionless strings and higher spins concrete.

Lacking: An organising principle (like 2d CFT for string theory). We aim to rectify this.

<ロ> < (日) < (1) < (1) </p>

INTRODUCTION	GALILEAN CONFORMAL SYMMETRY	TENSIONLESS STRINGS	THE "DUAL" PICTURE	Remarks

< □ > < @ > < E > < E > E のQ@

OUTLINE

INTRODUCTION

GALILEAN CONFORMAL SYMMETRY

TENSIONLESS STRINGS

THE "DUAL" PICTURE

Remarks

INTRODUCTION	GALILEAN CONFORMAL SYMMETRY	TENSIONLESS STRINGS	THE "DUAL" PICTURE	Remarks

OUTLINE

INTRODUCTION

GALILEAN CONFORMAL SYMMETRY

TENSIONLESS STRINGS

THE "DUAL" PICTURE

Remarks

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

HOW TO TAKE LIMITS OR INÖNÜ-WIGNER CONTRACTIONS

A simple example.

SO(3) maps the surface of the sphere (S^2) embedded in R_3 to itself.

- Equation for S^2 : $x_1^2 + x_2^2 + x_3^2 = R^2$.
- Infinitesimal generators: $X_{ij} = x_i \partial_j x_j \partial_i$
- ► Algebra: $[X_{ij}, X_{rs}] = X_{is}\delta_{jr} + X_{jr}\delta_{is} X_{ir}\delta_{js} X_{js}\delta_{ir}$

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

HOW TO TAKE LIMITS OR INÖNÜ-WIGNER CONTRACTIONS...

Take the limit $R \to \infty$. Look at the north pole: $x_{1,2} = 0$ and $x_3 = R$.

$$Y_{12} = \lim_{R \to \infty} X_{12} = x_1 \partial_2 - x_2 \partial_1, \quad P_i = \lim_{R \to \infty} \frac{1}{R} X_{i,3} = \lim_{R \to \infty} \frac{1}{R} (x_i \partial_3 - x_3 \partial_i) \to -\partial_i$$

Redefined algebra: $[Y_{12}, P_i] = P_1 \delta_{2i} - P_2 \delta_{1i}, \quad [P_1, P_2] = 0 \rightarrow \text{ISO}(2).$

Will use this extensively to explain the limits we take.

GALILEAN CONFORMAL SYMMETRY

- Galilean algebra: symmetry algebra for Galilean invariant systems. Can be obtained as a limit of the Poincare algebra.
- ► Galilean Conformal Algebra (GCA): conformal generalisation of the Galilean algebra. Symmetry of non-relativistic conformal systems. Can be constructed as a limit of the relativistic Conformal algebra. [AB, Gopakumar 2009.]
- GCA is *infinite dimensional* in all spacetime dimensions. (Finite part obtained as limit and then given infinite lift.)
- In 2d, relativistic conformal symmetry is infinite dimensional.
- The infinite GCA₂ can be shown to emerge as a limit of 2d CFT symmetry. [AB, Gopakumar, Mandal, Miwa 2009.]
- The algebra looks like:

$$\begin{bmatrix} L_m, L_n \end{bmatrix} = (m-n)L_{m+n} + C_1m(m^2-1)\delta_{m+n,0}, \quad \begin{bmatrix} M_m, M_n \end{bmatrix} = 0.$$

$$\begin{bmatrix} L_m, M_n \end{bmatrix} = (m-n)M_{m+n} + C_2m(m^2-1)\delta_{m+n,0}.$$
 (1)

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

2D GCA AS SPACETIME SYMMETRY - I

Non-relativistic Limit of $\mathrm{AdS}_3/\mathrm{CFT}_2$

[AB, Gopakumar 2009; AB, Gopakumar, Mandal, Miwa 2009.]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Boundary Theory:

- Non-relativistic theory with 2d GCA symmetry (GCFT).
- Can compute e.g. correlation functions and Ward identities.
- Quantities obtained as a limit of 2d CFTs or directly from 2d GCFT.
- ► Realised e.g. in non-relativistic hydrodynamical systems.

2D GCA AS SPACETIME SYMMETRY - I

Non-relativistic Limit of $\mathrm{AdS}_3/\mathrm{CFT}_2$

[AB, Gopakumar 2009; AB, Gopakumar, Mandal, Miwa 2009.]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Boundary Theory:

- Non-relativistic theory with 2d GCA symmetry (GCFT).
- Can compute e.g. correlation functions and Ward identities.
- Quantities obtained as a limit of 2d CFTs or directly from 2d GCFT.
- ► Realised e.g. in non-relativistic hydrodynamical systems.

Bulk Theory:

- ▶ Bulk theory is a non-relativistic version of AdS₃.
- This has a structure of $AdS_2 \otimes R$ (non-trivially fibred).
- Generalisation of usual Newton-Cartan spacetimes.
- ► 2d-GCA is recovered as asymptotic symmetries.

2D GCA AS SPACETIME SYMMETRY - II

FLAT SPACE HOLOGRAPHY

- ► Asymptotic symmetries of 3d flat space ⇒ BMS₃ algebra. [Barnich, Compere 2006.]
- ► This is isomorphic to the 2d GCA [AB 2010].

2D GCA AS SPACETIME SYMMETRY - II

FLAT SPACE HOLOGRAPHY

- ► Asymptotic symmetries of 3d flat space ⇒ BMS₃ algebra. [Barnich, Compere 2006.]
- ► This is isomorphic to the 2d GCA [AB 2010].
- ► Flat space ⇒ large radius limit of AdS. This limit induces a contraction on CFT. [AB, Fareghbal 2012]
- ► Symmetry structures of flat-space can be obtained as a limit of AdS.
- Previously unexplored route to Flat-space holography.

2D GCA AS SPACETIME SYMMETRY - II

FLAT SPACE HOLOGRAPHY

- ► Asymptotic symmetries of 3d flat space ⇒ BMS₃ algebra. [Barnich, Compere 2006.]
- ► This is isomorphic to the 2d GCA [AB 2010].
- ► Flat space ⇒ large radius limit of AdS. This limit induces a contraction on CFT. [AB, Fareghbal 2012]
- ► Symmetry structures of flat-space can be obtained as a limit of AdS.
- Previously unexplored route to Flat-space holography.

Successes: (1) Entropy of 3d flat cosmological horizons. [AB, Detournay, Fareghbal, Simon 2012; Barnich 2012]

- ► Flat limit of non-extremal BTZ.
- Outer radius $\rightarrow \infty$. Spacetime \Rightarrow inside of BTZ outer horizon.
- Radial and time directions interchanged. Cosmology.
- Inner radius survives limit. Cosmological Horizon.
- Entropy reproduced by a Cardy-like analysis of dual field theory.

2D GCA AS SPACETIME SYMMETRY - II

FLAT SPACE HOLOGRAPHY

- ► Asymptotic symmetries of 3d flat space ⇒ BMS₃ algebra. [Barnich, Compere 2006.]
- ► This is isomorphic to the 2d GCA [AB 2010].
- ► Flat space ⇒ large radius limit of AdS. This limit induces a contraction on CFT. [AB, Fareghbal 2012]
- ► Symmetry structures of flat-space can be obtained as a limit of AdS.
- Previously unexplored route to Flat-space holography.

Successes: (1) Entropy of 3d flat cosmological horizons. [AB, Detournay, Fareghbal, Simon 2012; Barnich 2012]

- ► Flat limit of non-extremal BTZ.
- Outer radius $\rightarrow \infty$. Spacetime \Rightarrow inside of BTZ outer horizon.
- Radial and time directions interchanged. Cosmology.
- Inner radius survives limit. Cosmological Horizon.
- Entropy reproduced by a Cardy-like analysis of dual field theory.

(2) Novel phase transitions between these cosmologies and hot flat space.

[AB, Detournay, Grumiller, Simon. (To appear)]

2D GCA AS SPACETIME SYMMETRY - II

FLAT SPACE HOLOGRAPHY

- ► Asymptotic symmetries of 3d flat space ⇒ BMS₃ algebra. [Barnich, Compere 2006.]
- ► This is isomorphic to the 2d GCA [AB 2010].
- ► Flat space ⇒ large radius limit of AdS. This limit induces a contraction on CFT. [AB, Fareghbal 2012]
- ► Symmetry structures of flat-space can be obtained as a limit of AdS.
- Previously unexplored route to Flat-space holography.

Successes: (1) Entropy of 3d flat cosmological horizons. [AB, Detournay, Fareghbal, Simon 2012; Barnich 2012]

- ► Flat limit of non-extremal BTZ.
- Outer radius $\rightarrow \infty$. Spacetime \Rightarrow inside of BTZ outer horizon.
- Radial and time directions interchanged. Cosmology.
- Inner radius survives limit. Cosmological Horizon.
- Entropy reproduced by a Cardy-like analysis of dual field theory.

(2) Novel phase transitions between these cosmologies and hot flat space. [AB, Detournay, Grumiller, Simon. (*To appear*)]

► Many other recent advances. Contracted symmetries are central to this.

[AB, Detournay, Grumiller 2012; Barnich, Gomberoff, Gonzalez 2012; Barnich, Gonzalez 2013.]

INTRODUCTION	GALILEAN CONFORMAL SYMMETRY	TENSIONLESS STRINGS	THE "DUAL" PICTURE	Remarks

OUTLINE

INTRODUCTION

GALILEAN CONFORMAL SYMMETRY

TENSIONLESS STRINGS

THE "DUAL" PICTURE

Remarks

Isberg, Lindstrom, Sundborg, Theodoridis 1993

CLASSICAL CLOSED STRINGS

Start with Nambu-Goto action

$$S = -T \int d^2 \xi \sqrt{-\det \gamma_{\alpha\beta}} \tag{2}$$

- To take the tensionless limit, first switch to Hamiltonian framework.
- Generalised momenta: $P_m = T \sqrt{-\gamma} \gamma^{0\alpha} \partial_{\alpha} X_m$.
- Constraints: $P^2 + T^2 \gamma \gamma^{00} = 0$, $P_m \partial_\alpha X^m = 0$.
- Hamiltonian of the system: $\mathcal{H} = \lambda (P^2 + T^2 \gamma \gamma^{00}) + \rho^{\alpha} P_m \partial_{\alpha} X^m$.
- Action after integrating out momenta:

$$S = \frac{1}{2} \int d^2 \xi \, \frac{1}{2\lambda} \left[\dot{X}^2 - 2\rho^{\alpha} \dot{X}^m \partial_{\alpha} X_m + \rho^a \rho^b \partial_b X^m \partial_a X_m - 4\lambda^2 T^2 \gamma \gamma^{00} \right] \tag{3}$$

• Identifying $g^{\alpha\beta} = \begin{pmatrix} -1 & \rho \\ \rho & -\rho^2 + 4\lambda^2 T^2 \end{pmatrix}$

Action takes the familiar Weyl-invariant form

$$S = -\frac{T}{2} \int d^2 \xi \sqrt{-g} g^{\alpha\beta} \partial_\alpha X^m \partial_\beta X^n \eta_{mn}.$$
⁽⁴⁾

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ . 三 . のへぐ

CLASSICAL TENSIONLESS CLOSED STRINGS

Isberg, Lindstrom, Sundborg, Theodoridis 1993

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Tensionless limit can be taken at various steps.
- Metric density T √-gg^{αβ} degenerates and is replaced by a rank-1 matrix V^αV^β where V^α is a vector density

$$V^{\alpha} \equiv \frac{1}{\sqrt{2}\lambda} (1, \rho^a) \tag{5}$$

• Action in $T \rightarrow 0$ limit

$$S = \int d^2 \xi \ V^{\alpha} V^{\beta} \partial_{\alpha} X^m \partial_{\beta} X^n \eta_{mn}.$$
 (6)

- ► Tensionless action is invariant under world-sheet diffeomorphisms.
- ► Fixing gauge: "Conformal" gauge: $V^{\alpha} = (v, 0)$ (v: constant).
- ► Tensile: Residual symmetry after fixing conformal gauge = Vir ⊗ Vir. Central to understanding string theory.
- ► Tensionless: Similar residual symmetry left over after gauge fixing.

TENSIONLESS CLOSED STRINGS: SYMMETRIES

Isberg, Lindstrom, Sundborg, Theodoridis 1993

Tensionless residual symmetries:

$$\delta \xi^{\alpha} = \lambda^{\alpha}, \ \lambda^{\alpha} = (f'(\sigma)\tau + g(\sigma), f(\sigma))$$
 where $f, g = f(\sigma), g(\sigma)$

• Define: $L(f) = f'(\sigma)\tau\partial_{\tau} + f(\sigma)\partial_{\sigma}$, $M(g) = g(\sigma)\partial_{\tau}$.

• Expand: $f = \sum a_n e^{in\sigma}$, $g = \sum b_n e^{in\sigma}$

$$L(f) = \sum_{n} a_{n}e^{in\sigma}(\partial_{\sigma} + in\tau\partial_{\tau}) = -i\sum_{n} a_{n}L_{n}$$
$$M(g) = \sum_{n} b_{n}e^{in\sigma}\partial_{\tau} = -i\sum_{n} b_{n}M_{n}.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

TENSIONLESS CLOSED STRINGS: SYMMETRIES

Isberg, Lindstrom, Sundborg, Theodoridis 1993

Tensionless residual symmetries:

$$\delta \xi^{\alpha} = \lambda^{\alpha}, \ \lambda^{\alpha} = (f'(\sigma)\tau + g(\sigma), f(\sigma))$$
 where $f, g = f(\sigma), g(\sigma)$

• Define: $L(f) = f'(\sigma)\tau\partial_{\tau} + f(\sigma)\partial_{\sigma}$, $M(g) = g(\sigma)\partial_{\tau}$.

- Expand: $f = \sum a_n e^{in\sigma}$, $g = \sum b_n e^{in\sigma}$ $L(f) = \sum_n a_n e^{in\sigma} (\partial_\sigma + in\tau\partial_\tau) = -i\sum_n a_n L_n$ $M(g) = \sum_n b_n e^{in\sigma} \partial_\tau = -i\sum_n b_n M_n.$
- Symmetry algebra in terms of Fourier modes:

$$\begin{bmatrix} L_m, L_n \end{bmatrix} = (m-n)L_{m+n} + C_1m(m^2-1)\delta_{m+n,0}, \quad \begin{bmatrix} M_m, M_n \end{bmatrix} = 0.$$

$$\begin{bmatrix} L_m, M_n \end{bmatrix} = (m-n)M_{m+n} + C_2m(m^2-1)\delta_{m+n,0}.$$
(7)

TENSIONLESS CLOSED STRINGS: SYMMETRIES

Isberg, Lindstrom, Sundborg, Theodoridis 1993

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

Tensionless residual symmetries:

 $\delta\xi^{\alpha} = \lambda^{\alpha}, \ \lambda^{\alpha} = (f'(\sigma)\tau + g(\sigma), f(\sigma)) \qquad \text{where} \quad f,g = f(\sigma), g(\sigma)$

• Define: $L(f) = f'(\sigma)\tau\partial_{\tau} + f(\sigma)\partial_{\sigma}$, $M(g) = g(\sigma)\partial_{\tau}$.

- Expand: $f = \sum a_n e^{in\sigma}$, $g = \sum b_n e^{in\sigma}$ $L(f) = \sum_n a_n e^{in\sigma} (\partial_\sigma + in\tau\partial_\tau) = -i\sum_n a_n L_n$ $M(g) = \sum_n b_n e^{in\sigma} \partial_\tau = -i\sum_n b_n M_n.$
- Symmetry algebra in terms of Fourier modes:

$$\begin{bmatrix} L_m, L_n \end{bmatrix} = (m-n)L_{m+n} + C_1m(m^2-1)\delta_{m+n,0}, \quad \begin{bmatrix} M_m, M_n \end{bmatrix} = 0.$$

$$\begin{bmatrix} L_m, M_n \end{bmatrix} = (m-n)M_{m+n} + C_2m(m^2-1)\delta_{m+n,0}.$$
(7)

• 2d GCA!! (Central terms: Isberg et al find $C_1 = C_2 = 0$).

TENSIONLESS STRINGS: SYMMETRIES AS A LIMIT

A Bagchi 2013

• Tensile string: Residual symmetry in conformal gauge $g_{\alpha\beta} = e^{\phi} \eta_{\alpha\beta}$:

$$\begin{bmatrix} \mathcal{L}_m, \mathcal{L}_n \end{bmatrix} = (m-n)\mathcal{L}_{m+n} + \frac{c}{12}m(m^2-1)\delta_{m+n,0} \begin{bmatrix} \mathcal{L}_m, \bar{\mathcal{L}}_n \end{bmatrix} = 0, \quad [\bar{\mathcal{L}}_m, \bar{\mathcal{L}}_n] = (m-n)\bar{\mathcal{L}}_{m+n} + \frac{\bar{c}}{12}m(m^2-1)\delta_{m+n,0}$$
(8)

 World-sheet is a cylinder. Symmetry best expressed as 2d conformal generators on the cylinder.

$$\mathcal{L}_n = i e^{i n \omega} \partial_\omega, \quad \bar{\mathcal{L}}_n = i e^{i n \bar{\omega}} \partial_{\bar{\omega}} \tag{9}$$

where $\omega, \bar{\omega} = \tau \pm \sigma$. Vector fields generate centre-less Virasoros.

<ロト < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

TENSIONLESS STRINGS: SYMMETRIES AS A LIMIT

A Bagchi 2013

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Tensile string: Residual symmetry in conformal gauge $g_{\alpha\beta} = e^{\phi} \eta_{\alpha\beta}$:

$$\begin{bmatrix} \mathcal{L}_m, \mathcal{L}_n \end{bmatrix} = (m-n)\mathcal{L}_{m+n} + \frac{c}{12}m(m^2-1)\delta_{m+n,0} \begin{bmatrix} \mathcal{L}_m, \bar{\mathcal{L}}_n \end{bmatrix} = 0, \quad [\bar{\mathcal{L}}_m, \bar{\mathcal{L}}_n] = (m-n)\bar{\mathcal{L}}_{m+n} + \frac{\bar{c}}{12}m(m^2-1)\delta_{m+n,0}$$
(8)

 World-sheet is a cylinder. Symmetry best expressed as 2d conformal generators on the cylinder.

$$\mathcal{L}_n = i e^{i n \omega} \partial_\omega, \quad \bar{\mathcal{L}}_n = i e^{i n \bar{\omega}} \partial_{\bar{\omega}} \tag{9}$$

where $\omega, \bar{\omega} = \tau \pm \sigma$. Vector fields generate centre-less Virasoros.

- Tensionless limit \Rightarrow length of string becomes infinite ($\sigma \rightarrow \infty$).
- Ends of closed string identified \Rightarrow limit best viewed as $(\sigma \rightarrow \sigma, \tau \rightarrow \epsilon \tau, \epsilon \rightarrow 0)$.

TENSIONLESS STRINGS: SYMMETRIES AS A LIMIT

- A Bagchi 2013
- Tensile string: Residual symmetry in conformal gauge $g_{\alpha\beta} = e^{\phi}\eta_{\alpha\beta}$:

$$\begin{bmatrix} \mathcal{L}_m, \mathcal{L}_n \end{bmatrix} = (m-n)\mathcal{L}_{m+n} + \frac{c}{12}m(m^2-1)\delta_{m+n,0} \begin{bmatrix} \mathcal{L}_m, \bar{\mathcal{L}}_n \end{bmatrix} = 0, \quad [\bar{\mathcal{L}}_m, \bar{\mathcal{L}}_n] = (m-n)\bar{\mathcal{L}}_{m+n} + \frac{\bar{c}}{12}m(m^2-1)\delta_{m+n,0}$$
(8)

 World-sheet is a cylinder. Symmetry best expressed as 2d conformal generators on the cylinder.

$$\mathcal{L}_n = i e^{i n \omega} \partial_\omega, \quad \bar{\mathcal{L}}_n = i e^{i n \bar{\omega}} \partial_{\bar{\omega}} \tag{9}$$

where $\omega, \bar{\omega} = \tau \pm \sigma$. Vector fields generate centre-less Virasoros.

- Tensionless limit \Rightarrow length of string becomes infinite ($\sigma \rightarrow \infty$).
- Ends of closed string identified \Rightarrow limit best viewed as $(\sigma \rightarrow \sigma, \tau \rightarrow \epsilon \tau, \epsilon \rightarrow 0)$.
- Define

$$L_n = \mathcal{L}_n - \bar{\mathcal{L}}_{-n}, \quad M_n = \epsilon(\mathcal{L}_n + \bar{\mathcal{L}}_{-n}).$$
 (10)

▶ New vector fields (*L_n*, *M_n*) well-defined in limit and given by:

$$L_n = i e^{i n \sigma} (\partial_\sigma + i n \tau \partial_\tau), \quad M_n = i e^{i n \sigma} \partial_\tau.$$
⁽¹¹⁾

These are exactly the generators defined previously. Close to form the 2d GCA.

・ロト (四) (日) (日) (日) (日) (日)

- A lot of debate about critical dimensions for tensionless strings.
- From the point of view of the contraction, the answer is simple.
- To generate non-zero C_1 , the parent Virasoro should have $c \neq \bar{c}$.
- To generate non-zero $C_2 \Rightarrow c, \bar{c} \sim \epsilon^{-1}$.

A Bagchi 2013

- A lot of debate about critical dimensions for tensionless strings.
- ▶ From the point of view of the contraction, the answer is simple.
- To generate non-zero C_1 , the parent Virasoro should have $c \neq \bar{c}$.
- To generate non-zero $C_2 \Rightarrow c, \bar{c} \sim \epsilon^{-1}$.
- A. Tensionless Strings as a limit of consistent String Theory.
 - Parent has no diffeomorphism anomaly $\Rightarrow c = \overline{c} \Rightarrow C_1 = 0$.
 - Parent has finite number of world-sheet fields $\Rightarrow c, \overline{c} \not\sim \epsilon^{-1} \Rightarrow C_2 = 0.$

- A lot of debate about critical dimensions for tensionless strings.
- ▶ From the point of view of the contraction, the answer is simple.
- To generate non-zero C_1 , the parent Virasoro should have $c \neq \bar{c}$.
- To generate non-zero $C_2 \Rightarrow c, \bar{c} \sim \epsilon^{-1}$.
- A. Tensionless Strings as a limit of consistent String Theory.
 - Parent has no diffeomorphism anomaly $\Rightarrow c = \overline{c} \Rightarrow C_1 = 0$.
 - Parent has finite number of world-sheet fields $\Rightarrow c, \overline{c} \not\sim \epsilon^{-1} \Rightarrow C_2 = 0.$
- B. Tensionless Strings as a theory of its own.
 - Can have non-zero C_1, C_2 .
 - Consistent dimension would possibly depend on specific operator ordering.
 - Need a calculation of the analogue of the Weyl anomaly in 2d GCA.

- ► A lot of debate about critical dimensions for tensionless strings.
- ► From the point of view of the contraction, the answer is simple.
- To generate non-zero C_1 , the parent Virasoro should have $c \neq \bar{c}$.
- To generate non-zero $C_2 \Rightarrow c, \bar{c} \sim \epsilon^{-1}$.
- A. Tensionless Strings as a limit of consistent String Theory.
 - Parent has no diffeomorphism anomaly $\Rightarrow c = \overline{c} \Rightarrow C_1 = 0$.
 - Parent has finite number of world-sheet fields $\Rightarrow c, \bar{c} \not\sim \epsilon^{-1} \Rightarrow C_2 = 0.$
- B. Tensionless Strings as a theory of its own.
 - Can have non-zero C_1, C_2 .
 - Consistent dimension would possibly depend on specific operator ordering.
 - Need a calculation of the analogue of the Weyl anomaly in 2d GCA.
- ► More interested in Option $A \Rightarrow$ limit does not generate additional constraints.
- Tensionless strings (as a limit of usual strings) consistent in *any dimensions*.
- Good feature. Don't want limit of a theory to be consistent in a dimension different from the original theory!

TENSIONLESS STRINGS

GCA EM-TENSOR

A Bagchi 2013

• Generators of Virasoro \Rightarrow modes of E-M tensor.

GCA EM-TENSOR

A Bagchi 2013

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Generators of Virasoro \Rightarrow modes of E-M tensor.
- Spectrum of tensile string theory (in conformal gauge in flat space)
 - Quantise world sheet theory as a theory free scalar fields.
 - Constraint: vanishing of EOM of metric (which is fixed to be flat).
 - Op form: Physical states vanish under action of modes of E-M tensor.
 - Forms basis of decoupling negative norm states from Hilbert space.
- ► Important to construct EM-tensor of GCA and expand in modes.

GCA EM-TENSOR

A Bagchi 2013

- Generators of Virasoro \Rightarrow modes of E-M tensor.
- Spectrum of tensile string theory (in conformal gauge in flat space)
 - Quantise world sheet theory as a theory free scalar fields.
 - Constraint: vanishing of EOM of metric (which is fixed to be flat).
 - ► Op form: Physical states vanish under action of modes of E-M tensor.
 - Forms basis of decoupling negative norm states from Hilbert space.
- ► Important to construct EM-tensor of GCA and expand in modes.
- EM tensor for 2d CFT on cylinder:

$$T_{cyl} = z^2 T_{plane} - \frac{c}{24} = \sum_n \mathcal{L}_n e^{-in\omega} - \frac{c}{24}; \quad \bar{T}_{cyl} = \sum_n \bar{\mathcal{L}}_n e^{-in\bar{\omega}} - \frac{\bar{c}}{24}$$
(12)

GCA EM tensor

$$T_{(1)} = \lim_{\epsilon \to 0} \left(T_{cyl} - \bar{T}_{cyl} \right) = \sum_{n} (L_n - in\tau M_n) e^{-in\sigma} - \frac{C_1}{2}$$
(13)

$$T_{(2)} = \lim_{\epsilon \to 0} \epsilon \left(T_{cyl} + \bar{T}_{cyl} \right) = \sum_{n} M_n e^{-in\sigma} - \frac{C_2}{2}$$
(14)

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

GCA EM-TENSOR ..

A Bagchi 2013

► Spectrum of tensionless strings: physical spectrum restricted by constraint

$$\langle \text{phys}|T_{(1)}|\text{phys}'\rangle = 0, \quad \langle \text{phys}|T_{(2)}|\text{phys}'\rangle = 0.$$
 (15)

► Equivalently,

$$L_n|\text{phys}\rangle = 0, \quad M_n|\text{phys}\rangle = 0 \quad \text{for } n > 0$$
 (16)

• Important step in building tensionless spectrum from GCA methods.

INTRODUCTION	GALILEAN CONFORMAL SYMMETRY	TENSIONLESS STRINGS	THE "DUAL" PICTURE	Remarks

OUTLINE

INTRODUCTION

GALILEAN CONFORMAL SYMMETRY

TENSIONLESS STRINGS

The "Dual" Picture

REMARKS

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

A Bagchi 2013

- Euclidean worldsheet $\Rightarrow \sigma, \tau$ are on the same footing.
- So contraction in $\tau \equiv \text{contraction in } \sigma$.
- ► $(\sigma, \tau) \rightarrow (\epsilon \sigma, \tau)$ should yield same symmetry algebra as $(\sigma, \tau) \rightarrow (\sigma, \epsilon \tau)$.
- We have seen $(\sigma, \tau) \rightarrow (\sigma, \epsilon \tau) \Rightarrow \text{Vir} \otimes \text{Vir} \rightarrow 2\text{d-GCA}.$

A Bagchi 2013

- Euclidean worldsheet $\Rightarrow \sigma, \tau$ are on the same footing.
- So contraction in $\tau \equiv$ contraction in σ .
- ► $(\sigma, \tau) \rightarrow (\epsilon \sigma, \tau)$ should yield same symmetry algebra as $(\sigma, \tau) \rightarrow (\sigma, \epsilon \tau)$.
- We have seen $(\sigma, \tau) \rightarrow (\sigma, \epsilon \tau) \Rightarrow \text{Vir} \otimes \text{Vir} \rightarrow 2\text{d-GCA}.$
- Now define $\tilde{L}_n = \mathcal{L}_n + \bar{\mathcal{L}}_n$, $\tilde{M}_n = \epsilon(\mathcal{L}_n \bar{\mathcal{L}}_n)$
- The generators take the form

$$\tilde{L}_n = i e^{i n \tau} (\partial_\tau + i n \sigma \partial_\sigma), \quad \tilde{M}_n = i e^{i n \tau} \partial_\sigma.$$
(17)

• Expressions are $\tau \leftrightarrow \sigma$ of the earlier expressions. Close to form the 2d-GCA again.

A Bagchi 2013

- Euclidean worldsheet $\Rightarrow \sigma, \tau$ are on the same footing.
- So contraction in $\tau \equiv$ contraction in σ .
- ► $(\sigma, \tau) \rightarrow (\epsilon \sigma, \tau)$ should yield same symmetry algebra as $(\sigma, \tau) \rightarrow (\sigma, \epsilon \tau)$.
- We have seen $(\sigma, \tau) \rightarrow (\sigma, \epsilon \tau) \Rightarrow \text{Vir} \otimes \text{Vir} \rightarrow 2\text{d-GCA}.$
- Now define $\tilde{L}_n = \mathcal{L}_n + \bar{\mathcal{L}}_n$, $\tilde{M}_n = \epsilon(\mathcal{L}_n \bar{\mathcal{L}}_n)$
- The generators take the form

$$\tilde{L}_n = i e^{i n \tau} (\partial_\tau + i n \sigma \partial_\sigma), \quad \tilde{M}_n = i e^{i n \tau} \partial_\sigma.$$
(17)

- Expressions are $\tau \leftrightarrow \sigma$ of the earlier expressions. Close to form the 2d-GCA again.
- Contraction looks like the point-particle limit.
- ► EOM of tensionless string: $V^{\beta}\gamma_{\alpha\beta} = 0$, $\partial_{\alpha}(V^{\alpha}V^{\beta}\partial_{\beta}X^{m}) = 0$.
- Second equation in "conformal" gauge becomes

$$\partial_{\tau}^{2} X^{m} = 0, \quad (\partial_{\tau} X)^{2} = \partial_{\tau} X \partial_{\sigma} X = 0.$$
 (18)

・ロト (四) (日) (日) (日) (日) (日)

A Bagchi 2013

- Euclidean worldsheet $\Rightarrow \sigma, \tau$ are on the same footing.
- So contraction in $\tau \equiv$ contraction in σ .
- ► $(\sigma, \tau) \rightarrow (\epsilon \sigma, \tau)$ should yield same symmetry algebra as $(\sigma, \tau) \rightarrow (\sigma, \epsilon \tau)$.
- We have seen $(\sigma, \tau) \rightarrow (\sigma, \epsilon \tau) \Rightarrow \text{Vir} \otimes \text{Vir} \rightarrow 2\text{d-GCA}.$
- Now define $\tilde{L}_n = \mathcal{L}_n + \bar{\mathcal{L}}_n$, $\tilde{M}_n = \epsilon(\mathcal{L}_n \bar{\mathcal{L}}_n)$
- The generators take the form

$$\tilde{L}_n = i e^{i n \tau} (\partial_\tau + i n \sigma \partial_\sigma), \quad \tilde{M}_n = i e^{i n \tau} \partial_\sigma.$$
(17)

- Expressions are $\tau \leftrightarrow \sigma$ of the earlier expressions. Close to form the 2d-GCA again.
- Contraction looks like the point-particle limit.
- ► EOM of tensionless string: $V^{\beta}\gamma_{\alpha\beta} = 0$, $\partial_{\alpha}(V^{\alpha}V^{\beta}\partial_{\beta}X^{m}) = 0$.
- Second equation in "conformal" gauge becomes

$$\partial_{\tau}^{2} X^{m} = 0, \quad (\partial_{\tau} X)^{2} = \partial_{\tau} X \partial_{\sigma} X = 0.$$
 (18)

 Tensionless string behaves like a collection of massless point particles: as expected from the "dual" contraction.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

THEORY ON A TORUS.

A Bagchi 2013

- As a further check: look at the theory on a torus.
- Modular invariance in 2d CFT \rightarrow density of states via the Cardy formula.
- Demand \Rightarrow 2d GCA derives a modular invariance in the limit.
- Use this to compute a Cardy-like formula.
- Can do this in both the limits discussed.
- States: $L_0|h_L, h_M\rangle = h_L|h_L, h_M\rangle$, $M_0|h_L, h_M\rangle = h_M|h_L, h_M\rangle$

Cardy-like formula:
$$S = 2\pi \left(h_L \sqrt{\frac{C_2}{2h_M}} + C_1 \sqrt{\frac{h_M}{2C_2}} \right).$$
 (19)

- ► Final answers are identical and don't depend on details of the limit.
- Further evidence that the two contractions are equivalent.

SUMMARY.

Principle observations:

- ► 2d GCA governs field theories dual to non-relativistic AdS₃ and 3d flatspace.
- Surprisingly, 2d GCA also appears as the residual gauge symmetry after "conformal" gauge-fixing in tensionless strings.
- $\blacktriangleright \quad \text{Role of 2d GCA in tensionless strings} \Leftrightarrow \text{Role of 2d CFTs in tensile strings}.$
- ► Can use techniques developed in other contexts to understand tensionless strings.
- Much of this can be developed in direct analogy to 2d CFTs. Answers can also be arrived at by a limiting procedure.

SUMMARY.

Principle observations:

- $\blacktriangleright\,$ 2d GCA governs field theories dual to non-relativistic AdS_3 and 3d flatspace.
- Surprisingly, 2d GCA also appears as the residual gauge symmetry after "conformal" gauge-fixing in tensionless strings.
- $\blacktriangleright \quad \text{Role of 2d GCA in tensionless strings} \Leftrightarrow \text{Role of 2d CFTs in tensile strings}.$
- ► Can use techniques developed in other contexts to understand tensionless strings.
- Much of this can be developed in direct analogy to 2d CFTs. Answers can also be arrived at by a limiting procedure.

Humble beginings:

- Many aspects can be understood very simply from contractions: vector fields leading symmetries arise naturally, zero central charges are explained.
- "Dual" proposal gives an understanding of point-particle behaviour of tensionless strings from contractions.

SUMMARY.

Principle observations:

- ► 2d GCA governs field theories dual to non-relativistic AdS₃ and 3d flatspace.
- Surprisingly, 2d GCA also appears as the residual gauge symmetry after "conformal" gauge-fixing in tensionless strings.
- $\blacktriangleright \quad \text{Role of 2d GCA in tensionless strings} \Leftrightarrow \text{Role of 2d CFTs in tensile strings}.$
- Can use techniques developed in other contexts to understand tensionless strings.
- Much of this can be developed in direct analogy to 2d CFTs. Answers can also be arrived at by a limiting procedure.

Humble beginings:

- Many aspects can be understood very simply from contractions: vector fields leading symmetries arise naturally, zero central charges are explained.
- "Dual" proposal gives an understanding of point-particle behaviour of tensionless strings from contractions.

Numerous open questions and possible directions.

INTRODUCTION	GALILEAN CONFORMAL SYMMETRY	TENSIONLESS STRINGS	THE "DUAL" PICTURE	Remarks

OUTLINE

INTRODUCTION

GALILEAN CONFORMAL SYMMETRY

TENSIONLESS STRINGS

THE "DUAL" PICTURE

Remarks

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

QUESTIONS AND FUTURE DIRECTIONS

1. Open Strings

- ► Existing body of literature about tensionless open strings. [Sagnotti, Tsulaia 2003]
- Based on a contraction of single copy of Virasoro.

QUESTIONS AND FUTURE DIRECTIONS

1. Open Strings

- ► Existing body of literature about tensionless open strings. [Sagnotti, Tsulaia 2003]
- Based on a contraction of single copy of Virasoro.
- Closed tensionless string algebra is *NOT* two copies of the open string algebra.

QUESTIONS AND FUTURE DIRECTIONS

1. Open Strings

- ► Existing body of literature about tensionless open strings. [Sagnotti, Tsulaia 2003]
- Based on a contraction of single copy of Virasoro.
- Closed tensionless string algebra is *NOT* two copies of the open string algebra.
- ► Contradiction! \rightarrow Options:
 - 1. Both correct \Rightarrow tensionless open and closed strings behave very differently!
 - 2. One of them incorrect.

QUESTIONS AND FUTURE DIRECTIONS

1. Open Strings

- ► Existing body of literature about tensionless open strings. [Sagnotti, Tsulaia 2003]
- Based on a contraction of single copy of Virasoro.
- Closed tensionless string algebra is *NOT* two copies of the open string algebra.
- Contradiction! \rightarrow Options:
 - 1. Both correct \Rightarrow tensionless open and closed strings behave very differently!

2. One of them incorrect.

- Closed strings are more fundamental. Can have a theory of just closed strings.
- ► But open strings would always form closed strings in one-loop order.
- If this still holds for tensionless strings, need to re-examine open string analysis carefully from 2d-GCA point of view.

QUESTIONS AND FUTURE DIRECTIONS

2. Connections to Flat Holography

3. Connections to Higher-Spin Holography

QUESTIONS AND FUTURE DIRECTIONS

2. Connections to Flat Holography

- ▶ Tensile strings on $AdS_3 \otimes X^7$. CFT₂ on world-sheet and CFT₂ in spacetime.
- ► Worldsheet symmetries induce spacetime symmetries [Giveon, Kutasov, Seiberg 1998].
- ► Is said to be a "proof" of AdS/CFT in this context.
- ▶ Tensionless strings on $\mathbb{R}^{1,2} \otimes X^7$. GCA₂ on worldsheet and GCA₂ in spacetime.
- Similar construction to "prove" flat holography?

3. Connections to Higher-Spin Holography

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

QUESTIONS AND FUTURE DIRECTIONS

2. Connections to Flat Holography

- ▶ Tensile strings on $AdS_3 \otimes X^7$. CFT₂ on world-sheet and CFT₂ in spacetime.
- ► Worldsheet symmetries induce spacetime symmetries [Giveon, Kutasov, Seiberg 1998].
- ► Is said to be a "proof" of AdS/CFT in this context.
- ▶ Tensionless strings on $\mathbb{R}^{1,2} \otimes X^7$. GCA₂ on worldsheet and GCA₂ in spacetime.
- Similar construction to "prove" flat holography?

3. Connections to Higher-Spin Holography

- ► Tensionless strings in AdS₃ ala Giveon-Kutasov-Seiberg.
- Appropriate limit of their construction?

QUESTIONS AND FUTURE DIRECTIONS

2. Connections to Flat Holography

- ▶ Tensile strings on $AdS_3 \otimes X^7$. CFT₂ on world-sheet and CFT₂ in spacetime.
- ► Worldsheet symmetries induce spacetime symmetries [Giveon, Kutasov, Seiberg 1998].
- ► Is said to be a "proof" of AdS/CFT in this context.
- ▶ Tensionless strings on $\mathbb{R}^{1,2} \otimes X^7$. GCA₂ on worldsheet and GCA₂ in spacetime.
- Similar construction to "prove" flat holography?

3. Connections to Higher-Spin Holography

- ▶ Tensionless strings in AdS₃ ala Giveon-Kutasov-Seiberg.
- Appropriate limit of their construction?
- ▶ Other avenue: Strings on group manifolds \rightarrow WZW construction.
- ► Tensionless limit: critical tuning of level of affine algebra [Lindstrom, Zabzine 2004].
- ► But they continue to use Virasoro constructions even at the critical point.
- ► Should use contracted algebra and redo things like Sugawara constructions.
- Revisit using GCA techniques.

QUESTIONS AND FUTURE DIRECTIONS

4. Others

- Construction of tensionless spectrum via GCA methods and comparing with existing literature.
- A inherent GCA way of calculating analogue of Weyl anomaly to determine critical dimension of tensionless string on its own.
- Supersymmetric versions.
- Many more possible avenues..
- ▶ Perhaps could write a tensionless version of Green-Schwarz-Witten. :-)

INTRODUCTION	GALILEAN CONFORMAL SYMMETRY	TENSIONLESS STRINGS	THE "DUAL" PICTURE	REMARKS

Thank you!

・ ・ ・ ● ・ ・ = ・ ・ = ・ うへで