Naturalness after the first run of the LHC

Galileo Galilei Institute
May 23, 2013

Marco Farina
Cornell University
Naturalness in trouble?

Naturalness is now in trouble, two measurements:

- **top is heavy** \(M_t \approx 173 \text{ GeV} \)
- **Higgs is light** \(M_h \approx 126 \text{ GeV} \)

\[
\delta m_h^2 \approx \delta m_h^2 (\text{top loop}) \approx \frac{12 \lambda_t^2}{(4\pi)^2} \Lambda_{NP}^2 \times \left\{ \frac{1}{\ln M_{Pl}^2 / \Lambda_{NP}^2} \right\}
\]

\[
\delta m_h^2 \lesssim M_h^2 \times \Delta
\]

\[
\Lambda_{NP} \lesssim \sqrt{\Delta} \times \left\{ \begin{array}{c} 400 \text{ GeV} \\ 50 \text{ GeV} \end{array} \right\}
\]
Top partners?

The biggest issue is in the third generation.
Bottom up approach with Higgs+top+top partners:

- Assume mass of the form

 \[m^2(T_i) = m^2_{0,i} + c_i h^2 + \cdots \]

 Can be spin-0 (SUSY), spin-1/2 (Little Higgs, etc.)

- Cancelling quadratic divergences

 \[6y_t^2 = \sum_i g_i (-1)^{F_i} c_i \]
Top partners?

Low-Energy Theorems relate to Higgs couplings:

\[\mathcal{L}_{h\gamma\gamma} = \frac{2\alpha}{9\pi v} C_\gamma h F_{\mu\nu} F^{\mu\nu} \]

\[\mathcal{L}_{hgg} = \frac{\alpha_s}{12\pi v} C_g h G_{\mu\nu} G^{\mu\nu} \]

\[C_\gamma \approx 1 + \frac{3}{4} \sum_f \frac{N_{c,f} Q_f^2 c_f v^2}{m_{0,f}^2 + c_f v^2} + \frac{3}{16} \sum_s \frac{N_{c,s} Q_s^2 c_s v^2}{m_{0,s}^2 + c_s v^2} \]

\[C_g \approx 1 + 2 \sum_f \frac{C(r_f) c_f v^2}{m_{0,f}^2 + c_f v^2} + \frac{1}{2} \sum_s \frac{C(r_s) c_s v^2}{m_{0,s}^2 + c_s v^2} \]
Top partners

We can now put together (log) FT and Higgs couplings. E.g. spin-1/2 partner
SUSY and the Higgs mass

\[m_h^2 \approx m_Z^2 \cos^2 2\beta + \frac{3}{(4\pi)^2} \frac{m_t^4}{v^2} \left[\ln \frac{m_t^2}{m_t^2} + \frac{X_t^2}{m_t^2} \left(1 - \frac{X_t^2}{12m_t^2} \right) \right] \]

Different ways to get 125 GeV:

- heavy stops
- large stop mixing
- extended scalar sector (NMSSM)

\[\Delta m_h = \max_i \left| \frac{\partial \ln m_h^2}{\partial \ln p_i} \right| \]

Hall, Pinner, Ruderman
1112.2703
Stops and Naturalness

If too large tuned parameters to get correct EWSB scale

\[m_h^2 \approx m_Z^2 \cos^2 2\beta + \frac{3}{(4\pi)^2} \frac{m_t^4}{v^2} \left[\ln \frac{m_t^2}{m_t^2} + \frac{X_t^2}{m_t^2} \left(1 - \frac{X_t^2}{12m_t^2} \right) \right] \]

\[\delta m_{H_u}^2 = -\frac{3y_t^2}{8\pi^2} \left(m_{Q_3}^2 + m_{u_3}^2 + |A_t|^2 \right) \ln \left(\frac{\Lambda}{m_t} \right) \]

Higgs Mass vs. Fine Tuning

Lightest Stop Mass

Hall, Pinner, Ruderman
1112.2703
Stops and Naturalness

\[m_{\tilde{g}} \lesssim 2m_{\tilde{t}} \]

\(\tilde{g} \rightarrow \tilde{t} \tilde{t}^0 \)

\(\tilde{t} \rightarrow t\chi_1^0 \)

Hall, Pinner, Ruderman

1112.2703
Is the NMSSM the solution?

Add a singlet

\[W_{NMSSM} = \lambda \hat{S} \hat{H}_u \hat{H}_d + \frac{\kappa}{3} \hat{S}^3 \]

\[(m_h^2)_{\text{tree}} \leq m_Z^2 \cos^2 2\beta + \lambda^2 v^2 \sin^2 2\beta \]
So far:
- MSSM: stop tuning $\sim 1\%$
- NMSSM: $\sim 5\%$

Why don't we push it further?

λ-SUSY:
- perturivitiy lost before ~ 10 TeV if $\lambda > 2$
- Higgs mass naturally $\sim \lambda v$ up to 350 GeV
Enlarge your λ

λ-SUSY:

- perturivity lost before ~ 10 TeV if $\lambda > 2$
- Higgs mass naturally $\sim \lambda v$ up to 350 GeV
- observed Higgs mass obtained by mixing with the singlet

Fine Tuning!

Gherghetta et al. 1212.5243
- Mixing with H is \(~\text{few \%}\)

- Can describe the problem with just \((h,s)\)

\[
\begin{pmatrix}
M_{11}^2 & M_{13}^2 \\
M_{31}^2 & M_{33}^2
\end{pmatrix} = \begin{pmatrix}
\lambda^2 v^2 & 2\lambda^2 s v - (2\kappa\kappa s v + \lambda A_{\lambda} v) \\
4\kappa^2 s^2 + A_{\kappa} s + \frac{v^2}{2s} A_{\lambda} \lambda
\end{pmatrix}
\]
Fine tuning

- After fixing Higgs mass and singlet fraction only two free parameters left.

\[\lambda = 2, \ t\beta = 2, \text{ Singlet Fraction } 10\% \]
- Singlet fraction is a crucial parameter
- Mixing necessary for lowering mass

Large Mixing constrained by data

PRELIMINARY (MF, M. Perelstein, B. Shakya)
Future?

LHC at 14 TeV with 300 fb$^{-1}$

Data from Peskin 1207.2516
Beyond SM vs Naturalness

- **MSSM**: tuning at ~1% or worse
- **NMSSM & λ-SUSY**: ~5-10%
- **pNGB Higgs**: no sign of strong sector, m_h too light. FT ~few % (FT~v/f and f~few TeV)
- **Top Partners**: ~15%?
Beyond SM vs Naturalness

- **MSSM**: tuning at ~1% or worse
- **NMSSM & λ-SUSY**: ~5-10%
- **pNGB Higgs**: no sign of strong sector, m_h too light. FT ~few %
 (FT~v/f and f~few TeV)
- **Top Partners**: ~15%?

What if there is only the SM?
Is nature natural?

Two (?) roads in front of us:

- **Naturalness**: in trouble.
- **Fine Tuning**: Higgs mass light due to antropic principles.
SM: stability?

- Experimentally now we know \(\lambda \approx 0.13, \ y_t \approx 1 \)
- All SM parameters are measured and beta functions determined
SM: stability

- Second minimum when $\lambda < 0$

$$V = \lambda (|H|^2 - v^2)^2 \approx \frac{\lambda}{4} h^4$$

- Is it a coincidence? A (big) message hiding behind it?

\[\text{Degrassi et al. 1205.6497}\]
Top uncertainties

- Top uncertainties are fully considered? More precise measurements are needed.
Special boundary conditions?

- Are those all hints of special boundary conditions?

\[\lambda(k_{tr}) \approx 0, \beta_\lambda(k_{tr}) \approx 0 \]

Shaposhnikov, Wetterich 0912.0208

- Sign of some UV-completion before the Planck scale?

\[\lambda_{\text{eff}} = 4V/h^4 \]

\[\lambda \text{ in MS} \]

\[\beta_\lambda \]

\[M_h = 126 \text{ GeV (dashed)} \]
\[M_H = 124 \text{ GeV (dotted)} \]
\[M_t = 173.1 \text{ GeV} \]
\[\alpha_s(M_Z) = 0.1184 \]

\[\lambda_{\text{eff}} = 4V/h^4 \]
\[\lambda \text{ in MS} \]

\[\beta_\lambda \]

\[M_h = 126 \text{ GeV (dashed)} \]
\[M_H = 124 \text{ GeV (dotted)} \]
\[M_t = 171.0 \text{ GeV} \]
\[\alpha_s(M_Z) = 0.1184 \]

Degrassi et al. 1205.6497
Special boundary conditions?

- Other boundary conditions are possible?
- EWSB could be generated radiatively. Coleman-Weinberg
- Ruled out in pure SM

\[M_h = 125.5 \text{ GeV} \]
\[3\sigma \text{ bands in} \]
\[M_t = 173.3 \pm 0.6 \text{ GeV} \]
\[\alpha_s(M_Z) = 0.1184 \pm 0.0007 \]

Lykken @ MITP Workshop, Mainz
● **Scale invariance**: obvious candidate to forbid quadratic divergence

● Dimensional Regularization is the natural choice

"Classically conformal"

● The Higgs quadratic term is the only one breaking the symmetry. Some non-SUSY extension could enforce the special boundary conditions.

"Classically conformal"

● Even more vanishing? Also \(\lambda=0 \)

Shift symmetry restored.

Bardeen Fermilab-Conf-95-391

Meissner, Nicolai hep-th/0612165

Hebecker, Knochel, Weigand, 1204.2551
More examples

Why should the true cutoff behave like dimensional regularization?

- Conformal invariance at high scales. For example adding a singlet scalar.
 [Lykken @ MITP Workshop, Mainz, Englert et al. 1301.4224, Heikinheimo et al. 1304.7006]

- Infinite tower of states at Planck scale
 [Dienes hep-ph/0104274]

- New physics leading to a Veltman throat
 [Bezrukov et al. 1205.2893]
Is nature natural?

Or maybe there is a third option...

from Strumia talk @ Brookhaven
There is a third (ugly) path:

- **Finite Naturalness**: the SM is valid up to arbitrary scale (i.e. up to Planck scale). We are agnostic about gravity, quadratic divergences are not physical and thus have to ignored.

- However new physics is expected (dark matter, neutrino masses, strong CP problem/axions, etc...)

- Recipe: compute effective potential discarding quadratic divergences and ask the usual \(\delta m_h^2 \lesssim M_h^2 \times \Delta \)
A third (ugly) option

There is a third (ugly) path:

- **Finite Naturalness**: the SM is valid up to arbitrary scale (i.e. up to Planck scale). We are agnostic about gravity, quadratic divergences are not physical and thus have to be ignored.

- However new physics is expected (dark matter, neutrino masses, strong CP problem/axions, etc...)

DISCLAIMER: I don't want to advocate, but to explore its consequences and tests

MF, D. Pappadopulo, A. Strumia 1303.7244
The SM satisfies Finite Naturalness

Is the SM "finite natural"?
Logarithmic sensitivity is still present.

P.s. GUTs usually don't satisfy Finite Naturalness
Neutrinos

Three different see-saw models (M used in general as the mass of the new heavy particles):

- **Type-I**: heavy N right handed neutrinos
- **Type-II**: a scalar triplet T, with $Y=1$
- **Type-III**: heavy triplets replace the heavy singlets of type-I

\[
M \lesssim \begin{cases}
0.7 \times 10^7 \text{GeV} \times 3\sqrt{\Delta} & \text{type I see-saw model,} \\
200 \text{GeV} \times \sqrt{\Delta} & \text{type II see-saw model,} \\
940 \text{GeV} \times \sqrt{\Delta} & \text{type III see-saw model,}
\end{cases}
\]

- Only Type-I could be compatible with Leptogenesis
Another possibility: DM without electroweak interactions.

- Scalar: \[\mathcal{L} = \mathcal{L}_{\text{SM}} + \frac{\left(\partial_{\mu} S \right)^2}{2} - \frac{m_S^2}{2} S^2 - \lambda_{HS} S^2 |H|^2 - \frac{\lambda_S}{4} S^4 \]
Singlet Dark Matter

Another possibility: DM without electroweak interactions.

- Fermion:

\[\mathcal{L} = \mathcal{L}_{SM} + \frac{(\partial \mu S)^2}{2} + \bar{\psi} i \gamma_5 \psi - \frac{m_S^2}{2} S^2 - \frac{\lambda_S}{4} S^4 - \lambda_{HS} S^2 |H|^2 + \frac{y}{2} S \psi \bar{\psi} + \frac{M_{\psi}}{2} \psi \bar{\psi} + h.c. \]
Finite Naturalness bounds

In general finite naturalness requires new particles around the TeV scale:

- **Neutrinos:** \(M \lesssim \begin{cases}
0.7 \times 10^7 \text{GeV} \times \sqrt{\Delta} \\
200 \text{GeV} \times \sqrt{\Delta} \\
940 \text{GeV} \times \sqrt{\Delta}
\end{cases} \)

 - type I see-saw model,
 - type II see-saw model,
 - type III see-saw model,

- **Dark Matter:** scalars/fermions \(M \sim 1 \text{ TeV} \)
 with/without EW interactions

- **Axions (KSVZ model):** \(M \lesssim \sqrt{\Delta} \times \begin{cases}
0.74 \text{ TeV} & \text{if } \Psi = Q \oplus \bar{Q} \\
4.5 \text{ TeV} & \text{if } \Psi = U \oplus \bar{U} \\
9.1 \text{ TeV} & \text{if } \Psi = D \oplus \bar{D}
\end{cases} \)

- Other models do not have FN bounds
Conclusions I

- **Pessimistic (antropic):** simplest/most popular models tuned to % level.
 Nature is fine tuned, give up!

- **Optimistic:** Nature is Natural!
 Soon we will observe new particles and deviations from SM in Higgs data.

- **Finite Naturalness:** new states could be within reach of LHC and other experiments (dark matter direct detection, etc.).
 We have to rethink concepts taken for granted.
Conclusions II

History repeating?

- **SUSY and MSSM**: CMSSM, PMSSM, BMSSM, NMSSM, RMSSM and so on...
Conclusions II

History repeating?

- **SUSY and MSSM**: CMSSM, PMSSM, BMSSM, NMSSM, RMSSM and so on...

- **Naturalness**: Absolute Naturalness, Technical Naturalness, Finite Naturalness, $!&@!#$ Naturalness...

We hope not.