Emergent Higgs and Color Confinement

Ryuichiro Kitano (KEK, Sokendai)

seminar@Galileo Galilei Institute, June 19, 2013

I26GeV

What is the microscopic physics behind the Higgs mechanism?

We know that

- EWSB happened twice: one by Higgs and another by QCD (chiral symmetry breaking).
- We probably need more spatial dimensions for the quantization of gravity.

Scenario

Standard Model in extra dim. (no Higgs)

compactification
+ non-perturbative effects
of SM gauge interactions

Standard Model (with Higgs)

"Self-breaking" ^{[Dobre}

[Dobrescu '98][Cheng, Dobrescu, Hill '99][Arkani-Hamed, Dimopoulos '98] [Arkani-Hamed, Cheng, Dobrescu, Hall '00]

Extra dimensional gauge theory? 5-dimensional gauge theory: two parameters: g_5 , R dim $(g_5)=-1/2$ \longrightarrow cut-off scale $\Lambda = \frac{8\pi^2}{g_5^2}$

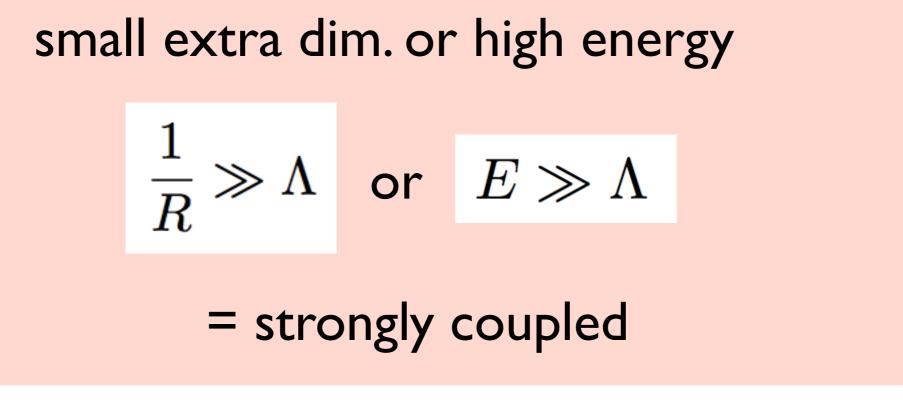
large extra dim.

$$\frac{1}{R} \ll \Lambda$$

= weakly coupled

We get a weakly coupled theory with KK modes.

$$\frac{1}{g_4^2}=\frac{2\pi R}{g_5^2}=\frac{R\Lambda}{4\pi}\gg\frac{1}{4\pi}$$



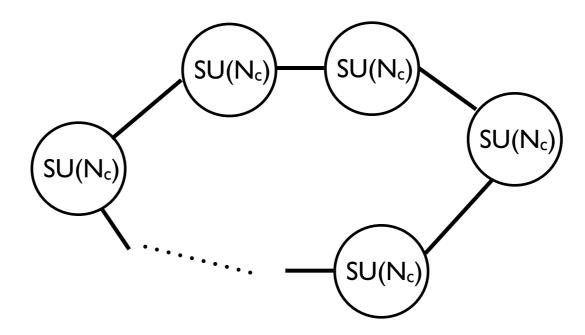
→ "???" (non-perturbative)

We can hope "???" is going to be our Higgs.

We need a definition of the theory to discuss this region. (results depend on how we cut off the theory..)

A (possible) definition

It has been proposed that



provides a UV completion.

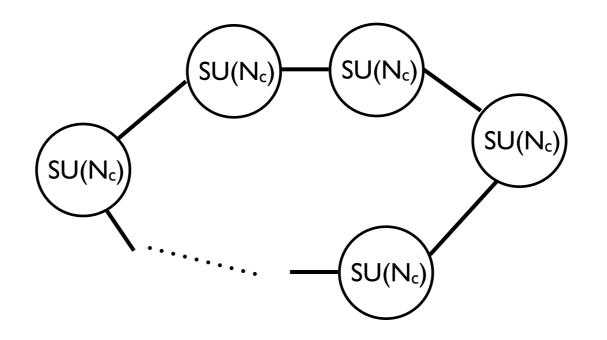
[Arkani-Hamed, Cohen, Georgi '01] [Hill, Pokorski, Wang '01][Cheng, Hill, Pokorski, Wang '01] Usual story: mimics extra-dimension only at low energy

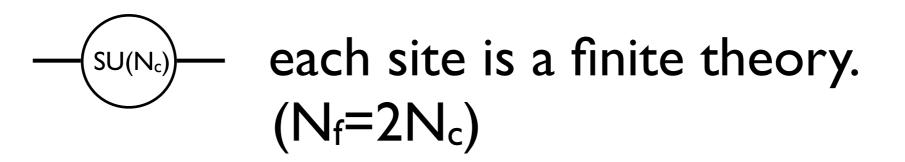
N-site model:
$$\frac{1}{R} = \frac{4\pi g v}{N}$$
, $\Lambda = \frac{(4\pi)^2 v}{g}$ $\Lambda_{dec.} \equiv \frac{N}{R} = 4\pi g v$
g: gauge coupling at each site, v: vev of the link fields
 \downarrow
The N $\rightarrow \infty$ limit while fixing R and Λ means
 $g \rightarrow \infty$, $v \rightarrow \infty$

But, we cannot go beyond $g \gg 1$.

[Arkani-Hamed, Cohen, Kaplan, Karch, Motl '01]

But with N=2 SUSY,



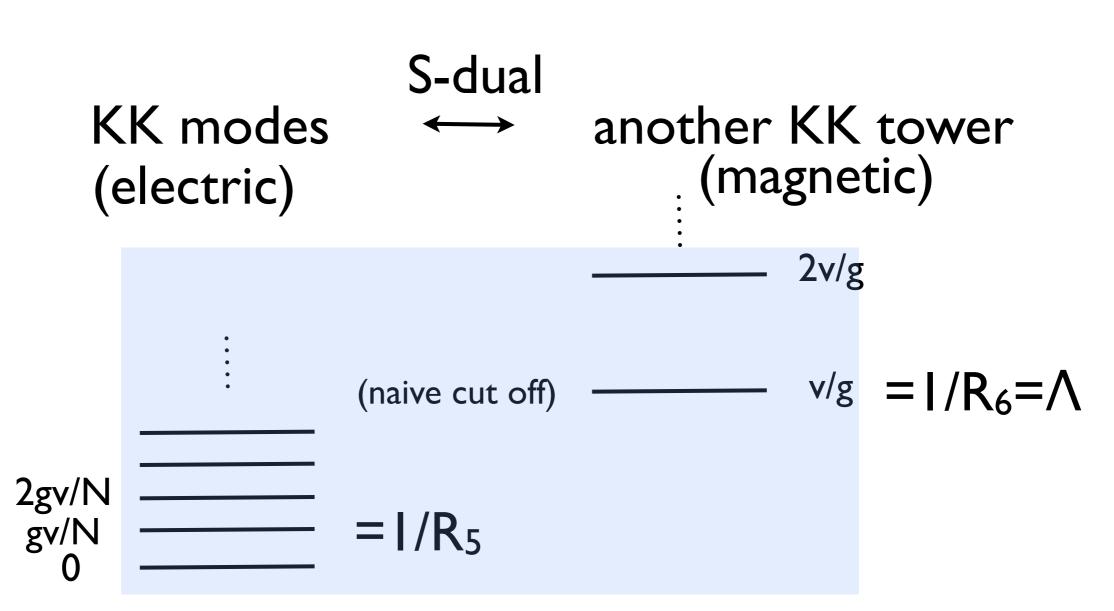


one can just take whatever values of g.

 \longrightarrow We can go beyond $\Lambda !!$

[Arkani-Hamed, Cohen, Kaplan, Karch, Motl '01]

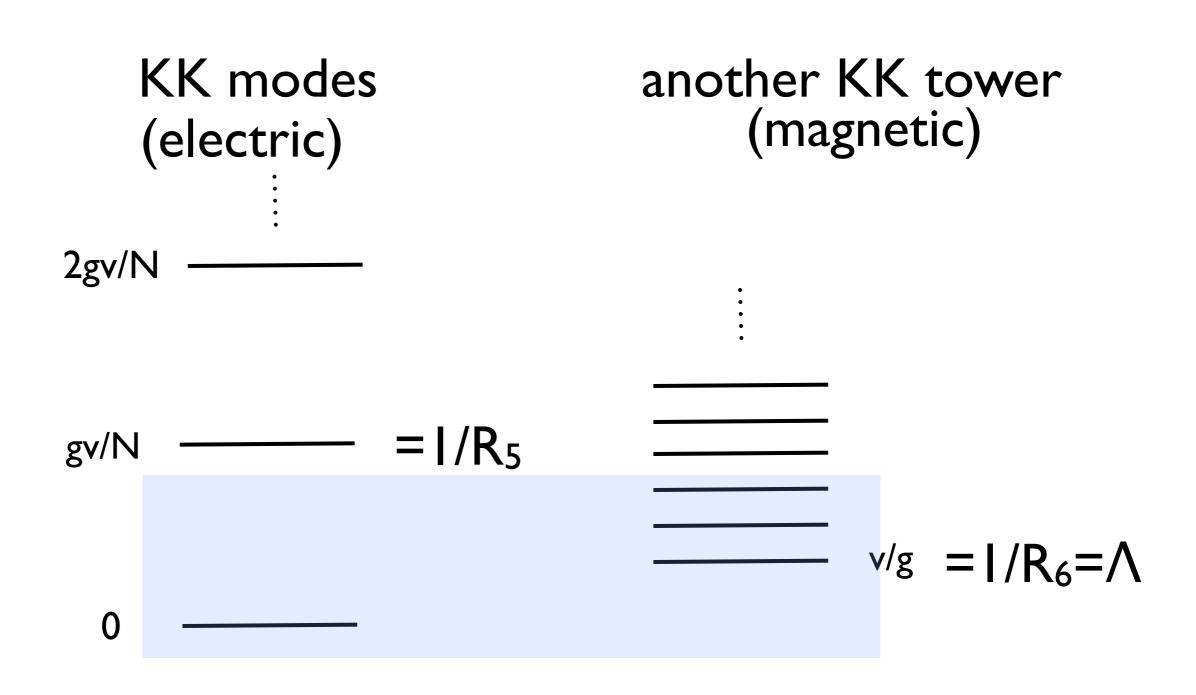
6th dimension



appearance of 6th dimension

Interesting.

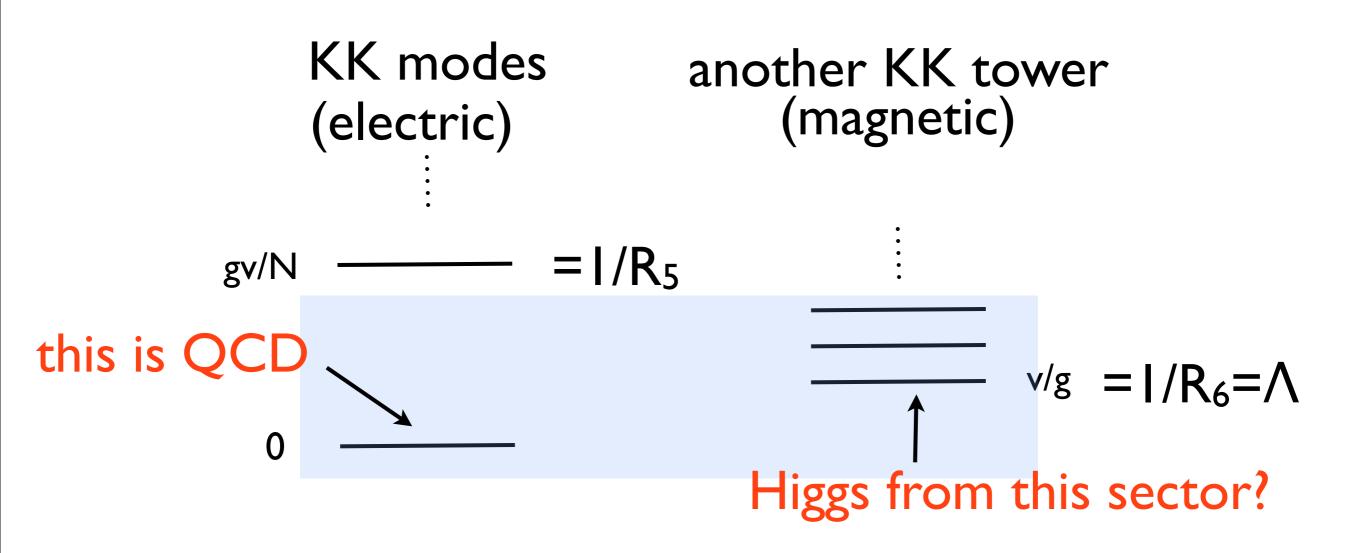
$I/R_5 \gg \Lambda$ means,



magnetic picture gets better description.

Emergent Higgs

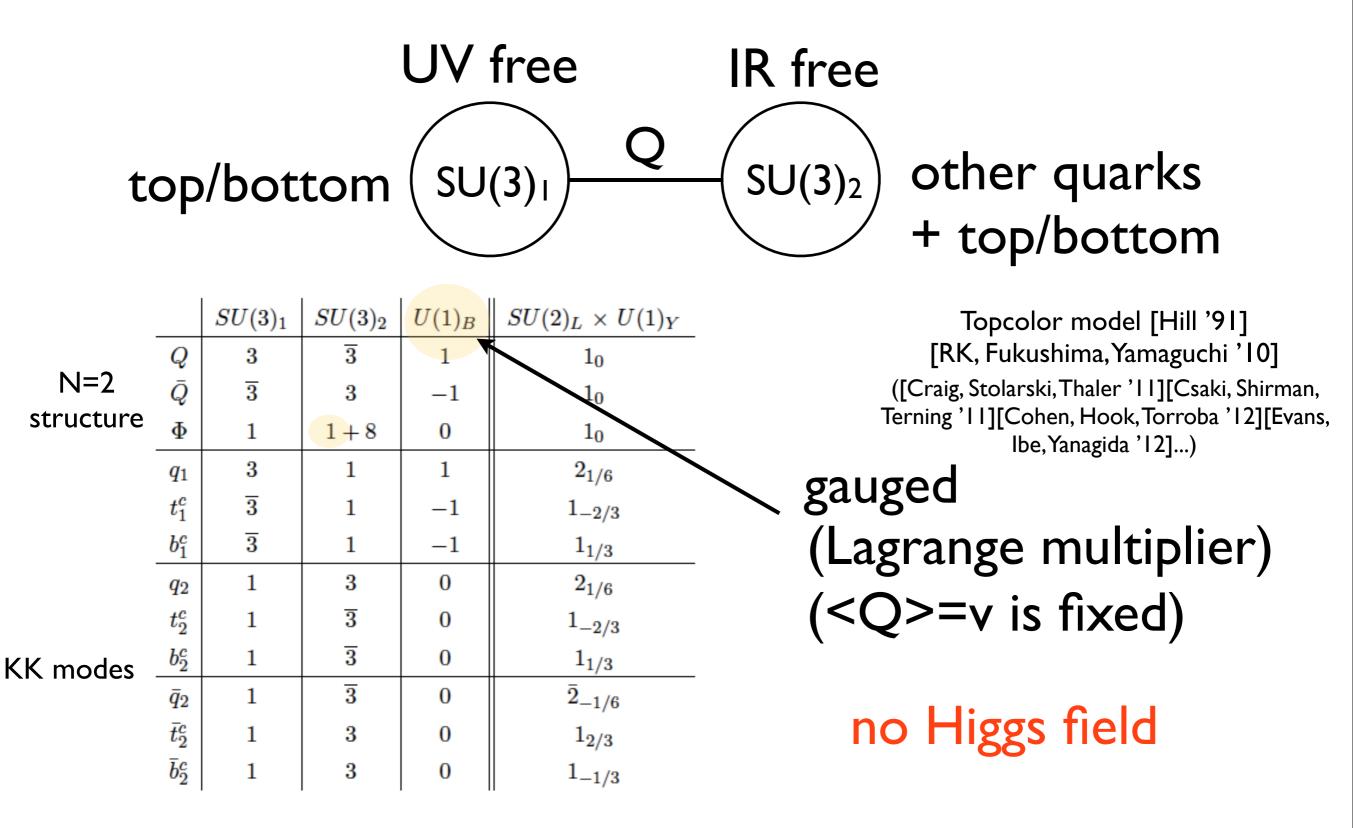
Higgs may be in the emergent degrees of freedom.



That would be an interesting unification.

a toy model: 2-site model

[RK, Nakai '12]



 $W = \sqrt{2}g \left(q_1 \bar{Q} \bar{q}_2 + t_1^c Q \bar{t}_2^c + b_1^c Q \bar{b}_2^c + \bar{Q} \Phi Q - v^2 \text{Tr} \Phi + v_q \bar{q}_2 q_2 + v_t \bar{t}_2^c t_2^c + v_b \bar{b}_2^c b_2^c \right).$

For $\Lambda_1 \ll 4\pi v$ (weak coupling)

$$SU(3)_1 \times SU(3)_2 \longrightarrow SU(3)_{1+2}$$

We get MSSM without Higgs as low energy theory.

Below, we study the case with

 $\Lambda_1 \gg 4\pi v$ (strongly coupled region)

→ we will see that magnetic degrees of freedom appear.

Seiberg duality [Seiberg '94]

SU(3)₁ factor gets strong → weakly coupled magnetic picture (CFT)

Higgs appeared.

	$SU(3)_1$	$SU(3)_2$	$U(1)_B$	$SU(2)_L \times U(1)_Y$			1		
Q	3	3	1	10		$SU(2)_1$	$SU(3)_2$	$U(1)_B$	$SU(2)_L \times U(1)_Y$
$ar{Q}$	$\overline{3}$	3	-1	10	f	2	1	3/2	2_0
Φ	1	1 + 8	0	10	$ar{f}_u$	$\overline{2}$	1	-3/2	$1_{1/2}$
q_1	3	1	1	$2_{1/6}$	$ar{f}_d$	$\overline{2}$	1	-3/2	$1_{-1/2}$
t_1^c	$\overline{3}$	1	-1	$1_{-2/3}$	H_u	1	1	0	$2_{1/2}$
b_1^c	3	1	-1	1 _{1/3}	\longrightarrow H_d	1	1	0	$2_{-1/2}$
q_2	1	3	0	$2_{1/6}$					
t_2^c	1	$\overline{3}$	0	$1_{-2/3}$	J	2	3	3/2	$1_{1/6}$
b_2^c	1	$\overline{3}$	0	$1_{1/3}$	$ar{f'}$	2	3	-3/2	$1_{-1/6}$
$ar{q}_2$	1	3	0	$\bar{2}_{-1/6}$	q	1	3	0	$2_{1/6}$
$ar{t}^c_2$	1	3	0	$1_{2/3}$	t^c	1	3	0	$1_{-2/3}$
\bar{b}_2^c	1	3	0	$1_{-1/3}$	b^c	1	3	0	$1_{1/3}$

below the dynamical scale Λ_{I} .

weakly coupled

a-maximization gives

[Intriligator, Wecht '03]

 $D(H_d) = 1.03, \quad D(H_u) = 1.13, \quad D(q) = 1.13, \quad D(t^c) = 1.17,$

 $D(f)=0.99, \quad D(\bar{f}_u)=0.99, \quad D(\bar{f}_d)=0.88, \quad D(f')=0.84, \quad D(\bar{f}')=0.88.$

$$\longrightarrow \quad \frac{\tilde{g}}{4\pi} \sim 0.41, \quad \frac{\lambda_d}{4\pi} \sim 0.11, \quad \frac{\lambda_u}{4\pi} \sim 0.26, \quad \frac{\lambda_t}{4\pi} \sim 0.29, \quad \frac{\lambda_q}{4\pi} \sim 0.26,$$
(we assumed $\lambda_b \ll 4\pi$ by taking small v_b)

$$W = \lambda_d \bar{f}_u H_d f + \lambda_u \bar{f}_d H_u f + \lambda_t \bar{f}_u t^c f' + \lambda_b \bar{f}_d b^c f' + \lambda_q \bar{f}' q f + \frac{(4\pi v)^2}{\Lambda_l} \bar{f}' f',$$
$$= \Lambda'$$

 $\Lambda_1 \gg 4\pi v \longrightarrow \Lambda' \ll 4\pi v$ (appearance of light degrees of freedom)

below A'

Partially composite Higgs [RK, Luty, Nakai '12]

$$W = \lambda_d \bar{f}_u H_d f + \lambda_u \bar{f}_d H_u f - \frac{\lambda_q \lambda_t}{\Lambda'} f \bar{f}_u t^c q - \frac{\lambda_q \lambda_b}{\Lambda'} f \bar{f}_d b^c q.$$

 $SU(2)_1$ factor confines

(note: at this stage, λ 's get renormalized by O(1) factors.)

arriving at the MSSM-like model

$$W = \frac{\lambda_u \Lambda'}{4\pi} H_u H'_d + \frac{\lambda_d \Lambda'}{4\pi} H_d H'_u - \frac{\lambda_q \lambda_t}{4\pi} H'_u t^c q - \frac{\lambda_q \lambda_b}{4\pi} H'_d b^c q.$$

$$K \ni \frac{\Lambda'^{\dagger}}{\Lambda'} H'_u H'_d + \text{h.c.} \qquad \mu\text{-like terms}$$

obtained from kinetic terms for S and S.

We consider SUSY breaking by turning on $\Lambda'(1 + m_{\rm SUSY}\theta^2)$ with $m_{\rm SUSY} \sim \Lambda' \sim 1 \text{ TeV}$

$$V \ni \frac{m_{\mathrm{SUSY}}^2}{(4\pi)^2} (|\lambda_u H_u|^2 + \frac{|\lambda_d H_d|^2}{(4\pi)^2}) + \frac{1}{(4\pi)^2} (|\lambda_u H_u|^4 + |\lambda_d H_d|^4).$$

$$V \ni m_{\mathrm{SUSY}}^2 (|H'_u|^2 + |H'_d|^2) + \cdots$$

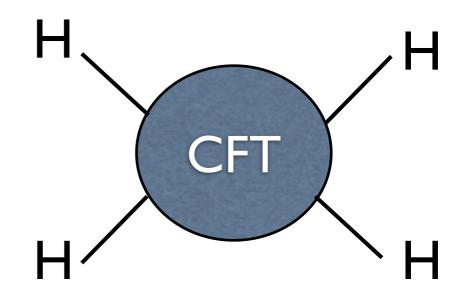
$$H_d \text{ is the main Higgs direction}$$

$$V \ni m_{\mathrm{SUSY}} \left(\frac{\lambda_u \Lambda'}{4\pi} H_u H'_d + \frac{\lambda_d \Lambda'}{4\pi} H_d H'_u + \text{h.c.} \right),$$

$$W \ni \frac{\Lambda'}{4\pi} (\lambda_u H_u H'_d + \lambda_d H_d H'_u) + m_{\text{SUSY}} H'_u H'_d. \qquad \text{H' are heavy}$$

 $V \ni m_{\mathrm{SUSY}}^2 H'_u H'_d + \text{h.c.}$

Partially composite Higgs [RK, Luty, Nakai '12]



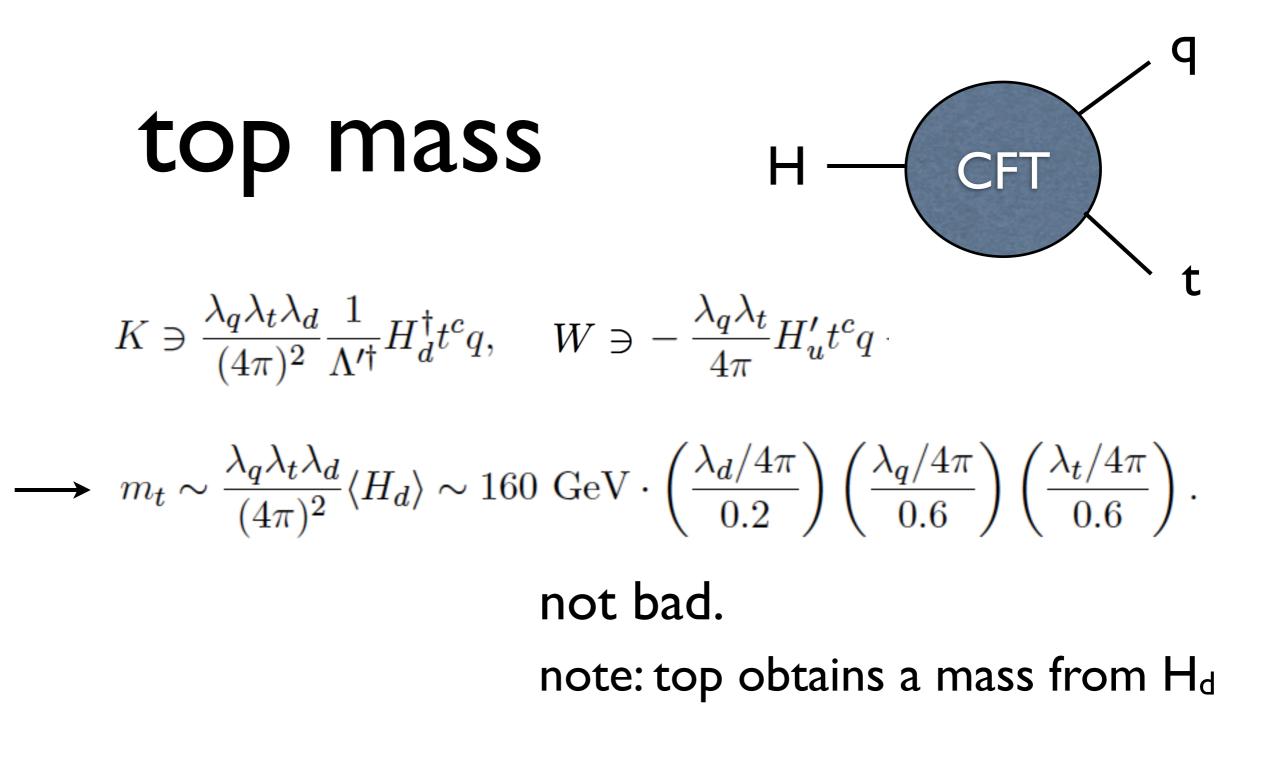
Higgs quartic term:

 $m_h = 126 \text{ GeV}$

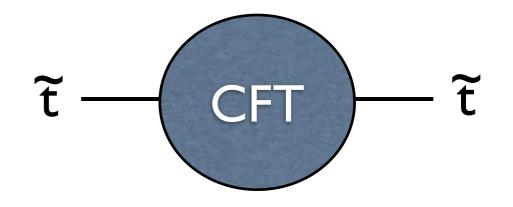
$$\frac{\lambda_d^4}{(4\pi)^2} + \frac{g_L^2 + g_Y^2}{2} \sim \frac{m_h^2}{\langle H \rangle^2} \sim 0.5, \qquad \qquad \frac{\lambda_d}{4\pi} \sim 0.2.$$
not bad.

tuning: \int_{1}^{1} required size of the Higgs quadratic terms

fixed point values: $\frac{\tilde{g}}{4\pi} \sim 0.41$, $\frac{\lambda_d}{4\pi} \sim 0.11$, $\frac{\lambda_u}{4\pi} \sim 0.26$, $\frac{\lambda_t}{4\pi} \sim 0.29$, $\frac{\lambda_q}{4\pi} \sim 0.26$,



fixed point values:
$$\frac{\tilde{g}}{4\pi} \sim 0.41$$
, $\frac{\lambda_d}{4\pi} \sim 0.11$, $\frac{\lambda_u}{4\pi} \sim 0.26$, $\frac{\lambda_t}{4\pi} \sim 0.29$, $\frac{\lambda_q}{4\pi} \sim 0.26$,

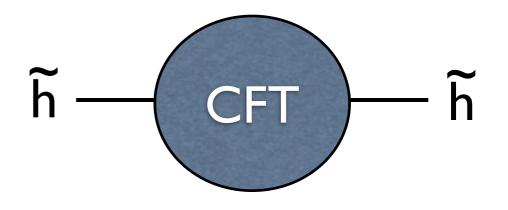


stop/sbottom

$$m_{\tilde{t}} \sim m_{\tilde{b}} \sim \frac{\lambda_q}{4\pi} m_{\mathrm{SUSY}} \sim 600 \text{ GeV} \cdot \left(\frac{\lambda_q/4\pi}{0.6}\right) \left(\frac{m_{\mathrm{SUSY}}}{1 \text{ TeV}}\right).$$

should be observed soon! (should have been observed?)

fixed point values:
$$\frac{\tilde{g}}{4\pi} \sim 0.41$$
, $\frac{\lambda_d}{4\pi} \sim 0.11$, $\frac{\lambda_u}{4\pi} \sim 0.26$, $\frac{\lambda_t}{4\pi} \sim 0.29$, $\frac{\lambda_q}{4\pi} \sim 0.26$,



Higgsino

$$m_{\tilde{h}} \sim \frac{\lambda_u \lambda_d}{(4\pi)^2} \frac{\Lambda'^2}{m_{\rm SUSY}} \sim 120 \ \text{GeV} \cdot \left(\frac{\lambda_d/4\pi}{0.2}\right) \left(\frac{\lambda_u/4\pi}{0.6}\right) \left(\frac{\Lambda'}{1 \ \text{TeV}}\right)^2 \left(\frac{m_{\rm SUSY}}{1 \ \text{TeV}}\right)^{-1}$$

pretty light.

fixed point values:
$$\frac{\tilde{g}}{4\pi} \sim 0.41$$
, $\frac{\lambda_d}{4\pi} \sim 0.11$, $\frac{\lambda_u}{4\pi} \sim 0.26$, $\frac{\lambda_t}{4\pi} \sim 0.29$, $\frac{\lambda_q}{4\pi} \sim 0.26$,

dynamical sector

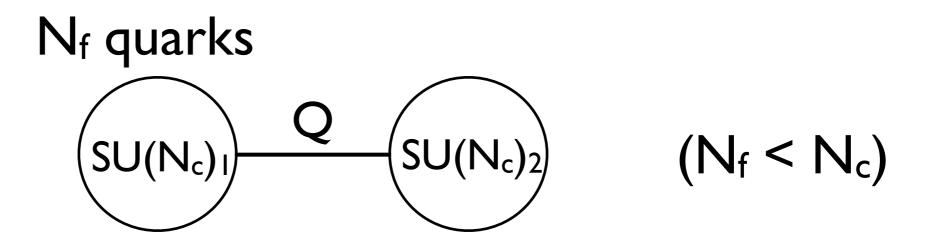
$\Lambda' \sim 1 { m TeV}$

We can access to UV dynamics of QCD. We expect ρ -like resonances (W', Z')

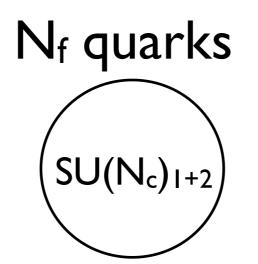
very interesting.

[RK, Yokoi in progress]

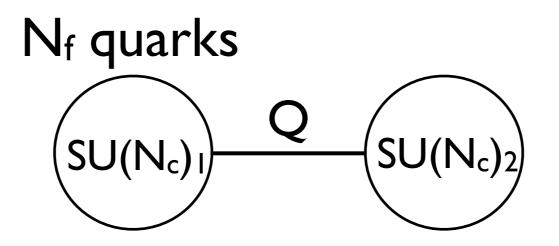
by-product (confinement by CFL)



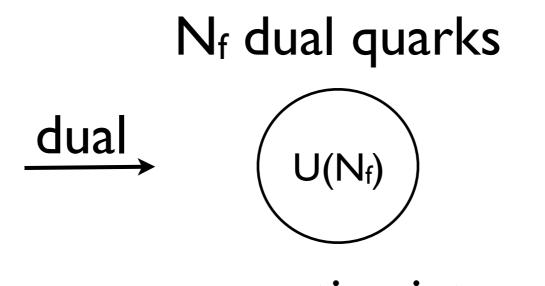
This provides an interesting deformation of QCD. For $v \gg \Lambda_1, \Lambda_2$, this is just QCD.



 $\Lambda_1 \gg \Lambda_2 \gg v$



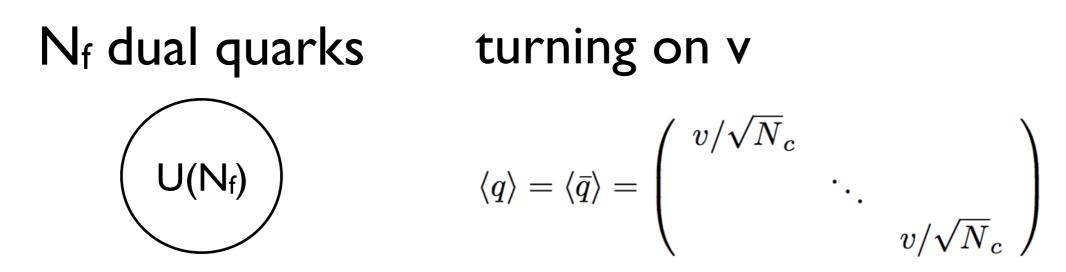
Starting with N=2 SUSY and adding a small breaking of N=2 SUSY to N=1



magnetic picture

color-flavor locking

[See also Shifman and Yung '07, ...]



magnetic gauge bosons of $U(N_f)$ behave as vector mesons ρ and ω .

string formation from U(I) breaking \rightarrow confinement [Mandelstam '75, 't Hooft '75]

low energy QCD as magnetic picture?

May not be totally crazy.

Hidden Local Symmetry

9

 g_H

10

[Bando, Kugo, Uehara, Yamawaki, Yanagida '85] ρ UR UL SU(Nf)L+R SU(N_f)_L SU(N_f)_R 5 4 m_{ρ} $\mathcal{L} = -\frac{1}{4q_{II}^2} F^a_{\mu\nu} F^{a\mu\nu}$ 3 $g_{\rho\pi\pi}$ g_{ρ} в $+\frac{af_{\pi}^{2}}{2}$ tr $\left[|D_{\mu}U_{L}|^{2}+|D_{\mu}U_{R}|^{2}\right]$ 2 $g_{\gamma\pi\pi}$ 1 $+\frac{(1-a)f_{\pi}^2}{4}\operatorname{tr}\left[|\partial_{\mu}(U_L U_R)|^2\right].$

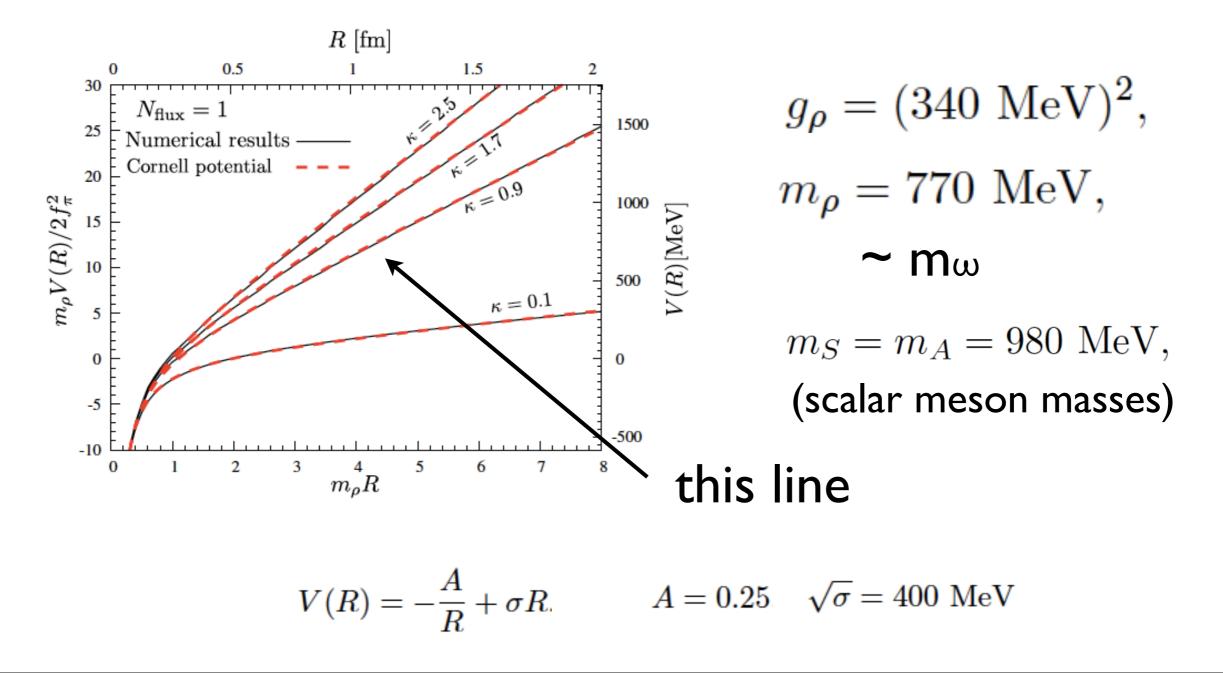
We see such a picture in the real world.

Quiver deformation provides us with an understanding of HLS as the magnetic gauge theory.

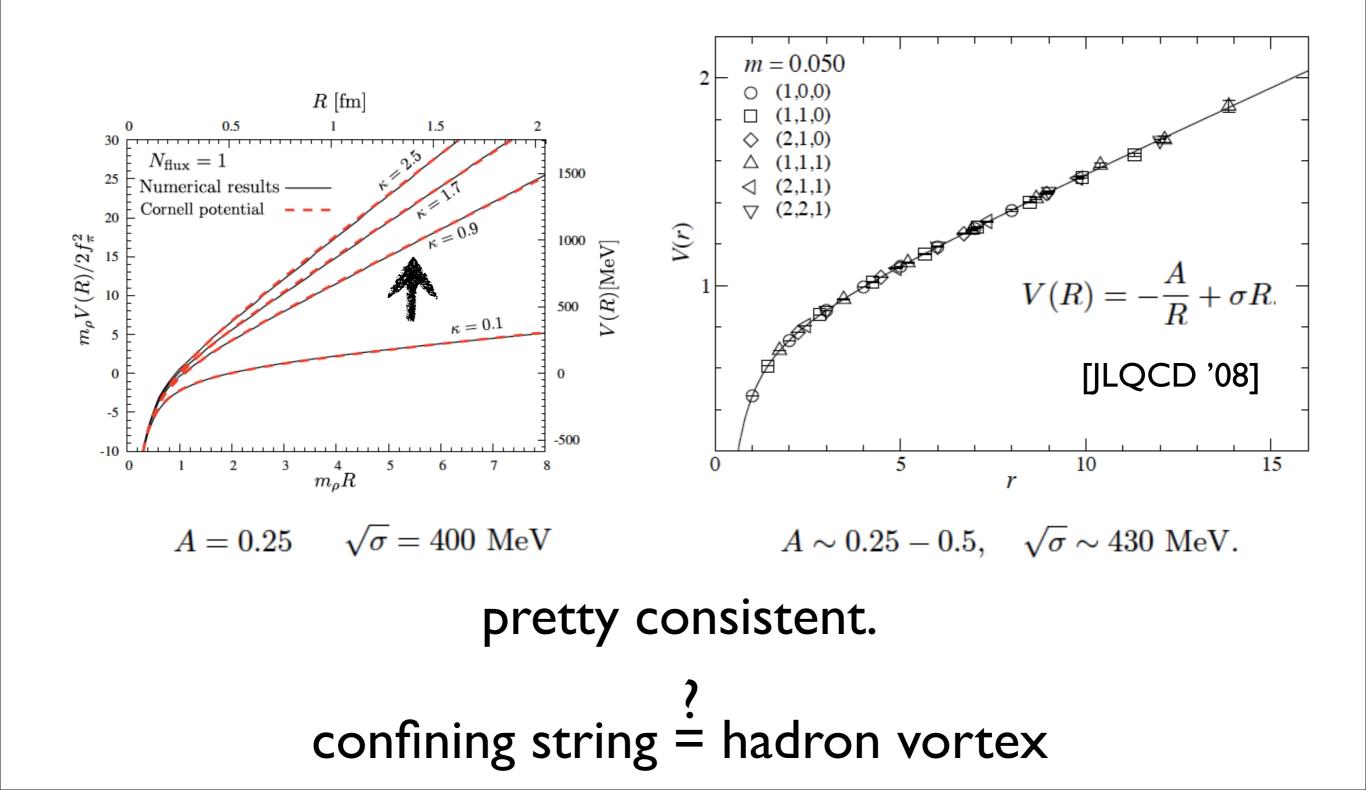
See also [Seiberg '95, Harada, Yamawaki '99, Komargodski '10, RK '11, Abel, Barnard '12]

Moreover,

one can construct a string configuration made of ρ , ω , and f₀ and calculate an energy.



Comparing to lattice QCD



Summary

- We studied a quiver model for EWSB. The Higgs fields emerge as magnetic degrees of freedom. By adding SUSY breaking terms, EWSB can occur while 125GeV Higgs boson is naturally explained.
- By using a similar model, we see that the color confinement can be understood as the magnetic color-flavor locking.