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CONFORMAL FIELD THEORY

I Conformal Symmetry: Primary tool in Theoretical Physics.
I Central to understanding QFTs through RG fixed points.
I Study of critical phenomena.

I Especially powerful in 2 dimensions.
I Symmetry algebra becomes infinite dimensional.
I Theory constrained by symmetries.
I No Lagrangian needed to fix correlation functions.

I 2d Conformal symmetry can be
I Space-time symmetry: Extensively used in holographic studies as the

symmetry of the field theory dual to AdS3 (and dS3).

I Gauge symmetry: On the world-sheet of String Theory. Residual symmetry
after fixing conformal gauge in the closed bosonic string.

I Enormous success in both these avenues.
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A DIFFERENT SYMMETRY

Another symmetry governed by the Galilean Conformal Algebra (GCA) has arisen in
very different contexts recently.

I Constructed as a limit of the symmetries of a CFT.
I Infinite dimensional in all spacetime dimensions.

Today we will confine ourselves to 2 dimensions.

I 2d GCA can be a Space-time symmetry:
I Symmetry of the field theory dual to a bulk Non-Relativistic AdS3.

I Symmetry of the field theory dual to 3d Minkowski spacetime.

Focus of the talk today: [Reference: A Bagchi 1303.0291]

I 2d GCA can be realised as a Gauge symmetry.
I On the world-sheet of String Theory in the Tensionless Limit.
I Residual symmetry after fixing analogue of the conformal gauge in the closed

tensionless bosonic string.
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TENSIONLESS STRINGS: WHY BOTHER?

Tensionless strings have been studied since Schild in 1977.

I Limit expected to probe string theory at very high energies.

I Supposed to uncover a sector with larger symmetry.
I String theory⇒ infinite tower of massive particles of arbitrary spin.
I In this limit all of them become massless.
I Expect higher spin symmetry structures to arise.

I Of interest to the recent higher spin dualities.
[Klebanov-Polyakov ’02, Sezgin-Sundell ’02, Gaberdiel-Gopakumar ’10]

Folklore: Tensionless Type IIB strings on AdS5⊗ S5 ⇒ higher-spin gauge theory.
[Witten ’01, Sundborg ’01, ... ]

Aim(1): Understand string theory in this “ultra-stringy” regime.

Aim(2): Make connection between tensionless strings and higher spins concrete.

Lacking: An organising principle (like 2d CFT for string theory). We aim to rectify this.
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HOW TO TAKE LIMITS OR INÖNÜ-WIGNER CONTRACTIONS

A simple example.

SO(3) maps the surface of the sphere (S2) embedded in R3 to itself.

I Equation for S2: x2
1 + x2

2 + x2
3 = R2.

I Infinitesimal generators: Xij = xi∂j − xj∂i

I Algebra: [Xij,Xrs] = Xisδjr + Xjrδis − Xirδjs − Xjsδir
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HOW TO TAKE LIMITS OR INÖNÜ-WIGNER CONTRACTIONS...

Take the limit R→∞. Look at the north pole: x1,2 = 0 and x3 = R.

Y12 = lim
R→∞

X12 = x1∂2 − x2∂1, Pi = lim
R→∞

1
R

Xi,3 = lim
R→∞

1
R

(xi∂3 − x3∂i)→ −∂i

Redefined algebra: [Y12,Pi] = P1δ2i − P2δ1i, [P1,P2] = 0 → ISO(2).

Will use this extensively to explain the limits we take.
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GALILEAN CONFORMAL SYMMETRY

I Galilean algebra: symmetry algebra for Galilean invariant systems. Can be
obtained as a limit of the Poincare algebra.

I Galilean Conformal Algebra (GCA): conformal generalisation of the Galilean
algebra. Symmetry of non-relativistic conformal systems. Can be constructed as a
limit of the relativistic Conformal algebra. [AB, Gopakumar 2009.]

I GCA is infinite dimensional in all spacetime dimensions. (Finite part obtained as
limit and then given infinite lift.)

I In 2d, relativistic conformal symmetry is infinite dimensional.
I The infinite GCA2 can be shown to emerge as a limit of 2d CFT symmetry.

[AB, Gopakumar, Mandal, Miwa 2009.]

I The algebra looks like:

[Lm, Ln] = (m− n)Lm+n + C1m(m2 − 1)δm+n,0, [Mm,Mn] = 0.
[Lm,Mn] = (m− n)Mm+n + C2m(m2 − 1)δm+n,0. (1)



INTRODUCTION GALILEAN CONFORMAL SYMMETRY TENSIONLESS STRINGS THE “DUAL” PICTURE REMARKS

2D GCA AS SPACETIME SYMMETRY - I

NON-RELATIVISTIC LIMIT OF ADS3/CFT2

[AB, Gopakumar 2009; AB, Gopakumar, Mandal, Miwa 2009.]

Boundary Theory:
I Non-relativistic theory with 2d GCA symmetry (GCFT).
I Can compute e.g. correlation functions and Ward identities.
I Quantities obtained as a limit of 2d CFTs or directly from 2d GCFT.
I Realised e.g. in non-relativistic hydrodynamical systems.

Bulk Theory:
I Bulk theory is a non-relativistic version of AdS3.
I This has a structure of AdS2⊗ R (non-trivially fibred).
I Generalisation of usual Newton-Cartan spacetimes.
I 2d-GCA is recovered as asymptotic symmetries.
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2D GCA AS SPACETIME SYMMETRY - II

FLAT SPACE HOLOGRAPHY
I Asymptotic symmetries of 3d flat space⇒ BMS3 algebra. [Barnich, Compere 2006.]

I This is isomorphic to the 2d GCA [AB 2010].

I Flat space⇒ large radius limit of AdS.
This limit induces a contraction on CFT. [AB, Fareghbal 2012]

I Symmetry structures of flat-space can be obtained as a limit of AdS.
I Previously unexplored route to Flat-space holography.

Successes: (1) Entropy of 3d flat cosmological horizons. [AB, Detournay, Fareghbal, Simon 2012; Barnich 2012]

I Flat limit of non-extremal BTZ.
I Outer radius→∞. Spacetime⇒ inside of BTZ outer horizon.
I Radial and time directions interchanged. Cosmology.
I Inner radius survives limit. Cosmological Horizon.
I Entropy reproduced by a Cardy-like analysis of dual field theory.

(2) Novel phase transitions between these cosmologies and hot flat space.
[AB, Detournay, Grumiller, Simon. (To appear) ]

I Many other recent advances. Contracted symmetries are central to this.

[AB, Detournay, Grumiller 2012; Barnich, Gomberoff, Gonzalez 2012; Barnich, Gonzalez 2013.]
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CLASSICAL CLOSED STRINGS Isberg, Lindstrom, Sundborg, Theodoridis 1993

I Start with Nambu-Goto action

S = −T
∫

d2ξ
√
−det γαβ (2)

I To take the tensionless limit, first switch to Hamiltonian framework.
I Generalised momenta: Pm = T

√
−γγ0α∂αXm.

I Constraints: P2 + T2γγ00 = 0, Pm∂αXm = 0.
I Hamiltonian of the system: H = λ(P2 + T2γγ00) + ραPm∂αXm.
I Action after integrating out momenta:

S =
1
2

∫
d2ξ

1
2λ

[
Ẋ2 − 2ραẊm∂αXm + ρaρb∂bXm∂aXm − 4λ2T2γγ00

]
(3)

I Identifying gαβ =

(
−1 ρ
ρ −ρ2 + 4λ2T2

)
Action takes the familiar Weyl-invariant form

S = −
T
2

∫
d2ξ
√
−ggαβ∂αXm∂βXnηmn. (4)
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CLASSICAL TENSIONLESS CLOSED STRINGS
Isberg, Lindstrom, Sundborg, Theodoridis 1993

I Tensionless limit can be taken at various steps.

I Metric density T
√−ggαβ degenerates and is replaced by a rank-1 matrix VαVβ

where Vα is a vector density

Vα ≡
1
√

2λ
(1, ρa) (5)

I Action in T → 0 limit

S =

∫
d2ξ VαVβ∂αXm∂βXnηmn. (6)

I Tensionless action is invariant under world-sheet diffeomorphisms.
I Fixing gauge: “Conformal” gauge: Vα = (v, 0) (v: constant).

I Tensile: Residual symmetry after fixing conformal gauge = Vir ⊗ Vir.
Central to understanding string theory.

I Tensionless: Similar residual symmetry left over after gauge fixing.
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TENSIONLESS CLOSED STRINGS: SYMMETRIES

Isberg, Lindstrom, Sundborg, Theodoridis 1993

I Tensionless residual symmetries:

δξα = λα, λα = (f ′(σ)τ + g(σ), f (σ)) where f , g = f (σ), g(σ)

I Define: L(f ) = f ′(σ)τ∂τ + f (σ)∂σ , M(g) = g(σ)∂τ .

I Expand: f =
∑

aneinσ , g =
∑

bneinσ

L(f ) =
∑

n
aneinσ(∂σ + inτ∂τ ) = −i

∑
n

anLn

M(g) =
∑

n
bneinσ∂τ = −i

∑
n

bnMn.

I Symmetry algebra in terms of Fourier modes:

[Lm, Ln] = (m− n)Lm+n + C1m(m2 − 1)δm+n,0, [Mm,Mn] = 0.
[Lm,Mn] = (m− n)Mm+n + C2m(m2 − 1)δm+n,0. (7)

I 2d GCA!! (Central terms: Isberg et al find C1 = C2 = 0).
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INTRODUCTION GALILEAN CONFORMAL SYMMETRY TENSIONLESS STRINGS THE “DUAL” PICTURE REMARKS

TENSIONLESS STRINGS: SYMMETRIES AS A LIMIT
A Bagchi 2013

I Tensile string: Residual symmetry in conformal gauge gαβ = eφηαβ :

[Lm,Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0

[Lm, L̄n] = 0, [L̄m, L̄n] = (m− n)L̄m+n +
c̄

12
m(m2 − 1)δm+n,0 (8)

I World-sheet is a cylinder. Symmetry best expressed as 2d conformal generators
on the cylinder.

Ln = ieinω∂ω , L̄n = ieinω̄∂ω̄ (9)
where ω, ω̄ = τ ± σ. Vector fields generate centre-less Virasoros.

I Tensionless limit⇒ length of string becomes infinite (σ →∞).
I Ends of closed string identified⇒ limit best viewed as (σ → σ, τ → ετ, ε→ 0).
I Define

Ln = Ln − L̄−n, Mn = ε(Ln + L̄−n). (10)

I New vector fields (Ln,Mn) well-defined in limit and given by:

Ln = ieinσ(∂σ + inτ∂τ ), Mn = ieinσ∂τ . (11)

I These are exactly the generators defined previously . Close to form the 2d GCA.
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CENTRAL TERMS AND CRITICAL DIMENSIONS A Bagchi 2013

I A lot of debate about critical dimensions for tensionless strings.
I From the point of view of the contraction, the answer is simple.
I To generate non-zero C1, the parent Virasoro should have c 6= c̄.

I To generate non-zero C2 ⇒ c, c̄ ∼ ε−1.

A. Tensionless Strings as a limit of consistent String Theory.
I Parent has no diffeomorphism anomaly ⇒ c = c̄ ⇒ C1 = 0.
I Parent has finite number of world-sheet fields ⇒ c, c̄ 6∼ ε−1 ⇒ C2 = 0.

B. Tensionless Strings as a theory of its own.
I Can have non-zero C1,C2.
I Consistent dimension would possibly depend on specific operator ordering.
I Need a calculation of the analogue of the Weyl anomaly in 2d GCA.

I More interested in Option A⇒ limit does not generate additional constraints.
I Tensionless strings (as a limit of usual strings) consistent in any dimensions.
I Good feature. Don’t want limit of a theory to be consistent in a dimension

different from the original theory!
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GCA EM-TENSOR
A Bagchi 2013

I Generators of Virasoro⇒modes of E-M tensor.

I Spectrum of tensile string theory (in conformal gauge in flat space)
I Quantise world sheet theory as a theory free scalar fields.
I Constraint: vanishing of EOM of metric (which is fixed to be flat).
I Op form: Physical states vanish under action of modes of E-M tensor.
I Forms basis of decoupling negative norm states from Hilbert space.

I Important to construct EM-tensor of GCA and expand in modes.
I EM tensor for 2d CFT on cylinder:

Tcyl = z2Tplane −
c

24
=
∑

n
Lne−inω −

c
24

; T̄cyl =
∑

n
L̄ne−inω̄ −

c̄
24

(12)

I GCA EM tensor

T(1) = lim
ε→0

(
Tcyl − T̄cyl

)
=
∑

n
(Ln − inτMn)e−inσ −

C1

2
(13)

T(2) = lim
ε→0

ε

(
Tcyl + T̄cyl

)
=
∑

n
Mne−inσ −

C2

2
(14)
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GCA EM-TENSOR ..

A Bagchi 2013

I Spectrum of tensionless strings: physical spectrum restricted by constraint

〈phys|T(1)|phys′〉 = 0, 〈phys|T(2)|phys′〉 = 0. (15)

I Equivalently,
Ln|phys〉 = 0, Mn|phys〉 = 0 for n > 0 (16)

I Important step in building tensionless spectrum from GCA methods.
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THE OTHER CONTRACTION A Bagchi 2013

I Euclidean worldsheet⇒ σ, τ are on the same footing.
I So contraction in τ ≡ contraction in σ.
I (σ, τ)→ (εσ, τ) should yield same symmetry algebra as (σ, τ)→ (σ, ετ).
I We have seen (σ, τ)→ (σ, ετ)⇒ Vir ⊗ Vir→ 2d-GCA.

I Now define L̃n = Ln + L̄n, M̃n = ε(Ln − L̄n)

I The generators take the form

L̃n = ieinτ (∂τ + inσ∂σ), M̃n = ieinτ∂σ . (17)

I Expressions are τ ↔ σ of the earlier expressions. Close to form the 2d-GCA again.
I Contraction looks like the point-particle limit.

I EOM of tensionless string: Vβγαβ = 0, ∂α(VαVβ∂βXm) = 0.
I Second equation in “conformal” gauge becomes

∂τ
2Xm = 0, (∂τX)2 = ∂τX∂σX = 0. (18)

I Tensionless string behaves like a collection of massless point particles:
as expected from the “dual” contraction.
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THEORY ON A TORUS.

A Bagchi 2013

I As a further check: look at the theory on a torus.
I Modular invariance in 2d CFT→ density of states via the Cardy formula.

I Demand⇒ 2d GCA derives a modular invariance in the limit.
I Use this to compute a Cardy-like formula.
I Can do this in both the limits discussed.
I States: L0|hL, hM〉 = hL|hL, hM〉, M0|hL, hM〉 = hM|hL, hM〉

Cardy-like formula: S = 2π
(

hL

√
C2

2hM
+ C1

√
hM

2C2

)
. (19)

I Final answers are identical and don’t depend on details of the limit.
I Further evidence that the two contractions are equivalent.
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SUMMARY.

Principle observations:
I 2d GCA governs field theories dual to non-relativistic AdS3 and 3d flatspace.
I Surprisingly, 2d GCA also appears as the residual gauge symmetry after

”conformal” gauge-fixing in tensionless strings.

I Role of 2d GCA in tensionless strings⇔ Role of 2d CFTs in tensile strings.

I Can use techniques developed in other contexts to understand tensionless strings.
I Much of this can be developed in direct analogy to 2d CFTs. Answers can also be

arrived at by a limiting procedure.

Humble beginings:
I Many aspects can be understood very simply from contractions: vector fields

leading symmetries arise naturally, zero central charges are explained.
I ”Dual” proposal gives an understanding of point-particle behaviour of

tensionless strings from contractions.

Numerous open questions and possible directions.
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QUESTIONS AND FUTURE DIRECTIONS

1. Open Strings

I Existing body of literature about tensionless open strings. [Sagnotti, Tsulaia 2003]

I Based on a contraction of single copy of Virasoro.

I Closed tensionless string algebra is NOT two copies of the open string algebra.
I Contradiction!→ Options:

1. Both correct⇒ tensionless open and closed strings behave very differently!

2. One of them incorrect.
I Closed strings are more fundamental. Can have a theory of just closed strings.
I But open strings would always form closed strings in one-loop order.
I If this still holds for tensionless strings, need to re-examine open string analysis

carefully from 2d-GCA point of view.
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QUESTIONS AND FUTURE DIRECTIONS

2. Connections to Flat Holography

I Tensile strings on AdS3⊗ X7. CFT2 on world-sheet and CFT2 in spacetime.
I Worldsheet symmetries induce spacetime symmetries [Giveon, Kutasov, Seiberg 1998].
I Is said to be a “proof” of AdS/CFT in this context.
I Tensionless strings on R1,2⊗ X7. GCA2 on worldsheet and GCA2 in spacetime.
I Similar construction to “prove” flat holography?

3. Connections to Higher-Spin Holography

I Tensionless strings in AdS3 ala Giveon-Kutasov-Seiberg.
I Appropriate limit of their construction?
I Other avenue: Strings on group manifolds→WZW construction.
I Tensionless limit: critical tuning of level of affine algebra [Lindstrom, Zabzine 2004].
I But they continue to use Virasoro constructions even at the critical point.
I Should use contracted algebra and redo things like Sugawara constructions.

I Revisit using GCA techniques.
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I Tensile strings on AdS3⊗ X7. CFT2 on world-sheet and CFT2 in spacetime.
I Worldsheet symmetries induce spacetime symmetries [Giveon, Kutasov, Seiberg 1998].
I Is said to be a “proof” of AdS/CFT in this context.
I Tensionless strings on R1,2⊗ X7. GCA2 on worldsheet and GCA2 in spacetime.
I Similar construction to “prove” flat holography?

3. Connections to Higher-Spin Holography
I Tensionless strings in AdS3 ala Giveon-Kutasov-Seiberg.
I Appropriate limit of their construction?

I Other avenue: Strings on group manifolds→WZW construction.
I Tensionless limit: critical tuning of level of affine algebra [Lindstrom, Zabzine 2004].
I But they continue to use Virasoro constructions even at the critical point.
I Should use contracted algebra and redo things like Sugawara constructions.

I Revisit using GCA techniques.
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4. Others
I Construction of tensionless spectrum via GCA methods and comparing with

existing literature.
I A inherent GCA way of calculating analogue of Weyl anomaly to determine

critical dimension of tensionless string on its own.
I Supersymmetric versions.
I Many more possible avenues..
I Perhaps could write a tensionless version of Green-Schwarz-Witten. :-)
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Thank you!
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