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No sign of superpartners as of today from LHC

ATLAS SUSY bounds from May 2013
Most involve missing ET, stable charged particle, or LFV
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CMS SUSY bounds from May 2013 LHCP Conference
Most involve missing ET, stable charged particle, or LFV
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Summary of CMS SUSY Results* in SMS framework

CMS Preliminary

m(mother)-m(LSP)=200 GeV m(LSP)=0 GeV
LHCP 2013

 = 7 TeVs
 = 8 TeVs

lspm'-(1-x)motherm' = xintermediatem
For decays with intermediate mass,

Only a selection of available mass limits
*Observed limits, theory uncertainties not included

Probe *up to* the quoted mass limit

No sign of superpartners as of today from LHC
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•Bounds usually assume large MET, and/or leptons

•Bounds often assume almost degenerate squarks/gluino

Ways out
1. No MET due to RPV - focus of this talk

2. Spectrum not that degenerate - ``Natural SUSY” 
can be achieved via compositeness

3. Spectrum more degenerate/decays stealthy

4. Production more suppressed than in MSSM, eg. 
R-symmetric SUSY with Dirac gaugino masses 
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•R-parity clearly NOT necessary in MSSM

•Can add very small RPV couplings and all 
experimental bounds satisfied, very different pheno

•Not very appealing: why would those very small 
numbers show up? Not natural...

•Also, many possibilities, not clear how to organize 
them...

•RPV usually not taken very seriously...

RPV in SUSY 
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•Show two scenarios where RPV automatically 
suppressed

1. RPV related to Yukawa couplings. Use existing 
small couplings. Very simple and predictive 
frameworks possible.

2. RPV broken in hidden sector only. RPV operators 
automatically suppressed by F/M2 . Operators can 
come from Kähler potential - not even catalogued till 
now!

RPV in SUSY 

(C.C., Grossman, Heidenreich ’11)

(C.C., Kuflik, Volansky ’13)
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RPV from Flavor: MFV SUSY

•Usual MSSM assumptions:

 R-parity conservation to eliminate large B,L violating 
superpotential terms

•Original observation: 

        ``Matter parity” 

is a symmetry of wanted terms, but not of RPV terms

Usually impose this. 

WRPV = λLLē+ λ
�
QLd̄+ λ

��
ūd̄d̄+ µ

�
LHu

(Grossman, Heidenreich, C.C.’11)

(Q, ū, d̄, L, ē) → −(Q, ū, d̄, L, ē)
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RPV from Flavor: MFV SUSY
•Our simple observation:

RPV terms are also not invariant under SU(3)5 flavor 
symmetries

•If not too many sources of flavor violation survive at 
low-energies: could expect that RPV related to Yukawas

•Simplest (though not unique) assumption: only source 
for flavor breaking are Yukawas (MFV assumption)
       
•Of course in any theory of flavor this idea can be 
pushed through even if not MFV, results very similar

WRPV = λLLē+ λ
�
QLd̄+ λ

��
ūd̄d̄+ µ

�
LHu
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MFV SUSY
•Our proposal: the MFV assumption is sufficient to
to solve BOTH flavor AND B,L problems of SUSY

•Will NOT impose R-parity

•Instead IMPOSE MFV - only source of flavor violation
are Yukawa couplings

•FCNC obviously OK

•Claim B,L violation OK too

•But LSP will decay,  different LHC phenomenology

•Gives predictions for RPV operators
Wednesday, July 10, 2013



MFV SUSY
•Will see R-parity (and thus B,L) emerges as an 
ACCIDENTAL APPROXIMATE low-energy symmetry

•More similar to SM story where B,L accidental 
symmetry

•RPV operators related to Yukawa couplings

•Since Yukawas in superpotential, most reasonable 
assumption that spurions chiral superfields

•Can NOT use Y+ in superpotential: very restrictive and 
predictive scenario 
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MFV SUSY
•Impose SU(3)5 global symmetry (not U(1)’s)

•Assume only spurions breaking this are Y’s

•Assume Y’s chiral superfields

•First assume no neutrino masses

SU(3)Q SU(3)u SU(3)d SU(3)L SU(3)e U(1)B−L U(1)H

Q 1 1 1 1 1/3 0

ū 1 1 1 1 −1/3 0

d̄ 1 1 1 1 −1/3 0

L 1 1 1 1 −1 0

ē 1 1 1 1 1 0

Hu 1 1 1 1 1 0 1

Hd 1 1 1 1 1 0 −1

Yu 1 1 1 0 −1

Yd 1 1 1 0 1

Ye 1 1 1 0 1

Table 2: The transformation properties of the chiral superfields and the spurions under the

non-anomalous flavor symmetries preserved by the µ term. We omit discrete symmetries

and a non-anomalous U(1)R which is broken by the soft terms, including the Bµ term.

the Yukawa couplings. It is then natural to analyze the spurious symmetries preserved by

the µ-term but broken by the Yukawa couplings, which are given in Table 2. Excepting

U(1)B−L and a U(1)
2
subgroup of SU(3)L × SU(3)e representing intergenerational lepton

number differences, the Yukawa couplings are charged under all of these symmetries, which

are therefore broken by the superpotential.

The basic assumption of minimal flavor violation [9–12] is that the Yukawa couplings Yu,

Yd, and Ye are the only spurions which break the nonabelian SU(3)
5
flavor symmetry. No

assumption on baryon or lepton number is made. Thus, while flavor non-singlet terms may be

written in the superpotential, or as soft breaking terms, their coefficients must be built out of

combinations of Yukawa couplings and their complex conjugates in a way which respects the

underlying spurious flavor symmetry. The main new ingredient in applying MFV to SUSY

theories is that the spurions also have to be assigned to representations of supersymmetry.

Since the spurions Yu,d,e appear in the superpotential in the Yukawa terms, the most natural

assumption is to assign these spurions to chiral superfields, with the expectation that in a

UV completion these spurions would emerge as VEVs of some heavy chiral superfields. This

assignment for the spurions ensures that the conjugate Yukawa couplings Y
† cannot appear

in the superpotential, which will lead to a very restrictive ansatz, both for R-parity violating

terms and for higher dimensional operators.

The MFV hypothesis can be shown to naturally suppress FCNCs [11,12], thereby solving

the new physics flavor problem. It is also RGE stable, due to the spurious flavor symme-

tries, which prevent flavor violating terms from being generated radiatively except those

proportional to the original spurions themselves. As explored in [13], it is possible to impose

the MFV hypothesis on spurious (and even anomalous) U(1) symmetries as well. How-

ever, we will not do so, since the abelian symmetries are not needed to suppress FCNCs,

and furthermore, imposing such a hypothesis will generally lead to phenomenology which is

closer to the R-parity conserving MSSM, while our primary goal is to demonstrate a viable

4
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(Yuū)(Ydd̄)(Ydd̄)

MFV SUSY
•The holomorphic invariants of SU(3)5

•No invariant breaking lepton number!

•At renormalizable level single chiral invariant!

SU(3)C SU(2)L U(1)Y U(1)B U(1)L ZR
2

(QQQ) 1 ��� 1/2 1 0 −
(QQ)Q 8 � 1/2 1 0 −

(Yuū)(Yuū)(Ydd̄) 8⊕ 1 1 −1 −1 0 −
(Yuū)(Ydd̄)(Ydd̄) 8⊕ 1 1 0 −1 0 −

det ū 1 1 −2 −1 0 −
det d̄ 1 1 1 −1 0 −
QYuū 8⊕ 1 −1/2 0 0 +

QYdd̄ 8⊕ 1 1/2 0 0 +

LYeē 1 1/2 0 0 +

Hu 1 1/2 0 0 +

Hd 1 −1/2 0 0 +

Table 3: The irreducible holomorphic flavor singlets. We omit flavor-singlet spurions (irrel-

evant to our analysis) as well as flavor singlets formed from SU(3)C × SU(2)L contractions

of products of the operators listed here.

supersymmetric model with vastly different phenomenology.

Thus, we will make the “minimal” assumption that the holomorphic spurions Yu, Yd, Ye

are the only sources of SU(3)
5
breaking, discarding R-parity as a means of stabilizing the

proton. This assumption, together with the holomorphy of the Yukawa couplings, turns out

to be very restrictive. It is straightforward to find the complete list of irreducible holomorphic

flavor singlets, shown in Table 3. The superpotential is therefore built from gauge invariant

combinations of these operators. In particular, since none of these operators carry lepton

number, U(1)L is an exact symmetry of the superpotential.

While holomorphy also forbids lepton number violation in the soft breaking A and B

terms,
2
lepton number violation can still occur in the Kähler potential, and in the soft mass

mixing term L̃H̃d
�
+ c.c.. However, while such terms will play an important role when we

introduce neutrino masses in §5, in the case of massless neutrinos they are absent for the

following symmetry reason. There is a ZL
3 ∈ SU(3)L × SU(3)e symmetry of the form:

L → ωL , ē → ω−1
ē , Ye → Ye , (2.3)

where ω ≡ e
2πi/3

and the other fields and spurions are not charged under ZL
3 . In particular,

ZL
3 lies within the Z3 × Z3 center of SU(3)L × SU(3)e, and is also a Z3 subgroup of U(1)L.

As all spurions are neutral under ZL
3 , we conclude that lepton number can only be violated

in multiples of three. Soft terms of this type are not possible, whereas the lowest-dimension

∆L = ±3 Kähler potential corrections are dimension eight, and are strongly suppressed for

a sufficiently high cutoff.

2A and B terms can also be generated from the Kähler potential, via K ⊃ 1
Λ3XX†AijkΦiΦjΦk +

1
Λ2XX†BijΦiΦj , where X is the SUSY-breaking spurion, which acquires an F-term VEV �X�F = F . While
this would allow nonholomorphic spurion combinations, such terms are suppressed by F/Λ2 ∼ msoft/Λ
relative to the usual holomorphic contributions, and can therefore be neglected.

5
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MFV SUSY

•Issue of lepton number:

•None of the spurions charged under this Z3

•This must be exact, lepton number can only be 
broken mod 3

•Lowest Kähler term dim 8, very highly suppressed

•In absence of neutrino mass lepton number
almost exact

•Proton will be stable in this limit
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The Baryon number violating W

•Single superpotential term at renormalizable level

•Could have Kähler and soft breaking corrections 
of form

•Of course not B,L violating. Small flavor violating 
terms suppressed by MFV (GIM mechanism)

Since, in the absence of light unflavored fermions, proton decay requires lepton number

violation, we conclude that the proton is effectively stable for massless neutrinos. Thus,

proton stability will only constrain the neutrino sector, as discussed in §6.3

In addition to the R-parity conserving terms (2.1), MFV allows only one additional

renormalizable correction to the superpotential:

WBNV =
1

2
w��

(Yu ū)(Yd d̄)(Yd d̄) , (2.4)

where w��
is an unknown O(1) coefficient. In combination with the MFV structure of the soft

terms, most of the interesting phenomenology of our model arises from this baryon-number

and R-parity violating term.

The allowed A and B terms are in direct correspondence with the allowed superpotential

terms, and carry the same flavor structure. The Kähler potential need not be canonical, and

is subject to non-universal corrections. At the renormalizable level, these take the form:

K = Q†
�
1 + fQ(YuY

†
u , YdY

†
d )

T
+ h.c.

�
Q+ ū†

�
1 + Y †

u fu(YuY
†
u , YdY

†
d )Yu + h.c.

�
ū

+d̄†
�
1 + Y †

d fu(YuY
†
u , YdY

†
d )Yd + h.c.

�
d̄

+L† �
1 + fL(YeY

†
e )

T
+ h.c.

�
L+ ē†

�
1 + fe(Y

†
e Ye) + h.c.

�
ē , (2.5)

where the fi are polynomials in the indicated (Hermitean) matrices. While the renormal-

izable Kähler potential can be made canonical by an appropriate change of basis, such a

change of basis is not compatible with the holomorphy of the spurions. The situation is

analogous to that of the supersymmetric beta function, where the one-loop NSVZ result

can be shown to be exact in an appropriate holomorphic basis, but the “physical” all-loop

beta function is still subject to wave function renormalization, since the gauge boson kinetic

term is non-canonical in the holomorphic basis. Similarly, in MFV SUSY the form of the

superpotential is highly constrained, but the Kähler potential is still subject to a large num-

ber of unknown corrections. Fortunately, these unknown corrections are suppressed by the

smallness of the Yukawa couplings.

The soft breaking scalar masses have the same basic flavor structure as the Kähler terms

listed above. This implies in particular that, while FCNCs can occur via squark exchange,

they are suppressed by the GIM mechanism [15], just as in the standard model. This

automatic suppression of FCNCs is a universal feature of MFV scenarios. We will quantify

the flavor-changing squark mass-mixings in §4.1.

We defer consideration of higher-dimensional operators to Appendix D, where we show

that such operators will give subdominant contributions to baryon-number violating pro-

cesses.

3The situation changes if the gravitino (or another unflavored fermion, such as an axino) is lighter than
mp. We discuss the resulting constraints on m3/2 in §6.
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The Baryon number violating W
•The only allowed term:

•MFV predicts the size of these couplings:

•Suppressed by Yukawa couplings and CKM 
angles

3 The baryon-number violating vertex

Most of the interesting phenomenology of our model arises from the interaction (2.4), which

we now discuss in more detail. Performing an SU(3)
5
transformation, we choose a basis

where

Yu =
1

vu
V

†
CKM




mu 0 0

0 mc 0

0 0 mt



 , Yd =
1

vd




md 0 0

0 ms 0

0 0 mb



 , Ye =
1

vd




me 0 0

0 mµ 0

0 0 mτ



 ,

(3.1)

where VCKM is the CKM matrix and vu,d = �Hu,d� are the Higgs VEVs, with v
2
= v

2
u + v

2
d ≈

(174 GeV)
2
the standard model Higgs VEV. Since the Yukawa couplings are RG dependent

quantities, we should in principle evaluate them at the squark-mass scale to estimate (2.4),

integrate out the superpartners, and then run the resulting couplings down to the QCD scale.

However, to obtain a rough estimate, it is sufficient to estimate them using the following
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where y(u)i and y(d)i are the up and down-type Yukawa couplings, and the coupling scales like
(tan β)2 for large tan β. Using the CKM estimate (3.4), we find

λ��
usb ∼ t2β

mbmsmu

m3
t

, λ��
ubd ∼ λt2β

mbmdmu

m3
t

, λ��
uds ∼ λ3t2β

mdmsmu

2m3
t

,

λ��
csb ∼ λt2β

mbmcms

m3
t

, λ��
cbd ∼ t2β

mbmcmd

m3
t

, λ��
cds ∼ λ2t2β

mcmdms

m3
t

,

λ��
tsb ∼ λ3t2β

mbms

m2
t

, λ��
tbd ∼ λ2t2β

mbmd

m2
t

, λ��
tds ∼ t2β

mdms

m2
t

. (3.7)

where we tβ as a shorthand for tan β. Taking the extreme value tan β = 45, and using the
quark masses (3.2) and λ ∼ 1/5, we obtain the following estimates for the size of the λ��

ijk

coupings (for w�� = 1):

s b b d d s

u 5× 10−7 6× 10−9 3× 10−12

c 4× 10−5 1.2× 10−5 1.2× 10−8

t 2× 10−4 6× 10−5 4× 10−5

Due to the Yukawa suppression, the largest coupling, λ��
tsb, involves as many third-generation

quarks as possible, without any first generation quarks. This coupling, however, will con-
tribute subdominantly to low energy baryon number violation, due to the CKM suppression
required for the third generation quarks to flavor change into first generation external state
quarks.

There are many bounds on specific combinations of RPV couplings [6]. These bounds
typically assume a generic form for the soft-masses, and thus do not necessarily apply to MFV
SUSY. However, due to the flavor suppression, the predicted values of the RPV couplings in
our case are small, and all of these bounds are satisfied.

4 Constraints from ∆B = 2 processes

The baryon number violating interaction (2.4) will lead to baryon number violating processes
which are, in theory, observable at low energy. In particular, the most stringent limits on
baryon number violation without lepton number violation come from the lower bound on
the neutron-anti-neutron oscillation time [17]

τn−n̄ ≥ 2.44× 108 s , (4.1)

and from the lower bound on the partial lifetime for pp → K+K+ dinucleon decay [18]

τpp→K+K+ ≥ 1.7× 1032 yrs . (4.2)

Both limits come from null observation of 16O decay to various final states in the Super-
Kamiokande water Cherenkov detector. Present limits on other dinucleon partial lifetimes
are somewhat weaker, at ∼ 1030 yrs [16].
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The Baryon number violating W
•The numerical values (for tan β=45 ~ max values):

•Due to Yukawa suppression want as many 3rd 
generation quarks as possible

•But for B violating processes need light quarks
for external states - will be strongly suppressed

•EXPLAINS small numbers for RPV couplings in 
terms of Yukawa, CKM!
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Constraints from B violating processes
•Proton in this limit stable (see later when ν 
masses added)

•n-nbar oscillation:

•dinucleon decay pp→K+K+

•Both from SuperK 16O decay to various final 
states. Other dinucleon channels less constrained
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n-nbar oscillation
•The leading diagram

•Estimate for matrix element:
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d̃

d̃

b̃

b̃

d

d

u

ū
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Figure 1: The leading contribution to n− n̄ oscillation.

In this section, we will only consider the simplest, tree-level diagrams for the processes
of interest. While these will turn out the be the dominant diagrams, it is necessary to check
that other contributions are subdominant. We outline a systematic scheme for doing so in
Appendices B and C.

4.1 n− n̄ oscillations

There is a unique tree-level diagram for n − n̄ oscillations, up to crossing symmetry, the
choice of the exchanged fermionic sparticle, and the squark flavors (see Fig. 1). The down-
type squarks cannot be first generation, due to the antisymmetry of λ��

ijk in the last two
indices. Thus, to achieve the required flavor-changing, the squarks must change flavor via
mass insertions, arising from soft-terms of the form:

Lsoft ⊃ m2
soft Q̃

�
�
YuY

†
u + YdY

†
d

�
Q̃+ . . . , (4.3)

where the omitted terms are higher order in the Yukawa couplings or are diagonal in the
quark mass basis.

Thus, off-diagonal mass-mixing between left-handed down-type squarks of flavors i and
j is suppressed by

V (neutral)
ij ≡

δm2
ij

m2
soft

∼
�

k

V †
ik

�
y(u)k

�2
Vkj , (4.4)

with a similar expression for up-type squarks. The sum in (4.4) is dominated by the third

generation except in the case of V (neutral)
uc , where there is a competitive (though not dominant)

contribution from the second generation. We find:

V (neutral)
ds ∼ λ5 , V (neutral)

db ∼ λ3 , V (neutral)
sb ∼ λ2 ,

V (neutral)
uc ∼ y2b λ

5/2 , V (neutral)
ut ∼ y2b λ

3/2 , V (neutral)
ct ∼ y2b λ

2 . (4.5)

Since the squarks in Fig. 1 are initially right-handed, the required flavor changing is
suppressed by an additional Yukawa coupling. Depending on the initial flavor of the squark,
we obtain

b̃R → d̃L ∼ ybλ
3 , s̃R → d̃L ∼ ysλ

5 . (4.6)
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As the vertex factor is also larger for a b̃ squark, b̃R → d̃L is clearly dominant.
Gathering all factors, we obtain the amplitude

Mn−n̄ ∼ Λ̃ t6β λ
8 m2

um
2
dm

4
b

m8
t

�
Λ̃

mq̃

�4 �
g2s

�
Λ̃

mg̃

�
+ . . .

�
, (4.7)

where we write the hadronic matrix element as Λ̃6, with Λ̃ ∼ ΛQCD in rough agreement
with the estimates of [6, 19]. The omitted terms come from neutralino, rather than gluino,
exchange and can be important if the gluino is very heavy.

The n − n̄ oscillation time is approximately tosc ∼ M−1. Therefore, assuming that the
tree-level amplitude (4.7) gives the dominant contribution, we find

tosc ∼ (9× 109 s)

�
250 MeV

Λ̃

�6 � mq̃

100 GeV

�4 � mg̃

100 GeV

��
45

tan β

�6

, (4.8)

where we take αs ≡ g2s/4π ∼ 0.12. This must be compared to the experimental bound (4.1),
τ ≥ 2.44 × 108 s. Thus, unless we have substantially underestimated the hadronic matrix
element, n− n̄ oscillations place no constraint on our model.

4.2 Dinucleon decay

The simplest diagrams for dinucleon decay take the same form as the tree-level n−n̄ diagram
(see Fig. 1), with the addition of two spectator quarks, as shown in Fig. 2. There are two pos-
sibilities, depending on whether the exchanged sparticle is a chargino or a gluino/neutralino.
In the former case, the squarks undergo charged flavor changing while converting to quarks,
much like quarks exchanging a W boson; charge conservation then requires that one squark
is up-type and the other down-type. In the latter case, the squark/quark/neutralino vertex
is flavor diagonal, but neutral flavor changing via squark mass mixing is still possible.

For simplicity, we only consider diagrams of this type.4 The external quarks must be
light quarks, no more than two of which may be strange quarks. Since the quark legs do not
change flavor, only ubs, ubd, uds, cds, and tds vertices may be used. By enumerating all
possibilities, one can check that the dominant diagram involving chargino exchange combines
a tds vertex with a ubs vertex, whereas the dominant diagram involving gluino/neutralino
exhange combines two tds vertices with t̃ → ũ flavor-changing mass mixing along the squark
lines. The two diagrams are shown in Fig. 2, with flavor suppressions yuydy2sy

2
bλ

6/2 for the
chargino exchange diagram, and y2dy

2
sy

4
bλ

6/4 for the gluino/neutralino exchange diagram.
Ignoring order-one factors (including gauge couplings), the gluino/neutralino diagram is
dominant if

yd y2b
2 yu

� md

2mu

�
mb

mt

�2

tan3 β >∼ 1 . (4.9)

Thus, for tan β >∼ 12 the gluino/neutralino diagram dominates; we focus on this possibility
for the time being.

4For a more systematic treatment, see Appendices B and C.
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n-nbar oscillation
•Numerical value:

•For most extreme values of parameters still an 
order of magnitude above the bound

•Comment: to estimate the magnitude of off-
diagonal squark mass insertions (for LH squarks):
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Dinucleon decay
•Leading diagrams:

•Estimate for decay width (following Goity and 
Sher):
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Figure 2: Dinucleon decay via neutral gaugino exchange (left) and chargino exchange (right).

Following Goity and Sher [19], we obtain the dinucleon NN → KK width:

Γ ∼ ρN
128πα2

sΛ̃
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Nm

2
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8
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�
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2m4
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, (4.10)

where mN � mp is the nucleon mass, ρN ∼ 0.25 fm−3 is the nucleon density, and Λ̃ is the
“hadronic scale,” arising from the hadronic matrix element and phase-space integrals. Thus,

τNN→KK ∼
�
1.9× 1032 yrs
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�10 � mq̃,g̃

100 GeV

�10
�

17

tan β

�16

, (4.11)

where, as before, we take αs ∼ 0.12. Comparing with the experimental bound (4.2), τ ≥
1.7× 1032 yrs, we obtain an upper bound

tan β <∼ 17

�
150 MeV

Λ̃

�5/8 � mq̃,g̃

100 GeV

�5/8
. (4.12)

This bound is illustrated in Fig. 3.
There remains considerable uncertainty in the hadronic matrix element. Goity and Sher

consider values for Λ̃/mq̃,g̃ between 10−3 and 10−6 [19]. An earlier paper by Barbieri and
Masiero, while taking a substantially different approach, obtains a result consistent with Λ̃ ∼
150 MeV [20]. We will take Λ̃ = 150 MeV as a representative value. While this is somewhat
smaller than the “natural” ∼ ΛQCD scale that one might expect, the matrix element is
expected to be suppressed by hard-core repulsion between the nucleons, motivating the yet-
smaller scales considered by [19]. Due to the uncertainty in Λ̃, we leave the dependence on
it explicit in (4.12); Fig. 3 illustrates the effect of varying Λ̃.

Assuming mq̃,g̃ >∼ 100 GeV, the charged flavor-changing diagram does not alter the
above bounds, since both amplitudes increase with tan β, whereas the neutral flavor-changing
diagram is already sufficiently suppressed at tanβ ∼ 12, below which charged flavor-changing
becomes dominant.
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ũ

t̃

u

d

u

u

d

u

u

s̄

s̄

u

b̃

C̃

t̃

u

u

d

u

d

u

u

s̄

s̄

u 


K+




K+




K+




K+

p






p






p






p






Figure 2: Dinucleon decay via neutral gaugino exchange (left) and chargino exchange (right).

Following Goity and Sher [19], we obtain the dinucleon NN → KK width:

Γ ∼ ρN
128πα2

sΛ̃
10

m2
Nm

2
g̃m

8
q̃

�
λ3mdmsm2

b

2m4
t

tan4 β

�4

, (4.10)

where mN � mp is the nucleon mass, ρN ∼ 0.25 fm−3 is the nucleon density, and Λ̃ is the
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where, as before, we take αs ∼ 0.12. Comparing with the experimental bound (4.2), τ ≥
1.7× 1032 yrs, we obtain an upper bound
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This bound is illustrated in Fig. 3.
There remains considerable uncertainty in the hadronic matrix element. Goity and Sher

consider values for Λ̃/mq̃,g̃ between 10−3 and 10−6 [19]. An earlier paper by Barbieri and
Masiero, while taking a substantially different approach, obtains a result consistent with Λ̃ ∼
150 MeV [20]. We will take Λ̃ = 150 MeV as a representative value. While this is somewhat
smaller than the “natural” ∼ ΛQCD scale that one might expect, the matrix element is
expected to be suppressed by hard-core repulsion between the nucleons, motivating the yet-
smaller scales considered by [19]. Due to the uncertainty in Λ̃, we leave the dependence on
it explicit in (4.12); Fig. 3 illustrates the effect of varying Λ̃.

Assuming mq̃,g̃ >∼ 100 GeV, the charged flavor-changing diagram does not alter the
above bounds, since both amplitudes increase with tan β, whereas the neutral flavor-changing
diagram is already sufficiently suppressed at tanβ ∼ 12, below which charged flavor-changing
becomes dominant.
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Dinucleon decay

•Lifetime:

•Applying exp. bound τ≥1.7 1032 yrs yields bound
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This bound is illustrated in Fig. 3.
There remains considerable uncertainty in the hadronic matrix element. Goity and Sher

consider values for Λ̃/mq̃,g̃ between 10−3 and 10−6 [19]. An earlier paper by Barbieri and
Masiero, while taking a substantially different approach, obtains a result consistent with Λ̃ ∼
150 MeV [20]. We will take Λ̃ = 150 MeV as a representative value. While this is somewhat
smaller than the “natural” ∼ ΛQCD scale that one might expect, the matrix element is
expected to be suppressed by hard-core repulsion between the nucleons, motivating the yet-
smaller scales considered by [19]. Due to the uncertainty in Λ̃, we leave the dependence on
it explicit in (4.12); Fig. 3 illustrates the effect of varying Λ̃.

Assuming mq̃,g̃ >∼ 100 GeV, the charged flavor-changing diagram does not alter the
above bounds, since both amplitudes increase with tan β, whereas the neutral flavor-changing
diagram is already sufficiently suppressed at tanβ ∼ 12, below which charged flavor-changing
becomes dominant.
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where mN � mp is the nucleon mass, ρN ∼ 0.25 fm−3 is the nucleon density, and Λ̃ is the
“hadronic scale,” arising from the hadronic matrix element and phase-space integrals. Thus,
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1.7× 1032 yrs, we obtain an upper bound
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This bound is illustrated in Fig. 3.
There remains considerable uncertainty in the hadronic matrix element. Goity and Sher

consider values for Λ̃/mq̃,g̃ between 10−3 and 10−6 [19]. An earlier paper by Barbieri and
Masiero, while taking a substantially different approach, obtains a result consistent with Λ̃ ∼
150 MeV [20]. We will take Λ̃ = 150 MeV as a representative value. While this is somewhat
smaller than the “natural” ∼ ΛQCD scale that one might expect, the matrix element is
expected to be suppressed by hard-core repulsion between the nucleons, motivating the yet-
smaller scales considered by [19]. Due to the uncertainty in Λ̃, we leave the dependence on
it explicit in (4.12); Fig. 3 illustrates the effect of varying Λ̃.

Assuming mq̃,g̃ >∼ 100 GeV, the charged flavor-changing diagram does not alter the
above bounds, since both amplitudes increase with tan β, whereas the neutral flavor-changing
diagram is already sufficiently suppressed at tanβ ∼ 12, below which charged flavor-changing
becomes dominant.
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Figure 3: Constraints on tan β and superparter masses due to the nonobservation of dinucleon
decay. The red region is excluded assuming that Λ̃ ≥ 100 MeV, whereas the orange region
is also excluded when Λ̃ ≥ 150 MeV, and the yellow for Λ̃ ≥ 200 MeV.

5 Incorporating neutrino masses

We have seen that in the absence of neutrino masses the MFV SUSY approach approxi-
mately conserves lepton number, leaving an exact ZL

3 lepton number symmetry unbroken.
To introduce neutrino masses, we therefore require additional spurions, which will lead to
additional allowed operators in the Lagrangian [21,22]. It is important to fully characterize
such operators as, in combination with the baryon number violating vertex (2.4), they can
induce proton decay.

We focus on the see-saw mechanism to generate Majorana masses for the neutrinos. We
add three right-handed sterile neutrinos, N̄ , which obtain Majorana masses at a heavy scale
MR. Through a Yukawa coupling YN to the left-handed neutrinos, this gives the left-handed
neutrinos a small Majorana mass of order Y 2

N v
2
/MR upon electroweak symmetry breaking.

Due to the additional flavored field, the nonabelian spurious symmetry of the lepton sector
is extended to SU(3)L×SU(3)e×SU(3)N . The superpotential required to generate neutrino
masses is

Wlept = YeLHd ē+ YNLHuN̄ +
1

2
MNN̄N̄ , (5.1)

where the elements ofMN are assumed to be of orderMR. Thus, there are now three spurions
in the lepton sector: Ye, YN and MN . The transformation properties of the leptonic sector
under the spurious symmetries are shown in Table 4. As before, we do not impose the MFV
hypothesis on the (spurious) U(1) symmetries.

A subtlety arises when applying the MFV hypothesis to MN , since it is dimensionful.
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LHC phenomenology

•Depends on who is LSP

•No reason for LSP to be neutral since it decays

•Could be

•Up-type squark mass matrix

•Most plausible: stop lightest squark (or perhaps 
sbottom), others nearly degenerate

•squark: stop or sbottom
•neutralino/chargino
•slepton

GeV was used for two of the signal regions, which could easily be satisfied by the unobserved

neutrinos in the leptonic top decays. We will show that this search already places a bound

on sbottoms with mass between 200 GeV and 220 GeV (assuming large oscillation), which

should improve significantly with more data.

The rest of this paper is organized as follows. In Section 2, we study the typical squark

spectra in MFV SUSY scenarios and demonstrate that stop and sbottom are most often the

lightest squarks. In Section 3, we present a calculation of the decay rate and oscillation time

for a squark LSP in MFV SUSY and show that oscillation is a generic possibility. In Section

4, we comment on the sensitivity of LHC searches to this scenario. We conclude in Section

5.

II. MFV SQUARK SPECTRA

MFV requires that all flavor violation be proportional to the appropriate combination of

Yukawa matrices, which are treated as spurions of the flavor symmetry. The squark mass

matrices are then required to have the following form [9]:

M2
ũ =



m2
q̃1 + aqYuY †

u + bqYdY
†
d +DuL AuYu

A∗
uY

†
u m2

ũ1 + auY †
uYu +DuR



 (1)

and

M2
d̃
=



m2
q̃1 + aqYuY †

u + bqYdY
†
d +DdL AdYd

A∗
dY

†
d m2

d̃
1 + adY

†
d Yd +DdR



 (2)

Here the D terms are automatically flavor diagonal and given by

DL =

�
1

2
−Qs2w

�
cos(2β)m2

Z , DR = Qs2w cos(2β)m2
Z , (3)

where Q is the squark charge, sw is the sine of the Weinberg angle, tan β is the ratio of

the Higgs VEVs, and mZ is the mass of the Z. The parameters m2
i , ai, bi, and A2

i are soft

breaking terms and are therefore expect them to be of order m2
soft.

Given these constraints, we can perform a scan over the parameter space that determines

the squark spectrum. We select random values for the dimension two parameters uniformly

in [−m2
soft,m

2
soft]. For this scan, we choose msoft = 1 TeV and tan β = 10. We impose the

constraint that the smallest eigenvalues of both squark mass matrices be greater than the

top mass mt ≈ 175 GeV. We also impose that the lightest stop-like squark be lighter than
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LHC phenomenology

•Distribution of LSP: tan β=10, msoft=1TeV, mstop<500 
GeV

•In squark sector most likely stop, or  sbottom about 
20%

(Berger, C.C., Heidenreich, Grossman)
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Fraction of points
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FIG. 1. Distribution of lightest squark flavor over a random sampling of MFV SUSY parameter

space.

matrices are then required to have the following form [13]:

M2
ũ =



m2
q̃1 + (aq + v2u)YuY †

u + bqYdY
†
d +DuL AuYu

A∗
uY

†
u m2

ũ1 + (au + v2u)Y
†
uYu +DuR



 , (1)

and

M2
d̃
=



m2
q̃1 + aqYuY †

u + (bq + v2d)YdY
†
d +DdL AdYd

A∗
dY

†
d m2

d̃
1 + (ad + v2d)Y

†
d Yd +DdR



 . (2)

The D terms are automatically flavor diagonal and given by

DL =
�
T 3 −Qs2w

�
cos(2β)m2

Z , DR = Qs2w cos(2β)m2
Z , (3)

where Q = +2/3 (−1/3) and T 3
= +1/2 (−1/2) for the up-type (down-type) squarks, sw is

the sine of the Weinberg angle, tan β is the ratio of the Higgs VEVs, and mZ is the mass

of the Z. The parameters m2
i , ai, bi, and Ai arise from supersymmetry breaking, and we

therefore expect them to be of order m2
soft.

Given these constraints, we can perform a scan over the parameter space that determines

the squark spectrum. We select random values for the undetermined dimension-two parame-

ters uniformly in [−m2
soft,m

2
soft]. For this scan, we choose msoft = 1 TeV and tan β = 10. The

overall result is not very sensitive to this choice. We impose the constraint that the smallest

eigenvalues of both squark mass matrices be greater than the top mass, mt ≈ 175 GeV. In

general, left-right mixing is not too large and we therefore use notation where b̃L refers to the

mass eigenstate of the sbottom that is mostly a left-handed sbottom. We also impose that
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LHC phenomenology

•Most interesting (and well motivated) scenario: 
LSP is stop.

•Stop can decay directly via RPV vertex:

•Lifetime:

•Branching: 90% b+s, 8% b+d, 2% d+s fixed by 
flavor parameters

t̃

b̄

s̄

b̃R
b̃L

t̄

s̄

Figure 7: The leading diagrams for stop (left) and left-handed sbottom (right) LSP decay.

non-universal terms are suppressed by Yukawa couplings and/or CKM factors, the remain-

ing squarks are expected to be nearly degenerate. A similar argument applies to down-type

squarks, where the left-handed bottom squark can be made light. In the charged slepton

sector, the leading non-universal term comes from the yτ suppressed left/right mixing, im-

plying a nearly degenerate spectrum, except at very large tan β. The sneutrinos will be even
more degenerate, since this left/right term is absent, and the leading non-universality comes

from y2τ suppressed soft-mass corrections.

Thus, it is very natural for the stop or the (left-handed) sbottom to be the LSP. A

stau (or tau sneutrino) LSP, however, typically implies a nearly degenerate spectrum, and

is somewhat less natural in this context. Other squarks or sleptons are not expected to be

the LSP.

Since the largest R-parity violating operator is in the quark sector, the most interesting

scenario is when the LSP is the stop or the sbottom. We consider the stop LSP case in

detail. The direct decay of the stop is given by the diagram in Fig. 7. The partial widths

Γ(t̃ → d̄id̄j) are given by

Γij ∼
mt̃

8π
sin

2 θt̃|λ��
3ij|2 , (7.2)

where θt̃ is the stop mixing angle. To estimate the lifetime numerically, we use the renor-

malized quark masses at a scale mt ∼ v ∼ 174 GeV, which are approximately [32,33]:

mu ∼ 1.2 MeV , mc ∼ 600 MeV , mt ∼ v ∼ 174 GeV ,

md ∼ 3 MeV , ms ∼ 50 MeV , mb ∼ 2.8 GeV , (7.3)

Using these masses to compute the relevant Yukawa couplings, we find a lifetime

τt̃ ∼ (2 µm)

�
10

tan β

�4 �
300 GeV

mt̃

��
1

2 sin
2 θt̃

�
. (7.4)

Thus no displaced vertices are expected except for very small values of tanβ and a very light

LSP. The decay length of the stop LSP is shown in Fig. 8.

Note that in this case one does not expect a large number of top quarks in the final state,

nor, of course, any missing energy. Roughly 90% of decays will go to bottom and strange

quarks, about 8% to bottom plus down, and a few percent to down plus strange. These

branching ratios are fixed by the flavor structure. Thus, most of the events will contain

b-quarks, and a generic signal for supersymmetry will be an overall increase in the number

of events with b-jets, but with possible resonances in the jet spectrum at the squark masses.
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is somewhat less natural in this context. Other squarks or sleptons are not expected to be

the LSP.

Since the largest R-parity violating operator is in the quark sector, the most interesting

scenario is when the LSP is the stop or the sbottom. We consider the stop LSP case in

detail. The direct decay of the stop is given by the diagram in Fig. 7. The partial widths

Γ(t̃ → d̄id̄j) are given by

Γij ∼
mt̃

8π
sin

2 θt̃|λ��
3ij|2 , (7.2)

where θt̃ is the stop mixing angle. To estimate the lifetime numerically, we use the renor-

malized quark masses at a scale mt ∼ v ∼ 174 GeV, which are approximately [32,33]:

mu ∼ 1.2 MeV , mc ∼ 600 MeV , mt ∼ v ∼ 174 GeV ,

md ∼ 3 MeV , ms ∼ 50 MeV , mb ∼ 2.8 GeV , (7.3)

Using these masses to compute the relevant Yukawa couplings, we find a lifetime

τt̃ ∼ (2 µm)

�
10

tan β

�4 �
300 GeV

mt̃

��
1

2 sin
2 θt̃

�
. (7.4)

Thus no displaced vertices are expected except for very small values of tanβ and a very light

LSP. The decay length of the stop LSP is shown in Fig. 8.

Note that in this case one does not expect a large number of top quarks in the final state,

nor, of course, any missing energy. Roughly 90% of decays will go to bottom and strange

quarks, about 8% to bottom plus down, and a few percent to down plus strange. These

branching ratios are fixed by the flavor structure. Thus, most of the events will contain

b-quarks, and a generic signal for supersymmetry will be an overall increase in the number

of events with b-jets, but with possible resonances in the jet spectrum at the squark masses.
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•Stop decay length:

•No displaced vertices in most of parameter space
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Figure 7: The leading diagrams for stop (left) and left-handed sbottom (right) LSP decay.

non-universal terms are suppressed by Yukawa couplings and/or CKM factors, the remain-

ing squarks are expected to be nearly degenerate. A similar argument applies to down-type

squarks, where the left-handed bottom squark can be made light. In the charged slepton

sector, the leading non-universal term comes from the yτ suppressed left/right mixing, im-

plying a nearly degenerate spectrum, except at very large tan β. The sneutrinos will be even
more degenerate, since this left/right term is absent, and the leading non-universality comes

from y2τ suppressed soft-mass corrections.

Thus, it is very natural for the stop or the (left-handed) sbottom to be the LSP. A

stau (or tau sneutrino) LSP, however, typically implies a nearly degenerate spectrum, and

is somewhat less natural in this context. Other squarks or sleptons are not expected to be

the LSP.

Since the largest R-parity violating operator is in the quark sector, the most interesting

scenario is when the LSP is the stop or the sbottom. We consider the stop LSP case in

detail. The direct decay of the stop is given by the diagram in Fig. 7. The partial widths

Γ(t̃ → d̄id̄j) are given by

Γij ∼
mt̃

8π
sin

2 θt̃|λ��
3ij|2 , (7.2)

where θt̃ is the stop mixing angle. To estimate the lifetime numerically, we use the renor-

malized quark masses at a scale mt ∼ v ∼ 174 GeV, which are approximately [32,33]:

mu ∼ 1.2 MeV , mc ∼ 600 MeV , mt ∼ v ∼ 174 GeV ,

md ∼ 3 MeV , ms ∼ 50 MeV , mb ∼ 2.8 GeV , (7.3)

Using these masses to compute the relevant Yukawa couplings, we find a lifetime

τt̃ ∼ (2 µm)
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Thus no displaced vertices are expected except for very small values of tanβ and a very light

LSP. The decay length of the stop LSP is shown in Fig. 8.

Note that in this case one does not expect a large number of top quarks in the final state,

nor, of course, any missing energy. Roughly 90% of decays will go to bottom and strange

quarks, about 8% to bottom plus down, and a few percent to down plus strange. These

branching ratios are fixed by the flavor structure. Thus, most of the events will contain

b-quarks, and a generic signal for supersymmetry will be an overall increase in the number

of events with b-jets, but with possible resonances in the jet spectrum at the squark masses.

20

t̃

b̄

s̄

b̃R
b̃L

t̄

s̄

Figure 7: The leading diagrams for stop (left) and left-handed sbottom (right) LSP decay.

non-universal terms are suppressed by Yukawa couplings and/or CKM factors, the remain-

ing squarks are expected to be nearly degenerate. A similar argument applies to down-type

squarks, where the left-handed bottom squark can be made light. In the charged slepton

sector, the leading non-universal term comes from the yτ suppressed left/right mixing, im-

plying a nearly degenerate spectrum, except at very large tan β. The sneutrinos will be even
more degenerate, since this left/right term is absent, and the leading non-universality comes

from y2τ suppressed soft-mass corrections.

Thus, it is very natural for the stop or the (left-handed) sbottom to be the LSP. A

stau (or tau sneutrino) LSP, however, typically implies a nearly degenerate spectrum, and

is somewhat less natural in this context. Other squarks or sleptons are not expected to be

the LSP.

Since the largest R-parity violating operator is in the quark sector, the most interesting

scenario is when the LSP is the stop or the sbottom. We consider the stop LSP case in

detail. The direct decay of the stop is given by the diagram in Fig. 7. The partial widths

Γ(t̃ → d̄id̄j) are given by

Γij ∼
mt̃

8π
sin

2 θt̃|λ��
3ij|2 , (7.2)

where θt̃ is the stop mixing angle. To estimate the lifetime numerically, we use the renor-

malized quark masses at a scale mt ∼ v ∼ 174 GeV, which are approximately [32,33]:

mu ∼ 1.2 MeV , mc ∼ 600 MeV , mt ∼ v ∼ 174 GeV ,

md ∼ 3 MeV , ms ∼ 50 MeV , mb ∼ 2.8 GeV , (7.3)

Using these masses to compute the relevant Yukawa couplings, we find a lifetime

τt̃ ∼ (2 µm)
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Thus no displaced vertices are expected except for very small values of tanβ and a very light

LSP. The decay length of the stop LSP is shown in Fig. 8.

Note that in this case one does not expect a large number of top quarks in the final state,

nor, of course, any missing energy. Roughly 90% of decays will go to bottom and strange

quarks, about 8% to bottom plus down, and a few percent to down plus strange. These

branching ratios are fixed by the flavor structure. Thus, most of the events will contain

b-quarks, and a generic signal for supersymmetry will be an overall increase in the number

of events with b-jets, but with possible resonances in the jet spectrum at the squark masses.
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Figure 9: Neutralino NLSP decay.

Since production of the superpartners would still be mainly through the R-parity conserving

couplings, most SUSY events would actually end up with at least four jets, two of which

are b-jets. Other superpartners will first decay to the stop. For example the neutralino is

expected to decay to a stop plus charm as in Fig. 9. The neutralino lifetime for the case of

a stop LSP is given by

ΓÑ ∼ mÑ

8π
g2λ4m

4
b

m4
t

tan
4 β , τÑ ∼ (10

−19
s)

�
10

tan β

�4 �
300 GeV

mÑ

�
. (7.5)

Thus, absent a nearly-degenerate spectrum, the other superpartners are expected to be

short-lived.

It is also possible for the left-handed bottom squark to be the LSP, decaying as shown

in Fig. 7. The partial widths Γ(b̃L → ūid̄j) are

Γij ∼
mb̃

8π
y2b |λ��

ij3|2 , (7.6)
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•Sbottom LSP: first have to get a RH sbottom, 
additional Yukawa suppression in rate

•Get tops in final state and bit bigger region for  
displaced vertex
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non-universal terms are suppressed by Yukawa couplings and/or CKM factors, the remain-

ing squarks are expected to be nearly degenerate. A similar argument applies to down-type

squarks, where the left-handed bottom squark can be made light. In the charged slepton

sector, the leading non-universal term comes from the yτ suppressed left/right mixing, im-

plying a nearly degenerate spectrum, except at very large tan β. The sneutrinos will be even
more degenerate, since this left/right term is absent, and the leading non-universality comes

from y2τ suppressed soft-mass corrections.

Thus, it is very natural for the stop or the (left-handed) sbottom to be the LSP. A

stau (or tau sneutrino) LSP, however, typically implies a nearly degenerate spectrum, and

is somewhat less natural in this context. Other squarks or sleptons are not expected to be

the LSP.

Since the largest R-parity violating operator is in the quark sector, the most interesting

scenario is when the LSP is the stop or the sbottom. We consider the stop LSP case in

detail. The direct decay of the stop is given by the diagram in Fig. 7. The partial widths

Γ(t̃ → d̄id̄j) are given by

Γij ∼
mt̃

8π
sin

2 θt̃|λ��
3ij|2 , (7.2)

where θt̃ is the stop mixing angle. To estimate the lifetime numerically, we use the renor-

malized quark masses at a scale mt ∼ v ∼ 174 GeV, which are approximately [32,33]:

mu ∼ 1.2 MeV , mc ∼ 600 MeV , mt ∼ v ∼ 174 GeV ,

md ∼ 3 MeV , ms ∼ 50 MeV , mb ∼ 2.8 GeV , (7.3)

Using these masses to compute the relevant Yukawa couplings, we find a lifetime

τt̃ ∼ (2 µm)
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Thus no displaced vertices are expected except for very small values of tanβ and a very light

LSP. The decay length of the stop LSP is shown in Fig. 8.

Note that in this case one does not expect a large number of top quarks in the final state,

nor, of course, any missing energy. Roughly 90% of decays will go to bottom and strange

quarks, about 8% to bottom plus down, and a few percent to down plus strange. These

branching ratios are fixed by the flavor structure. Thus, most of the events will contain

b-quarks, and a generic signal for supersymmetry will be an overall increase in the number

of events with b-jets, but with possible resonances in the jet spectrum at the squark masses.
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Since production of the superpartners would still be mainly through the R-parity conserving

couplings, most SUSY events would actually end up with at least four jets, two of which

are b-jets. Other superpartners will first decay to the stop. For example the neutralino is

expected to decay to a stop plus charm as in Fig. 9. The neutralino lifetime for the case of

a stop LSP is given by

ΓÑ ∼ mÑ

8π
g2λ4m

4
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t

tan
4 β , τÑ ∼ (10

−19
s)
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Thus, absent a nearly-degenerate spectrum, the other superpartners are expected to be

short-lived.

It is also possible for the left-handed bottom squark to be the LSP, decaying as shown

in Fig. 7. The partial widths Γ(b̃L → ūid̄j) are

Γij ∼
mb̃

8π
y2b |λ��

ij3|2 , (7.6)
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•If neutralino or chargino LSP: has to decay via off-
shell stop, 3-body decay increases lifetime

•Get tops in final state for neutralino and yet bigger 
region for  displaced vertex (gluino would be 
similar)
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Figure 10: Neutralino/gluino (left) and chargino (right) LSP decays.

giving a total lifetime

τb̃L ∼ (45 µm)

�
10

tan β

�6 �300 GeV

mb̃L

�
. (7.7)

Thus, displaced vertices are expected at low tanβ, as illustrated in Fig. 8. The phenomenol-
ogy is distinct from that of a stop LSP: roughly 99% of decays will be to top and strange
or top and down quarks, with less than one percent going to charm and strange quarks,
and a small fraction to other final states. Thus, an increase in top quark production is ex-
pected, with most SUSY events containing at least two top-jets. However, fewer b-jets will
be produced, except those arising from top decays.5

Otherwise, the LSP can be a chargino, a neutralino, or a slepton. Each of these will
give a distinct phenomenology. Assuming that the LSP is a neutralino, its decay will be
dominated by the diagram in Fig. 10. The width is approximately

ΓÑ ∼ mÑ

128 π3
|λ��

tsb|2 , (7.8)

where we estimate a phase-space suppression of 1/16π2 for each additional final state particle.
The lifetime is then

τÑ ∼ (12 µm)

�
20

tan β

�4 �300 GeV

mÑ

�
. (7.9)

As shown in Fig. 11, this scenario is much more likely to produce displaced vertices, although
they can still be avoided in a sizable region of parameter space. Thus, for the case of a
neutralino LSP the expected signal of SUSY would be an increase in the top production
cross section (since the LSP decay involves top quarks), including potentially same-sign
tops, and possibly also displaced vertices for the lights jets. A gluino LSP would decay in
a very similar fashion to a neutralino LSP, whereas a chargino LSP would have a similar
lifetime, but would usually decay via two b-jets without a top quark, as shown in Fig. 10.

The case of a chargino LSP is very similar to that of a neutralino. The one significant
difference, as can be seen from Fig. 10, is that in the chargino case we expect no top in the
final state, and instead expect more b jets.

Finally, the LSP could be a slepton, mostly likely the lighter stau. This would probably
be much easier to observe at the LHC. The leading decay of the stau would be a four-body

5If mb̃L
<∼ mt, the phenomenology will be different yet again, with displaced vertices more likely due the

reduced width, but no extra top production.
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Thus, displaced vertices are expected at low tanβ, as illustrated in Fig. 8. The phenomenol-
ogy is distinct from that of a stop LSP: roughly 99% of decays will be to top and strange
or top and down quarks, with less than one percent going to charm and strange quarks,
and a small fraction to other final states. Thus, an increase in top quark production is ex-
pected, with most SUSY events containing at least two top-jets. However, fewer b-jets will
be produced, except those arising from top decays.5

Otherwise, the LSP can be a chargino, a neutralino, or a slepton. Each of these will
give a distinct phenomenology. Assuming that the LSP is a neutralino, its decay will be
dominated by the diagram in Fig. 10. The width is approximately

ΓÑ ∼ mÑ

128 π3
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tsb|2 , (7.8)

where we estimate a phase-space suppression of 1/16π2 for each additional final state particle.
The lifetime is then
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As shown in Fig. 11, this scenario is much more likely to produce displaced vertices, although
they can still be avoided in a sizable region of parameter space. Thus, for the case of a
neutralino LSP the expected signal of SUSY would be an increase in the top production
cross section (since the LSP decay involves top quarks), including potentially same-sign
tops, and possibly also displaced vertices for the lights jets. A gluino LSP would decay in
a very similar fashion to a neutralino LSP, whereas a chargino LSP would have a similar
lifetime, but would usually decay via two b-jets without a top quark, as shown in Fig. 10.

The case of a chargino LSP is very similar to that of a neutralino. The one significant
difference, as can be seen from Fig. 10, is that in the chargino case we expect no top in the
final state, and instead expect more b jets.

Finally, the LSP could be a slepton, mostly likely the lighter stau. This would probably
be much easier to observe at the LHC. The leading decay of the stau would be a four-body

5If mb̃L
<∼ mt, the phenomenology will be different yet again, with displaced vertices more likely due the

reduced width, but no extra top production.
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•The neutralino LSP decay length
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Figure 11: The decay length (cτ) of a neutralino (left) or stau (right) LSP, in units of µm.

For a neutralino LSP, displaced vertices can arise in a substantial region of parameter space,

whereas for the stau, they are expected nearly everywhere.

decay involving top and bottom quarks, a light jet and either a lepton or missing energy, as

shown in Fig. 12. Since it is a four-body decay, the NDA estimate for the width of the stau

LSP is

Γτ̃ ∼ mτ̃

2048π5
|λ��

tsb|2 , (7.10)

with lifetime of order

ττ̃ ∼ (44 µm)

�
45

tan β

�4 �
500 GeV

mτ̃

�
. (7.11)

Such long lifetimes will give displaced vertices in almost all of the relevant parameter space,

as shown in Fig. 11. Thus the signal of SUSY in the case of a stau LSP would be events

with displaced vertices, top and bottom quarks, and either a lepton or missing energy.

Current searches for R-parity violating supersymmetry are not very restrictive for MFV

SUSY. The more restrictive searches look for leptons among the final state particles, and

set bounds on the coupling λ�
: this is exactly the one vanishing in MFV SUSY. The more

relevant searches are the ones carried out by CMS [34] (and also by CDF [35]): here the

R-parity violating decay of the gluino in the presence of a ūd̄d̄ coupling is considered by

searching for a resonance in 3-jet final states, after appropriate kinematic cuts are introduced

to separate potential SUSY events from QCD background. The most stringent CMS search

(using 35 pb
−1

of data) yields a bound on the gluino mass mg̃ > 280 GeV. However, we

should emphasize that in these models the gluino does not play an essential role. Thus even

if the gluino is in the TeV energy range the model could be completely natural. While these
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•If LSP slepton (stau), need to decay via off-shell 
neutralino/chargino AND stop

•4-body decay, almost certainly displaced vertex, 
some have tops some missing energy. This should 
be easier.
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Figure 12: Slepton LSP decay without neutrinos (left) and with neutrinos (and thus missing
energy) on the right.

searches are very promising, an eventual null-result of this particular experiment would not
remove the motivation for these theories, since this search relies on the production of a light
gluino.

Another relevant search is for massive colored scalars in 4-jet events [36]. Here the four
most energetic jets are paired up and a resonance in the average invariant masses of the two
pairs is searched for. Stop pair production followed by decays to jets would contribute to
this channel. The current bounds on the mass of the colored scalar using 2010 LHC data
are in the 150− 180 GeV range.

Throughout this paper we have been assuming a squark mass scale of order a few-hundred
GeV. This is necessary to make SUSY a natural solution of the hierarchy problem. However,
in this case the Higgs mass in the simplest MSSM-type extension will usually be too light.
One needs an extension of the Higgs sector, for example to NMSSM-type models, to raise
the Higgs mass over the 114 GeV LEP bound. Such an extension should not significantly
alter the MFV structure of the theory. For example, while the Z3 symmetric version of
the NMSSM has restricted couplings due to the (weakly broken) discrete symmetry, the
superpotential (2.4) is Z3 invariant, leaving the essential features of our model intact.

One of the outstanding problems of the SM and the MSSM is the issue of baryoge-
nesis. The Higgs mass is too high in both of these theories to account for the observed
matter/antimatter asymmetry directly, and the leading explanation is baryogenesis via lep-
togenesis. In MFV SUSY, the appearance of the λ�� baryon number violating operator (2.4)
opens new possibilities for baryogenesis. Several scenarios that make use of this coupling have
been proposed in [37–41]. For example the model of [41] would rely on out-of-equilibrium
decays of the lightest neutralino Ñ → ūd̄d̄ and needs λ�� couplings in the 10−4 − 10−3 range.

Finally we comment on dark matter. One of the main motivations for R-parity is that it
provides a stable heavy superpartner, which in many cases can be a candidate for a WIMP.
In MFV SUSY we are obviously forgoing this possibility. However, this does not necessarily
mean that there cannot be a good dark matter candidate in these models. While we are
assuming the LSP within the SM superpartners to be the stop or another sparticle, the
gravitino can still be lighter and be the real LSP. A gravitino dark matter scenario within
R-parity violating SUSY has been advocated in [42]. There it was found that the leading
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Figure 11: The decay length (cτ) of a neutralino (left) or stau (right) LSP, in units of µm.

For a neutralino LSP, displaced vertices can arise in a substantial region of parameter space,

whereas for the stau, they are expected nearly everywhere.

decay involving top and bottom quarks, a light jet and either a lepton or missing energy, as

shown in Fig. 12. Since it is a four-body decay, the NDA estimate for the width of the stau

LSP is

Γτ̃ ∼ mτ̃

2048π5
|λ��

tsb|2 , (7.10)

with lifetime of order

ττ̃ ∼ (44 µm)

�
45

tan β
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mτ̃

�
. (7.11)

Such long lifetimes will give displaced vertices in almost all of the relevant parameter space,

as shown in Fig. 11. Thus the signal of SUSY in the case of a stau LSP would be events

with displaced vertices, top and bottom quarks, and either a lepton or missing energy.

Current searches for R-parity violating supersymmetry are not very restrictive for MFV

SUSY. The more restrictive searches look for leptons among the final state particles, and

set bounds on the coupling λ�
: this is exactly the one vanishing in MFV SUSY. The more

relevant searches are the ones carried out by CMS [34] (and also by CDF [35]): here the

R-parity violating decay of the gluino in the presence of a ūd̄d̄ coupling is considered by

searching for a resonance in 3-jet final states, after appropriate kinematic cuts are introduced

to separate potential SUSY events from QCD background. The most stringent CMS search

(using 35 pb
−1

of data) yields a bound on the gluino mass mg̃ > 280 GeV. However, we

should emphasize that in these models the gluino does not play an essential role. Thus even

if the gluino is in the TeV energy range the model could be completely natural. While these
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•Stau decay length:
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Figure 11: The decay length (cτ) of a neutralino (left) or stau (right) LSP, in units of µm.

For a neutralino LSP, displaced vertices can arise in a substantial region of parameter space,

whereas for the stau, they are expected nearly everywhere.

decay involving top and bottom quarks, a light jet and either a lepton or missing energy, as

shown in Fig. 12. Since it is a four-body decay, the NDA estimate for the width of the stau

LSP is

Γτ̃ ∼ mτ̃

2048π5
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tsb|2 , (7.10)

with lifetime of order

ττ̃ ∼ (44 µm)
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Such long lifetimes will give displaced vertices in almost all of the relevant parameter space,

as shown in Fig. 11. Thus the signal of SUSY in the case of a stau LSP would be events

with displaced vertices, top and bottom quarks, and either a lepton or missing energy.

Current searches for R-parity violating supersymmetry are not very restrictive for MFV

SUSY. The more restrictive searches look for leptons among the final state particles, and

set bounds on the coupling λ�
: this is exactly the one vanishing in MFV SUSY. The more

relevant searches are the ones carried out by CMS [34] (and also by CDF [35]): here the

R-parity violating decay of the gluino in the presence of a ūd̄d̄ coupling is considered by

searching for a resonance in 3-jet final states, after appropriate kinematic cuts are introduced

to separate potential SUSY events from QCD background. The most stringent CMS search

(using 35 pb
−1

of data) yields a bound on the gluino mass mg̃ > 280 GeV. However, we

should emphasize that in these models the gluino does not play an essential role. Thus even

if the gluino is in the TeV energy range the model could be completely natural. While these
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Existing searches

•For stop LSP: dijet resonance search 

•However stop production cross section quite low,
mstop= 200 GeV it is about 200 fb at the Tevatron 
and 10 pb at the 7 TeV LHC. 

•Dijet sensitivities about 3 orders of magnitude 
lower. Perhaps with b-tagging?

t̃

b̄

s̄

b̃R
b̃L

t̄

s̄

Figure 7: The leading diagrams for stop (left) and left-handed sbottom (right) LSP decay.

non-universal terms are suppressed by Yukawa couplings and/or CKM factors, the remain-

ing squarks are expected to be nearly degenerate. A similar argument applies to down-type

squarks, where the left-handed bottom squark can be made light. In the charged slepton

sector, the leading non-universal term comes from the yτ suppressed left/right mixing, im-

plying a nearly degenerate spectrum, except at very large tan β. The sneutrinos will be even
more degenerate, since this left/right term is absent, and the leading non-universality comes

from y2τ suppressed soft-mass corrections.

Thus, it is very natural for the stop or the (left-handed) sbottom to be the LSP. A

stau (or tau sneutrino) LSP, however, typically implies a nearly degenerate spectrum, and

is somewhat less natural in this context. Other squarks or sleptons are not expected to be

the LSP.

Since the largest R-parity violating operator is in the quark sector, the most interesting

scenario is when the LSP is the stop or the sbottom. We consider the stop LSP case in

detail. The direct decay of the stop is given by the diagram in Fig. 7. The partial widths

Γ(t̃ → d̄id̄j) are given by

Γij ∼
mt̃

8π
sin

2 θt̃|λ��
3ij|2 , (7.2)

where θt̃ is the stop mixing angle. To estimate the lifetime numerically, we use the renor-

malized quark masses at a scale mt ∼ v ∼ 174 GeV, which are approximately [32,33]:

mu ∼ 1.2 MeV , mc ∼ 600 MeV , mt ∼ v ∼ 174 GeV ,

md ∼ 3 MeV , ms ∼ 50 MeV , mb ∼ 2.8 GeV , (7.3)

Using these masses to compute the relevant Yukawa couplings, we find a lifetime

τt̃ ∼ (2 µm)

�
10

tan β

�4 �
300 GeV

mt̃

��
1

2 sin
2 θt̃

�
. (7.4)

Thus no displaced vertices are expected except for very small values of tanβ and a very light

LSP. The decay length of the stop LSP is shown in Fig. 8.

Note that in this case one does not expect a large number of top quarks in the final state,

nor, of course, any missing energy. Roughly 90% of decays will go to bottom and strange

quarks, about 8% to bottom plus down, and a few percent to down plus strange. These

branching ratios are fixed by the flavor structure. Thus, most of the events will contain

b-quarks, and a generic signal for supersymmetry will be an overall increase in the number

of events with b-jets, but with possible resonances in the jet spectrum at the squark masses.
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Existing searches

•CMS: paired dijet resonance search (their 
motivation was colorons...)

1

1 Introduction
The high center-of-mass energy provided by the Large Hadron Collider (LHC) offers a window
to search for physics beyond the standard model. Events with multiple high transverse mo-
mentum jets are copiously produced at the LHC, providing early discovery potential for new
strongly-interacting particles. Searches for new resonances based on the leading dijet mass
spectrum have been performed at both the Tevatron [1] and the LHC [2–5]. These searches
are generally more sensitive to singly-produced new particles than to pair-produced ones [6–
8]. The ATLAS experiment has performed a search for pair production of dijet resonances in
four-jet events [9].

We focus on physics signals from new colored particles, produced strongly in pairs, that decay
hadronically to dijets. These signals, which include pair-produced color-octet scalars or vectors,
can be produced from gluon-gluon (gg) or quark-antiquark (qq̄) interactions, as illustrated with
a few examples in Fig. 1. In this note, we report the results of a search for pair-produced narrow
resonances each decaying into a pair of jets, using the paired dijet mass spectrum in four-jet
final states, measured with the CMS detector in proton-proton collisions at

√
s = 7 TeV. We

define the paired dijet mass as the average of the two dijet masses. We compare the results of
our search with the predictions from a model of colorons, C, which are pair produced and then
decay to quark anti-quark pairs (qq̄, gg → CC → qq̄qq̄) [6].

Figure 1: Coloron pair production diagrams.

2 Detector and Trigger Description
A detailed description of the CMS experiment can be found elsewhere [10]. The CMS coor-
dinate system has its origin at the center of the detector, the z-axis along the direction of the
counterclockwise circulating proton beam, and the transverse plane perpendicular to the beam
axis. The y-axis points vertically upward, and the x-axis radially inward toward the center of
the LHC. We define φ to be the azimuthal angle, θ the polar angle, and η ≡ − ln(tan[θ/2])
the pseudorapidity. The central feature of the CMS apparatus is a superconducting solenoid,
with a 6 m internal diameter, operating at a central field strength of 3.8 T. Within the field vol-
ume are silicon pixel and strip trackers, and barrel and endcap calorimeters (|η| < 3): a high-
granularity PbWO4 crystal electromagnetic calorimeter (ECAL) followed by a brass-scintillator
hadronic calorimeter (HCAL). Outside of the field volume an iron/quarz fiber hadronic calor-
imeter covers the forward region (3 < |η| < 5). The ECAL and HCAL cells are grouped into
towers, projecting radially outward from the origin, for triggering purposes and to facilitate jet
reconstruction.

Events are recorded using a two-tiered trigger system. The triggers of interest for this analysis
include a trigger based on the sum of all uncorrected transverse momentum of jets, requiring

5

C → S8S8 channel where mS8 = 150 GeV and tan θ = 0.3 (the suppression factor of gluon
coupling to qq compared with the analogous QCD coupling) [10], we exclude pair production
in the range 250 < mC < 580 GeV. This analysis is not sensitive to the pair-produced S8, where
the color-octet scalars decay exclusively to qq. We also compare the results with those of a
SUSY model for pair-produced stops, where the stops decay exclusively to qq and R-parity
is violated [13, 14]. The calculation is done at next-to-leading order (NLO) with next-to-NLO
corrections [33–37].

Table 1: The acceptances for the coloron and stop models after applying all selection criteria.

mass [GeV] 200 300 400 500 600 700 800 900 1000
coloron acceptance 0.4% 2.2% 5.2% 8.0% 9.6% 10.6% 11.6% 11.8% 12.1%

stop acceptance 0.9% 3.6% 7.9% 10.7% 12.9% — — — —
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Figure 3: The observed and expected 95% CL limits on the product of the resonance pair pro-
duction cross section, the square of the branching fraction to dijets, and the detector acceptance,
given by the solid and dot-dashed black curves, respectively. The shaded regions indicate the
1σ and 2σ bands around the expected limits. Predictions of a coloron model and a SUSY model
are also shown.

In summary, a search for pair production of a narrow dijet resonance has been performed with
the CMS detector using 5.0 fb−1 of

√
s = 7 TeV pp collisions produced at the LHC. The paired

dijet mass spectrum is found to be a smooth distribution and is in agreement with the predic-
tions of the standard model. Upper limits are reported on the product of the production cross
section, the branching fractions into dijets, and the acceptance of a pair-produced dijet reso-
nance having a width negligible compared with the experimental resolution. At 95% CL, the
pair production of colorons is excluded for coloron masses between 250 and 740 GeV assuming
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Refined paired dijet for low mass region?

•A recent analysis based on dijet+b-tagging: 
(Franceschini+Torre ’12)

6
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Figure 1: mbest distribution for the two analyses for mt̃ = 100 GeV (left) and mt̃ = 200 GeV (right). The upper row
corresponds to a loose selection ∆Rbest < 1.5 that can give higher significance at the price of less resolved shapes for the
background and the signal. The lower row corresponds to a tighter selection ∆Rbest < 1 that privileges a sharper separation
of signal and background.

was carried out including the effect of QCD radiation

and detector reconstruction effects on the final state of

the hard collision. We employed the angular method of

Refs. [40, 41] to identify the candidate reconstructed stop

resonances and showed that, with suitable selections, the

production of stops can result in a bump in the distri-

bution of mbest, the mass of the candidate resonances.

We also showed that the shape of the mbest background

distribution can be modified to be more favorable for the

identification of the signal by applying cuts on suitable

angular variables.

In particular we identified the kinematic variable

∆Rbest as the quantity to better control the background

shape and enforce a separation between the signal and

the background peaks sufficient to be resolved with the

experimental resolution on the invariant mass of the sys-

tem of two jets. Figure 1 shows the difference in the result

that can be induced by adjusting the cut on ∆Rbest. The

same Figure also clearly shows that the signal of stop pro-

duction can be observed with a signal over background

ratio of the order of 10% in several bins around the mass

of the resonance.

For the case of a lighter stop, for instance the case

of mt̃ = 100 GeV that we studied explicitly, we high-

lighted the importance of having low thresholds in the

triggers in order to retain most of the signal from light

stop production. In this respect we welcome the advent

of b-jet identification at trigger level in the LHC experi-

ments that allows us to keep low trigger thresholds even

in a high instaneous luminosity environment such as the

2012 run of the LHC. Alternatively, for light stop masses

the events could pass a trigger for multiple jets thanks

to the presence of hard, hence costly in terms of produc-

tion rate, extra QCD radiation. While this is certainly

an interesting way to look for light colored resonances at

the LHC we did not study this possibility which is, how-

ever, an interesting check for observations carried out

with our method. Finally we encourage the experiments

to broaden their program for the search of new physics

connected with the naturalness of the electroweak scale.

In particular we encourage them to carry out heavy fla-

vored multi-jet searches that can probe large parts of the

parameters space of scenarios of natural supersymmetric

theories with R-parity violation.
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Existing searches

•Same sign dilepton via gluino production
(Berger, Perelstein, Saelim, Tanedo)

•mgluino> 800 GeV, squarks could still be ~ 300 GeV

SR0 SR1 SR2 SR3 SR4 SR5 SR6 SR7 SR8

No. of jets ≥ 2 ≥ 2 ≥ 2 ≥ 4 ≥ 4 ≥ 4 ≥ 4 ≥ 3 ≥ 4
No. of b-tags ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 3 ≥ 2
� charges + + /−− ++ /−− ++ ++ /−− ++ /−− ++ /−− ++ /−− ++ /−− ++ /−−
E

miss
T >0 GeV >30 GeV >30 GeV >120 GeV >50 GeV >50 GeV >120 GeV >50 GeV >0 GeV

HT >80 GeV >80 GeV >80 GeV >200 GeV >200 GeV >320 GeV >320 GeV >200 GeV >320 GeV

Table 1. Event characteristics required in the 9 signal regions (SRs) used in the CMS

SSDL+MET+b analysis [11]. Note that the number of jets on the first line of the table

includes both b-tagged and non-b-tagged jets. For the predicted background rates and the

observed rates in each region, see Table 2 of Ref. [11].

550 600 650 700 750 800 850 900
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700

g� mass �GeV�

t� m
as
s�GeV

�

95� c.l. exclusion limits: CMS SSDL�b jets�MET search

SR0

SR6
SR7

SR8

s � 8 TeV�� � 10.5 fb�1

Figure 1. 95% CL exclusion of the RPV SUSY simplified model parameter space, based on

the 4 most sensitive search regions (SRs) from the CMS SSDL+MET+b search [11] with 10.5

fb
−1

of data collected at the 8 TeV LHC.

and 106 GeV, to avoid contamination from Z decays. For more details on the CMS
analysis, see Ref. [11].

In all nine signal regions, the data is consistent with the SM expectation, so an

– 5 –
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Same-sign dilepton

•A very recent detailed analysis (Durieux+Smith)

•Here        are first two generation squark masses.

•Case of light stop:

•Bound in this case:   
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Figure 7: 95% CL exclusion contours in the Mq̃ −Mg̃ plane derived from the CMS same-sign dilepton
search [29]. The lower red contours are obtained with the contribution of the d̃R only while the upper
blue contours assume an equal contribution of d̃R and d̃L (i.e., with identical branching ratios to t̄ s̄).
Importantly, Mq̃ denotes the mass scale of the first generation squarks, ũR,L and d̃R,L. The presence
of a light stop or a light neutralino does not significantly impact these exclusion regions. Finally,
note that the R-hadron constraints in the holomorphic case are completely off the scale, requiring Mq̃

greater than at least a few TeV.

In the whole squark mass range, the SR8 limit excludes gluino masses below roughly 550 GeV.
In the low- and mid-range squark mass region however, the bound varies significantly depending on
the contributions of d̃L to the same-sign tops signal. In the most unfavorable situation where d̃L

contributions are vanishing, the gluino mass limit saturates around 800 GeV while it rises well above
the TeV in the most favorable case where d̃L contributes as much as d̃R. Note that the same-sign
squarks production cross section decreases with increasing gluino masses, so the bound will nonetheless
reach a maximum there.

In the holomorphic MFV hierarchy case, the final state b multiplicity is on average higher than
with the full MFV hierarchy. Tagging at least two b jets is therefore much more likely and the limits
slightly improve. SR7 where three b tags are required is then also populated by a significant number
of signal events and provides competitive bounds. Overall, this pushes the limit on sparticle masses
higher, towards regions where the average /ET of signal events slightly increases. There, SR3 and SR6
characterized by a higher /ET > 120 GeV cut and very small backgrounds perform more and more
efficiently. This is especially visible when the contributions of d̃L are significant and further enhance
the signal rate. For moderate sparticle masses though, SR8 still leads to the best limit.

We note that our exclusion regions in the holomorphic MFV case are somewhat more conservative
than the Mg̃ ! 800 GeV limit obtained in Ref. [13]. To see this, first note that the scenario analyzed
there decouples all sparticles except the gluino and a top squark, the latter being the LSP. Same-sign
top pairs are produced though p p → g̃ g̃ with the gluino decaying as g̃ → t b s, t̄ b̄ s̄ via on-shell t̃
squarks. As explained in section 4, such a scenario is covered by our simplified theoretical setting: it
corresponds to the Mq̃ → ∞ region of our plots. So, looking at Fig. 7, we get the lower Mg̃ ! 630 GeV
limit. We checked explicitly that it does not depend significantly on whether the stop can be on-shell
or not. Even though the kinematics is different, the selection criteria are broad enough to prevent a
significant loss of sensitivity. Now, as can be seen in Fig. 5, our LO rate at Mg̃ ≈ 800 GeV is about five

17

Mq̃

Mq̃ → ∞

Mg̃ ≥ 630 GeV
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Same sign tops

•Mesino oscillation 

•For sbottom find x≥1, for stop x<<1.

•If sbottom LSP expect 
same sign tops

(Berger, C.C., Heidenreich, Grossman)

x =
∆M

Γ
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FIG. 5. Diagram for R-parity violating sbottom decay that leads to same sign leptons.

Fig. 5. The branching fraction for this mode is given by

Br(b̃b̃∗ → bb�±�±) = Br(W → �ν)2f(xd, xs) ≈ f(xd, xs)× 6.5%,

f(xd, xs) = 2

�

i=d,s

hip(xi)

�
1−

�

j=d,s

hjp(xj)

�
, (13)

where f(xd, xs) denotes the probability that exactly one of the two mesinos oscillates. Here

hi is the fraction of sbottoms that form mesinos with spectator i and we use the effective

leptonic rate for the W which includes leptonic tau decays. Note that for xi � 1 the rate is

maximal, and since hd + hs ≈ 1/2 we have f(xd, xs) ≈ 3/8. Despite the modest branching

fraction, this decay mode will likely be the most sensitive channel for discovering a sbottom

LSP in MFV SUSY.

8

b̃∗1 d

b̃∗1d

g̃

b̃1 dc

b̃1dc

g̃

FIG. 3. Diagrams for sbottom mesino oscillation mediated by a gluino. There are also similar

diagrams mediated by neutralino exchange, which can become important if the gluino mass is very

large.

where θ is the left-right mixing squark mixing angle.

The sbottom decay rate is much less than the hadronization scale ΛQCD ∼ 0.2 GeV.

Thus, the sbottom squark will hadronize before decaying to form fermionic mesino bound

states B̃q = b̃∗q and B̃c = b̃qc. If q = d, s, then the mesino is neutral, opening up the

possibility for mesino oscillations, first discussed in [14]. Since few details of the calculation

of the oscillation rate were given in [14], we elaborate on it in Appendix A, explaining the

necessary approximations. Our final result, eq. (A17), is in broad agreement with that of [14],

and we restate it here:

∆m = ω = g2s
��(UD

dL,1
)
2
+ (UD

dR,1)
2
�� f 2

B̃

�
1− 1

N2
c

�
mg̃

m2
g̃ −m2

b̃

. (8)

This result depends on the nature of the spectator quark. We can use MFV to approx-

imate the ratio of the oscillation rates as we have |U q1
M | ∝ |VtqVtb| for M = L,R. In this

approximation, we get:

ωs

ωd
≈

����
Vts

Vtd

����
2

≈ 23 (9)

The dependence of this ratio on the dimension-two parameters of the squark mass matrix is

generically very weak.

With this factor in mind, we consider oscillation of the sbottom-down mesino. The

oscillation rate can be estimated by

ω ≈
f 2
B̃

2
cos

2 θ |VtdV
∗
tb|2

m4
t

v4s4β

mg̃

m2
g̃ −m2

b̃1

∼ (4× 10
−12

GeV)

�
fB̃

28.7 MeV

�2

cos
2 θ

�
1000 GeV

mg̃

�
. (10)

These results are not too far from the decay rates, eqs. (7), but with different parametric

dependence. Thus, we expect some parts of parameter space where the oscillation rate is

comparable to or larger than the decay rate, leading to appreciable mesino oscillations.

6
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Same sign tops

•The distribution of the sbottom mesino oscillation 
times 

•Large fraction has x>1, especially for LH sbottom 
LSP’s

(Berger, C.C., Heidenreich, Grossman)

msoft=500 GeV

10!4 0.01 1 100 104 106
xd0

Π!8
Π!4
3Π!8
Π!2Θ

FIG. 4. Oscillation parameter xd = ∆mB̃d
/Γ and left-right mixing angle θ resulting from a scan

over parameter space, where θ = 0 corresponds to a pure left-handed LSP.

To get a better sense of how common such a phenomenon is, we define the oscillation

parameter

x ≡ ∆m

Γ
. (11)

The time-integrated probability for a sbottom mesino to oscillate into an anti-sbottom mesino

before decaying is

p(x) ≡ P (B̃ → B̃c) =
x2

2(1 + x2)
. (12)

The oscillation probability is small for x � 1 and becomes appreciable near x ∼ 1, whereas

for x � 1 the B̃ oscillates very rapidly, and the mesino contains an equal mixture of sbottom

and anti-sbottom components. We scan over parameter space using the same procedure as

in Section II, selecting points with a sbottom LSP and calculating xd (the B̃d oscillation

parameter) and θ for each such point. The results of the scan are shown in Fig. 4. We

observe that xd > 1 in a significant portion of parameter space, particulary when the LSP

is predominantly left-handed.

If the sbottom is the LSP and has a mesino oscillation time comparable to or larger than

its lifetime, then there is a very distinct signature of direct sbottom pair-production. The

sbottoms will hadronize and the resulting mesino may oscillate before decaying. The mesino

must be neutral for oscillations to occur, which occurs when the spectator is a down or

strange quark, or roughly half the time as estimated from the B system. If exactly one of

the mesinos oscillates before decaying, then the resulting two halves of the final state will

have the same charge. Furthermore, these final states each involve a top quark whose charge

is easy to tag if it undergoes a leptonic decay. This final state has same-sign leptons, b jets,

and a small, but non-negligible, amount of missing energy. The entire chain is illustrated in

7
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Same sign tops

•Get same sign leptons, MET + b jets

•Bounds on sbottom mass by
translating CMS bounds same
sign dileptons + b jets + MET

(Berger, C.C., Heidenreich, Grossman)
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FIG. 5. Diagram for R-parity violating sbottom decay that leads to same sign leptons.

Fig. 5. The branching fraction for this mode is given by

Br(b̃b̃∗ → bb�±�±) = Br(W → �ν)2f(xd, xs) ≈ f(xd, xs)× 6.5%,

f(xd, xs) = 2

�

i=d,s

hip(xi)

�
1−

�

j=d,s

hjp(xj)

�
, (13)

where f(xd, xs) denotes the probability that exactly one of the two mesinos oscillates. Here

hi is the fraction of sbottoms that form mesinos with spectator i and we use the effective

leptonic rate for the W which includes leptonic tau decays. Note that for xi � 1 the rate is

maximal, and since hd + hs ≈ 1/2 we have f(xd, xs) ≈ 3/8. Despite the modest branching

fraction, this decay mode will likely be the most sensitive channel for discovering a sbottom

LSP in MFV SUSY.
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Dark matter?

•Ordinary LSP decays quickly in detector, not 
WIMP

•Gravitino would be long enough lived if light

•Depends on thermal history - needs more work

γ̃
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γ

ν

c̃

G̃ c̄

s̄

ū

u

b̄
�
B+




Ξ−
c

Figure 13: Gravitino decay via neutrino-photino mixing (left) for gravitinos below ∼ 1

GeV, and to hadrons (right) for masses above ∼ 1 GeV. The illustrated hadronic decay

G̃ → B+Ξ−
c , along with other decays arising from permutations of the cbs flavor labels and

from changing the flavor of spectator quark, is dominant when kinematically allowed.

decay of the gravitino is G̃ → γν (see Fig. 13) with a width of

ΓG̃ ∼ 1

32π
|Uγν |2

m3
3/2

M2
P l

, (7.12)

where Uγν is the photino-neutrino mixing due to the small sneutrino VEV. In our case the

mixing is set by the spurion V : Uγν ∼ vdV/mÑ where mÑ is a characteristic gaugino mass.

Imposing the bound (6.10), we obtain a lower bound on the gravitino lifetime,

τG̃ >∼ (10
41

yr)

�
1 GeV

m3/2

�3 �
300 GeV

mq̃

�4 �
tan β

10

�8

. (7.13)

If the gravitino is heavier than ∼ 1 GeV it can decay to hadrons via the R-parity violating

ūd̄d̄ vertex. While the exact decay mode will depend on what is kinematically available, for

m3/2 >∼ 10 GeV all hadronic two-body decays are kinematically allowed, and the dominant
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Taking the matrix element to be large, Λ̃ ∼ 1 GeV, we find that
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Thus, in either case a gravitino LSP is generically very long lived, with a lifetime much

greater than the age of the universe, and is therefore a viable dark matter candidate.

NLSP to gravitino decays, e.g. t̃ → t+ G̃, are strongly suppressed for the gravitino mass

range allowed by proton decay m3/2 >∼ 1 KeV, with a small branching fraction relative to

the dominant contributions considered above. However, such decays may be of cosmological

interest if they generate a significant gravitino relic density. We defer consideration of this

interesting topic to a future work.
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decays of the lightest neutralino Ñ → ūd̄d̄ and needs λ�� couplings in the 10−4 − 10−3 range.
Finally we comment on dark matter. One of the main motivations for R-parity is that it

provides a stable heavy superpartner, which in many cases can be a candidate for a WIMP.
In MFV SUSY we are obviously forgoing this possibility. However, this does not necessarily
imply that there cannot be a good dark matter candidate in these models. While we are
assuming the LSP within the SM superpartners to be the stop or another sparticle, the
gravitino can still be lighter and be the real LSP. A gravitino dark matter scenario within
R-parity violating SUSY has been advocated in [52]. There it was found that the leading
decay of the gravitino is G̃ → γν (see Fig. 13) with a width of
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In either case a gravitino LSP is generically very long lived, with a lifetime much greater
than the age of the universe. Thus, the gravitino is a dark matter candidate, though more
study is needed to determine if it is a realistic one.

If the gravitino is the LSP, the NLSP can either decay to jets via the R-parity violating
vertex, (2.4), or to the gravitino itself. The partial width for the simplest gravitino decay,
e.g. t̃ → t+ G̃, takes the form:

Γ ∼ m5
NLSP

24πm2
3/2M

2
pl

(7.16)

for a squark or slepton NLSP, with a similar expression in the case of a gaugino NLSP. Thus,
the rate is enhanced for a lighter gravitino, and if we assume that m3/2 saturates the lower
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UV completion ( C.C., Heidenreich ’13, see also
Krnjaic & Stolarsky; Franceschini 
& Mohapatra)

• To find UV completion need to give a theory of 
flavor

•Mixing via heavy RH fermions

•Effective Yukawa

for generating these relations, since the superpotential is not renormalized. Thus, to explain
the form of the superpotential beyond the level of a spurion analysis, it is necessary to embed
MFV SUSY within a high-scale model which naturally generates this flavor structure.

Another reason that MFV SUSY requires a UV completion is that, while the superpo-
tential (2.1) is technically natural, it is not safe from Planck-suppressed corrections. For
instance, the operator 1

Mpl
q
3� may be generated by gravitational effects, whereas without an

MFV structure this operator leads to rapid proton decay, as we show in section 3.2. Since
global and/or spurious symmetries are generically broken by gravitational effects, to forbid
this kind of operator we will ultimately require some additional gauge symmetry.

2.1 Yukawa hierarchies from mixing with heavy matter

One possibility would be to try to promote the entire (semi-simple) SM flavor symmetry
SU(3)q × SU(3)ū × SU(3)d̄ × SU(3)� × SU(3)ē to a gauge symmetry, with the Yukawa cou-
plings arising as vevs of superfields. However, in this case, the superpotential becomes
nonrenormalizable, and in particular, the term

W =
1

Λ
qΦuūHu (2.2)

requires Φu to get a vev of the same order as the cutoff, due to the O(1) top Yukawa coupling.
The resulting effective field theory will necessarily have a low cutoff and will need its own
UV completion. This suggests that we must introduce additional massive matter fields,
which generate the Yukawa couplings upon being integrated out. If the BNV couplings are
generated along with the ordinary Yukawa couplings upon integrating out the heavy fields
then this explains their related structure.

As an example consider a quark sector consisting of the usual light quarks q, ū, d̄ together
with three pairs of vector-like right-handed up and down quarks U, Ū and D, D̄, where Ū

and D̄ share the same SM quantum numbers as ū and d̄ respectively. We assume the
superpotential

W = λuqŪHu + λdqD̄Hd +
1

2
λbnvŪD̄D̄ + UMuŪ +DMdD̄ + Uµuū+Dµdd̄ , (2.3)

where λu,d and λbnv are flavor-universal parameters while Mu,d and µu,d are in general 3× 3
mass matrices. For M � µ, the low-energy effective theory will contain small effective
Yukawa couplings for the chiral fields and an effective ūd̄d̄ BNV operator due to the mixing
between ū and Ū and between d̄ and D̄. At tree-level, one can integrate out the heavy fields
using the U and D F-term conditions:

Ū = −M
−1
u µuū , D̄ = −M

−1
d µdd̄ , (2.4)

leading to the MFV SUSY superpotential (2.1) with w
�� = λbnv/(λuλ2

d) and the Yukawa
couplings

Yx = λxΥx

�
1+Υ†

xΥx

�−1/2
, Υx ≡ −M

−1
x µx , (2.5)
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where λu,d and λbnv are flavor-universal parameters while Mu,d and µu,d are in general 3× 3
mass matrices. For M � µ, the low-energy effective theory will contain small effective
Yukawa couplings for the chiral fields and an effective ūd̄d̄ BNV operator due to the mixing
between ū and Ū and between d̄ and D̄. At tree-level, one can integrate out the heavy fields
using the U and D F-term conditions:
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Figure 1: A schematic illustration of the relative scales of the eigenvalues of M vs. µ for

down-type (left) and up-type (right) quarks for λu,d ∼ tan β ∼ 1. When µ > M the Yukawa

coupling will be unsuppressed, while all other Yukawas are suppressed by a factor of µ/M.

for x = u, d.1 This expression is readily understood by diagonalizing Υx. Each eigenvalue
2

σi of Υx corresponds to the tangent of the corresponding mixing angle between the SM field

ū or d̄ and the vectorlike partner Ū or D̄. Since Ū and D̄ couple directly to the Higgs with

universal coupling λu,d, a small eigenvalue σi � 1 of Υx corresponds to a small Yukawa

coupling λxσi, whereas a large eigenvalue σi � 1 of Υx corresponds to a maximal Yukawa

coupling λx, with a smooth transition between the two behaviors around σi ∼ O(1).

We see that hierarchical Yukawa couplings can arise if the mass matrices M and/or µ
have hierarchical eigenvalues, whereas w��

is order one so long as the flavor universal couplings

λu,d and λbnv are also order one. While other choices are possible, for the remainder of this

paper we will assume for simplicity that µu,d are flavor-universal parameters, so that all

the flavor structure is generated by Mu,d. This choice is motivated by the possibility of

observable collider signatures, as it allows the vector-like third-generation partners to be

relatively light, since the mass matrix for the vector-like generations takes the form:

M2
x = MxM

†
x + µxµ

†
x = |µxλx|

2
�
YxY

†
x

�−1
, (2.6)

where the second equality follows in the case that µx is flavor-universal.

If λu,d <∼ 1, then M � µ will generate only small Yukawa couplings. In order to

accommodate the O(1) top Yukawa coupling, one eigenvalue of Mu, which we denote M
(3)
u ,

should be smaller than µu. In this case one integrates out the fields U (3)
and ū(3)

at the scale

µ, and Ū (3)
will remain in the spectrum with a Yukawa coupling of order λu, as discussed

above. The mass scales in (2.3) implied by the observed Yukawa couplings are schematically

illustrated in Fig. 1 for the case λu,d ∼ tan β ∼ 1.

1The factor in parentheses arises upon canonically normalizing the Kähler potential after integrating out
the heavy fields.

2More precisely singular value.
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UV completion ( C.C., Heidenreich)

• A complete model based on gauged SU(3) flavor 
plus discrete R-symmetry

an ordinary symmetry or an R-symmetry. In the case of a discrete R-symmetry the super-

space coordinate obtains a non-trivial phase ηθ under the discrete transformation, implying

that gauginos are rotated by ηθ as well whereas the superpotential must pick up a phase

ηW = η2θ . In Appendix A we show that the anomaly cancellation conditions for the discrete

symmetry together with the requirement that the operators in (4.1) are forbidden requires

a discrete R-symmetry. Focusing on the case with E, Ē leptons and the regular embedding,

we further argue that the smallest order choice for a discrete symmetry group forbidding

all problematic operators while allowing for a semirealistic flavor Higgs potential is a Z11

discrete R-symmetry, where we assume that the flavor Higgs sector is completely vector-like.

We now present an example of a complete model with a discrete Z11 R-symmetry. We

choose ηθ = ω−1
11 = e

−2πi/11
without loss of generality, and thus ηW = ω−2

11 . We then introduce

the “matter” fields:

SU(3)C SU(2)L U(1)Y SU(3)F 11[ω
−2
11 ]

q 1/6 ω3
11

ū 1 −2/3 ω4
11

d̄ 1 1/3 ω5
11

� 1 −1/2 ω4
11

ē 1 1 1 1

Ū 1 −2/3 ω3
11

D̄ 1 1/3 ω3
11

Ē 1 1 1 ω2
11

U 1 2/3 ω11

D 1 −1/3 ω5
11

E 1 1 −1 ω4
11

N̄ 1 1 0 ω2
11

Hu 1 1/2 1 ω3
11

Hd 1 −1/2 1 ω3
11

S 1 1 0 1 ω3
11

and the flavor Higgs fields

SU(3)F 11[ω
−2
11 ]

Φu,n ω5
11

Φd ω11

Φe ω3
11

Φ̄u,n ω4
11

Φ̄d ω8
11

Φ̄e ω6
11

φu 1 ω4
11

φd 1 ω−1
11

φe 1 ω5
11

where Zk[ηW ] denotes a Zk discrete symmetry under which the superpotential picks up a

19

will become charged fields when we later introduce discrete symmetries, and thus will also

require vectorlike partners φ̄u,d,e,�.

The flavor Higgs sector is then given by

SU(3)Q SU(3)L

Φu,d 1
Φe,n 1
φu,d,e 1 1

(2.12)

for the case with vector-like RH leptons E, Ē, where we only show those Higgs fields required

to give masses to the matter fields (and not their vector-like partners). The superpotential

is now:

W = λuqŪHu + λdqD̄Hd + λn�N̄Hu + λe�ĒHd + λbŪD̄D̄ + λhSHuHd + λsS
3

+ΦuUŪ + ΦdDD̄ + ΦeEĒ + ΦnN̄
2
+ φuUū+ φdDd̄+ φeEē (2.13)

where we introduce one or more NMSSM singlet fields S. The case with vector-like lepton

doublets L, L̄ is quite similar, except that Φ̄n generates the neutrino Majorana mass rather

than Φn due to the difference in SU(3)L representations:

W = λuqŪHu + λdqD̄Hd + λnLn̄Hu + λeLēHd + λbŪD̄D̄ + λhSHuHd + λsS
3

+ΦuUŪ + ΦdDD̄ + Φ�LL̄+ Φ̄nn̄
2
+ φuUū+ φdDd̄+ φ�L̄� (2.14)

We assume the presence of a Higgs potential which fixes all the moduli supersymmetri-

cally and generates the required hierarchical Yukawa couplings. It is beyond the scope of

this work to construct an explicit potential which does all of these things, but we can still

impose minimum consistency requirements. To avoid pseudo-Goldstone bosons, we require a

Higgs superpotential whose continuous symmetry group is precisely the (complexified) flavor

gauge symmetry and no larger, and whose F-term conditions do not trivially set the vevs to

zero. For instance, in the case of a single 6 ⊕ 6̄ pair Φ, Φ̄, the following potential meets all

of these minimum requirements:

W = MΦΦ̄+ λΦ3
+ λ̄Φ̄3

. (2.15)

Although one can show that this potential generates no hierarchies, it should be possible

to generate hierarchies from the analogous but richer potential arising from multiple 6 ⊕ 6̄
pairs. However, we will not attempt to do so explicitly in this work.

The absence of flavor-changing neutral currents (FCNCs) beyond those predicted by the

SM sets a lower bound on the scale at which the SU(3)F is Higgsed. In particular, the

massive flavor gauge bosons generate the effective Kähler potential

Keff ∼ g
2
F [M

2
]
−1
ab (q

†
T

a
q)(d̄

†
T

b
d̄) + . . . (2.16)

where T
a
denotes an SU(3)F generator, gF the flavor gauge coupling, and M

2
ab the squared

mass matrix for the flavor gauge bosons. Since we have only gauged a diagonal subgroup of

8
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Λ ∼ 1019 GeV

�Φ� ∼ MFBG ∼ 106 TeV

msoft ∼ 300 GeV

µd ∼ 100 TeV

µu ∼ 1− 10 TeV ∼ mU,Ū

The mass scales ( C.C., Heidenreich)
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UV completion ( C.C., Heidenreich)

• With these scales the dangerous higher 
dimensional operators sufficiently small

•Dim 5:

•Dim 6:

•May help EWSB via S-tadpole of the right size 
(~300 GeV): 

phase ηW .9

As shown in appendix A, this model is anomaly free.10 The most general renormalizable
flavor Higgs superpotential allowed by the Z11 R-symmetry is:

WHiggs = MuΦuΦ̄u +MdΦdΦ̄d +MeΦeΦ̄e + λ1φuΦdΦ̄u +m1φuφe +m2φ
2

d + λ2φ
2

eφd

+λudeΦuΦdΦe + λeeeΦ
3

e + λ̄uddΦ̄uΦ̄
2

d + λ̄deeΦ̄dΦ̄
2

e (4.3)

where Φu now stands for either Φu or Φn (which carry the same charges). One can check
that this potential breaks all U(1) global symmetries, and hence does not obviously lead to
Goldstone modes. Although we may in general require more than one “flavor” of each type
of Φ field to allow a suitably rich potential which can reproduce the flavor structure of the
SM, the potential is likely sufficiently generic to also break any resulting nonabelian flavor
symmetry, avoiding Goldstones. However, we will not study the flavor Higgs sector in detail,
deferring this to a future work.

One can show that there are no further renormalizable superpotential couplings allowed
by the Z11 R-symmetry beyond those in (2.13), (4.3). Performing a systematic search we
find the following dimension-five lepton-number violating operators:

W (5)

LNV
=

1

Λ
Φ̄dN̄Dd̄+

1

Λ
φdN̄DD̄ +

1

Λ
φdŪDĒ +

1

Λ
SN̄UŪ +

1

Λ
SN̄3 (4.4)

One can check that these operators are more than sufficiently suppressed by a Planck scale
cutoff and an order one coupling to avoid excessive proton decay for our chosen reference
parameters of tanβ = 10, msoft = 300 GeV, w�� = 1, �Φ� ∼ 106 TeV and �φ� <∼ 103 TeV.
Dimension six operators can also be significant if they contain at least three flavor Higgs
fields. The most significant of these operators are

W (6)

LNV
=

1

Λ2
N̄Φ̄eΦ̄

3

u +
1

Λ2
N̄Φ̄uΦ

3

d + . . . (4.5)

where the omitted terms generate subleading contributions to the N̄ tadpole. One can show
that these operators are also sufficiently suppressed for �Φ� ∼ 106 TeV.

Planck suppressed operators can also contribute to the electroweak Higgs potential. In
particular, we find the dimension-five contributions to the S tadpole:

W (5)

EW
=

1

Λ
SφdΦdΦ̄e +

1

Λ
SφdΦeΦ̄u (4.6)

However, one can check that these generate a tadpole of only about (300 GeV)2 for �Φ� ∼
106 TeV and �φd� ∼ 103 TeV and thus will not cause a fine tuning of the electroweak scale,
and can in fact facilitate electroweak symmetry breaking even in the absence of the SUSY
breaking terms.

9In specifying a discrete R-symmetry, it is unnecessary to specify ηθ if ηW = η2θ is given, since the two
possible sign choices in taking the square root are related by (−1)F .

10There is a naive (grav)2Z11 anomaly which can be cancelled by adding a second copy of the S field, but
any hidden (e.g. SUSY-breaking) sector will contribute to this anomaly, as will the gravitino, so there is no
clear constraint on the number of NMSSM singlets.
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phase ηW .9

As shown in appendix A, this model is anomaly free.10 The most general renormalizable
flavor Higgs superpotential allowed by the Z11 R-symmetry is:

WHiggs = MuΦuΦ̄u +MdΦdΦ̄d +MeΦeΦ̄e + λ1φuΦdΦ̄u +m1φuφe +m2φ
2

d + λ2φ
2

eφd

+λudeΦuΦdΦe + λeeeΦ
3

e + λ̄uddΦ̄uΦ̄
2

d + λ̄deeΦ̄dΦ̄
2

e (4.3)
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Dynamical RPV ( C.C., Kuflik, Volansky, to appear)

•Idea: RP conserved in visible sector

•Only broken in hidden sector where SUSY is 
broken. Same dynamics could be responsible for 
SUSY breaking and RPV!

•RPV operators may naturally appear in Kähler 
potential and may or may not be present in 
superpotential 

•Often
NOT leading source for RPV!

WRPV = λLLē+ λ
�
QLd̄+ λ

��
ūd̄d̄+ µ

�
LHu
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Dynamical RPV ( C.C., Kuflik, Volansky, to appear)

•Assumptions:

1. Dynamical RPV: RPV is broken dynamically in 
hidden sector

2. RPV is related to SUSY breaking: novel non-
holomorphic operators may show up in the Kähler 
pot:

with

where X is SUSY and RP breaking spurion 
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INTRODUCTION

Supersymmetry (SUSY) has long been considered to

be the leading candidate for solving the hierarchy prob-

lem. However, searches in the first three years of the

LHC have failed to uncover evidence for the existence

of superpartners, thereby severely constraining the pa-

rameter space of the Minimal Supersymmetric Standard

Model (MSSM) and pushing the masses of some of the

superpartners to uncomfortably high scales. Thus, if su-

persymmetry is to remain natural, it must manifest itself

differently than in standard scenarios.

The vast majority of SUSY searches study events with

significant missing energy, as typically follows from the

implicit assumption of R-parity conservation. A way to

evade many of the bounds is thus to consider theories in

which R-parity is violated [1]. Traditionally RPV models

introduce the following holomorphic operators,

OhRPV =
1

2
λijkLiLj ēk +λ�

ijkLiQj d̄k +
1

2
λ��
ijkūid̄j d̄k (1)

typically written in a superpotential, W = OhRPV. The

above couplings, however, are strongly constrained as

they generically allow for rapid proton decay, di-nucleon

decays, neutron-anti-neutron oscillations, flavor chang-

ing processes and cosmological depletion of any baryon

asymmetries (for a review, see [2]). Thus existing RPV

theories must be accompanied with extremely small and

seemingly ad hoc couplings.

Recently, a proposal for an organizing principle that

could explain the smallness and hierarchical nature of the

RPV couplings was introduced [3] (see also [4]), whereby

the magnitude of the RPV couplings is related to the

small Yukawa couplings of the flavor sector, naturally

generating a hierarchy which leads to a realistic pattern

of RPV. Related models as well as recent studies on the

LHC phenomenology of baryonic RPV models can be

found in [5, 6].

The main goal of this paper is to present an alternative

to the traditional approach to RPV summarized in (1),

by postulating a dynamical origin to RPV. In particular,

the visible sector is assumed to be R-parity conserving

and its breaking which occurs in a hidden sector, is dy-

namically communicated to the visible sector, along with

SUSY breaking. An immediate consequence is that RPV
operators naturally appear in the Kahler potential while
they may or may not appear in the superpotential. As

a result, under quite general and natural circumstances,

the superpotential in Eq. (1) is not the leading set of

RPV operators and is insufficient to describe the low-

energy dynamics of the model. In particular, new types
of RPV operators with distinct phenomenology naturally
arise and must be considered in any search for RPV su-
persymmetry.
Since R-parity in the visible sector is equivalent to

(−1)
3(B−L)+2s

, where s is the spin of the particle, the

sector which triggers and mediates RPV must be charged

under that symmetry too. A natural possibility is there-

fore to postulate a joint mechanism for breaking both

supersymmetry and R-parity, and exploit flavor media-

tion in order to mediate the breaking of the two. Thus

in what follows we make the following assumptions:

I. Dynamical RPV (dRPV). RPV is broken dy-

namically in a hidden sector, similar to SUSY it-

self.

II. RPV is related to SUSY breaking.

The above then implies that novel non-holomorphic RPV

operators, [EK: can I remove these facts of 1/2, or should

i just change all the formula in Constraints section]

OnhRPV = ηijkūiēj d̄
†
k + η�ijkQiūjL

†
k +

1

2
η��ijkQiQj d̄

†
k (2)

show up in the Kähler potential, KdRPV =
1
X†OnhRPV.

Here X = M + θ2FX is a spurion that breaks both R-

parity and supersymmetry. If we further assume,

III. Dynamical solution to SM flavor hierarchy

which may naturally be embedded in a flavor mediation

scheme With the third assumption, one obtains a natural

organizing principle which generates a hierarchy in the

RPV couplings.

The main consequence of this scheme is that all RPV

operators will automatically be suppressed by, at least,

�X ≡ FX/M2
, explaining why all of these terms are very

small to start with, and one will also have additional

flavor-dependent suppression factors somewhat similar to

the case considered in [3]. We will show below that the

above three assumptions are sufficient to suppress any

flavor-violating transitions, and in particular proton de-

cay, without assuming lepton-number conservation.

The above RPV operators have never been studied be-

fore, and could give rise to novel and distinct LHC signa-

tures. In this paper we study the basic constraints and
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ijkLiQj d̄k +
1

2
λ��
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†
k + η�ijkQiūjL
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1
Eric Kuflik,

2
and Tomer Volansky

2

1Department of Physics, LEPP, Cornell University, Ithaca, NY 14853, USA
2Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978, Israel

..

INTRODUCTION

Supersymmetry (SUSY) has long been considered to

be the leading candidate for solving the hierarchy prob-

lem. However, searches in the first three years of the

LHC have failed to uncover evidence for the existence

of superpartners, thereby severely constraining the pa-

rameter space of the Minimal Supersymmetric Standard

Model (MSSM) and pushing the masses of some of the

superpartners to uncomfortably high scales. Thus, if su-

persymmetry is to remain natural, it must manifest itself

differently than in standard scenarios.

The vast majority of SUSY searches study events with

significant missing energy, as typically follows from the

implicit assumption of R-parity conservation. A way to

evade many of the bounds is thus to consider theories in

which R-parity is violated [1]. Traditionally RPV models

introduce the following holomorphic operators,

OhRPV =
1

2
λijkLiLj ēk +λ�
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Dynamical RPV ( C.C., Kuflik, Volansky, to appear)

•Assumptions:
1. Dynamical RPV
2. RPV is related to SUSY breaking 

3. Dynamical solution to SM flavor hierarchy. Use 
flavor mediation to generate additional hierarchies 
in the RPV terms. 

A Frogatt-Nielsen type gauged U(1) could be 
responsible for most of gauge mediation (=flavor 
mediation), which will generate the hierarchies in 
the RPV terms. 
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Holomorphic or non-holomorphic?
•Which operator will dominate?

•Depends on dynamics, often non-holo will!

•E.g. assume B-L conserved in visible sector, 
broken by spurion X

•If X has B-L charge -1:
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significant missing energy, as typically follows from the

implicit assumption of R-parity conservation. A way to

evade many of the bounds is thus to consider theories in

which R-parity is violated [1]. Traditionally RPV models

introduce the following holomorphic operators,

OhRPV =
1

2
λijkLiLj ēk +λ�

ijkLiQj d̄k +
1

2
λ��
ijkūid̄j d̄k (1)

typically written in a superpotential, W = OhRPV. The

above couplings, however, are strongly constrained as

they generically allow for rapid proton decay, di-nucleon

decays, neutron-anti-neutron oscillations, flavor chang-

ing processes and cosmological depletion of any baryon

asymmetries (for a review, see [2]). Thus existing RPV

theories must be accompanied with extremely small and

seemingly ad hoc couplings.

Recently, a proposal for an organizing principle that

could explain the smallness and hierarchical nature of the

RPV couplings was introduced [3] (see also [4]), whereby

the magnitude of the RPV couplings is related to the

small Yukawa couplings of the flavor sector, naturally

generating a hierarchy which leads to a realistic pattern

of RPV. Related models as well as recent studies on the

LHC phenomenology of baryonic RPV models can be

found in [5, 6].

The main goal of this paper is to present an alternative

to the traditional approach to RPV summarized in (1),

by postulating a dynamical origin to RPV. In particular,

the visible sector is assumed to be R-parity conserving

and its breaking which occurs in a hidden sector, is dy-

namically communicated to the visible sector, along with

SUSY breaking. An immediate consequence is that RPV
operators naturally appear in the Kahler potential while
they may or may not appear in the superpotential. As

a result, under quite general and natural circumstances,

the superpotential in Eq. (1) is not the leading set of

RPV operators and is insufficient to describe the low-

energy dynamics of the model. In particular, new types
of RPV operators with distinct phenomenology naturally
arise and must be considered in any search for RPV su-
persymmetry.
Since R-parity in the visible sector is equivalent to

(−1)
3(B−L)+2s

, where s is the spin of the particle, the

sector which triggers and mediates RPV must be charged

under that symmetry too. A natural possibility is there-

fore to postulate a joint mechanism for breaking both

supersymmetry and R-parity, and exploit flavor media-

tion in order to mediate the breaking of the two. Thus

in what follows we make the following assumptions:

I. Dynamical RPV (dRPV). RPV is broken dy-

namically in a hidden sector, similar to SUSY it-

self.

II. RPV is related to SUSY breaking.

The above then implies that novel non-holomorphic RPV

operators, [EK: can I remove these facts of 1/2, or should

i just change all the formula in Constraints section]

OnhRPV = ηijkūiēj d̄
†
k + η�ijkQiūjL

†
k +

1

2
η��ijkQiQj d̄

†
k (2)

show up in the Kähler potential, KdRPV =
1
X†OnhRPV.

Here X = M + θ2FX is a spurion that breaks both R-

parity and supersymmetry. If we further assume,

III. Dynamical solution to SM flavor hierarchy

which may naturally be embedded in a flavor mediation

scheme With the third assumption, one obtains a natural

organizing principle which generates a hierarchy in the

RPV couplings.

The main consequence of this scheme is that all RPV

operators will automatically be suppressed by, at least,

�X ≡ FX/M2
, explaining why all of these terms are very

small to start with, and one will also have additional

flavor-dependent suppression factors somewhat similar to

the case considered in [3]. We will show below that the

above three assumptions are sufficient to suppress any

flavor-violating transitions, and in particular proton de-

cay, without assuming lepton-number conservation.

The above RPV operators have never been studied be-

fore, and could give rise to novel and distinct LHC signa-

tures. In this paper we study the basic constraints and
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The above RPV operators have never been studied be-

fore, and could give rise to novel and distinct LHC signa-

tures. In this paper we study the basic constraints and

2

phenomenology of the above new operators, demonstrat-

ing their distinct and interesting features, as well as the

viability of this scheme. A more detailed LHC study and

a UV complete model of flavored RPV and Supersymme-

try mediation will appear in upcoming publications [7].

FRAMEWORK

In accordance to the assumptions (I) and (II) discussed

above, we consider a two-scale scenario in which a single

spurion, X = M + θ2FX , breaks both R-parity and su-

persymmetry in a hidden sector, while providing the mes-

senger mass scale. We will see below that FX/M2 � 1 is

preferable, following constraints on RPV operators. We

further assume that M � MPl for the mediator scale.

To derive constraints on dRPV, its low energy de-

scription must be understood. As is customary when

studying supersymmetry breaking, the low energy SM

Lagrangian is assumed to be accompanied with the above

spurion X. Depending on the UV completion, X may

be charged under various continuous and discrete sym-

metries which will constrain its low-energy effective cou-

plings. Nonetheless, a low-energy analysis suffices to re-

strict the form of the RPV operators which may show

up. Indeed, one may assume that B − L is preserved at

low energy, as is typically the case. In order to break

R-parity X must be then charged under B−L, while we
will also consider the possibility that it is additionally

charged under an unbroken U(1)R symmetry.

As a consequence, since OnhRPV and OhRPV are

charged ± under B−L, respectively, they are strictly dis-

tinguishable at low energy. If, for example, X is charged

+1 under B−L, the Kahler potential and superpotential

take the following form at leading order,

KdRPV =
1

X†OnhRPV +
X†

M2
Pl

OhRPV + h.c. , (3)

WdRPV =
X

M2
Pl

κijkHdQiQjQk . (4)

Note, that the Kähler term
1
XOhRPV is removed by a

Kähler transformation, while the term XOnhRPV /M2
Pl

is subleading. We thus find that in this case the holo-

morphic RPV operators, when generated dynamically,

are highly suppressed in comparison to the new non-

holomorphic ones.

If instead X has charge −1 under B − L, then the

leading allowed holomorphic RPV operator is
1
X†OhRPV ,

while the leading non-holomorphic term is
1
XOnhRPV .

At this stage the two terms appear to be of the same

order, hower the non-holomorphic term might still be

suppressed since one will need to pick out an F †
term

from OnhRPV , for example for the QQd̄† case it will be

proportional to Fd ∝ md, and one obtains a suppression

of order md/M , which may be less than the FX/M , the

suppression of OhRPV .

Assuming that no fractional powers of X appears in

the Lagrangian, one can easily see that the RPV opera-

tors can be generated perturbitively only when the charge

of X is ±
1
n where n is an integer. In the special case

when n is even, the leading allowed operators will be

(X/X†
)
nOhRPV /MPl and (X†/X)

nOnhRPV /MPl, the

two terms will have the same suppression; otherwise, the

dominant RPV operator will depend on the sign of the

charge.

If X is further charged under a U(1)R symmetry

(assuming flavor-independent charges), it is impossible

to generate both the holomorphic and non-holomorphic

RPV operators at the same time, without further as-

suming lepton-number conservation [EK: I don’t get this

sentence]. Thus, depending on the X R-charge, only one

type will appear at low energy. Finally, if the B − L
symmetry is instead promoted to an R-symmetry, one

finds once again that the non-holomorphic RPV opera-

tors dominate while the superpotential term of Eq. (4) is

less suppressed,

WdRPV =
1

X
κijkHdQiQjQk . (5)

We therefore conclude that in dRPV either the holo-

morphic or non-holomorphic RPV operators dominate,

but the non-holomorphic ones should typically not be
neglected. Given that previous studies only focus on

holomorphic RPV, we therefore study below the non-

holomorphic case alone.

Before analyzing the constraints, let us briefly discuss

assumption (III). Its main consequence is that the vari-

ous operators discussed above are suppressed according

to their flavor structure. This, for example, is the case

in Froggatt-Nielsen (FN) models [? ], or models with

some strong dynamics [? ? ? ]. Assuming that the

spurions responsible for the flavor structure do not intro-

duce additional breaking of the above symmetries, their

introduction at low energy maps onto flavor-dependent

suppressions of the η, η� and η�� operators. For example,

η��ijk take the form

η��ijk ∼ �|qQi+qQj−qdk | , (6)

where � is a small parameter and qα are, for example, the

various charges of the SM fields under the FN symmetry,

or characterize the partial compositeness in the case of an

RS-type scenario. A complete FN model of this kind will

be discussed in an upcoming publication [7]. For now

we just note that it is straightforward to find charges

that easily comply with the constraints discussed below,

without assuming additional small parameters. Below we

will assume � = 0.2 and explicitly write the constraints

on the various charges. We will be writing most bounds

by explicitly separating the �X factor arising from the

fact that the breaking happens in the hidden sector
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Holomorphic or non-holomorphic?
•In this case non-holomorphic dominates

•For B-L charge +1:                   vs. 

•Naively same order, but for non-holo need F-term 
from d+∝ md. Likely more suppressed...

•Fractional charge: assuming no fractional powers 
of fields, only B-LX=1/n can generate RPV terms. 

•For n even:                              vs.
equally suppressed

•For n odd: depending on sign of n holo or non-
holo will dominate  
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when n is even, the leading allowed operators will be

(X/X†
)
nOhRPV /MPl and (X†/X)

nOnhRPV /MPl, the

two terms will have the same suppression; otherwise, the

dominant RPV operator will depend on the sign of the

charge.

If X is further charged under a U(1)R symmetry

(assuming flavor-independent charges), it is impossible

to generate both the holomorphic and non-holomorphic

RPV operators at the same time, without further as-

suming lepton-number conservation [EK: I don’t get this

sentence]. Thus, depending on the X R-charge, only one

type will appear at low energy. Finally, if the B − L
symmetry is instead promoted to an R-symmetry, one

finds once again that the non-holomorphic RPV opera-

tors dominate while the superpotential term of Eq. (4) is

less suppressed,

WdRPV =
1

X
κijkHdQiQjQk . (5)

We therefore conclude that in dRPV either the holo-

morphic or non-holomorphic RPV operators dominate,

but the non-holomorphic ones should typically not be
neglected. Given that previous studies only focus on

holomorphic RPV, we therefore study below the non-

holomorphic case alone.

Before analyzing the constraints, let us briefly discuss

assumption (III). Its main consequence is that the vari-

ous operators discussed above are suppressed according

to their flavor structure. This, for example, is the case

in Froggatt-Nielsen (FN) models [? ], or models with

some strong dynamics [? ? ? ]. Assuming that the

spurions responsible for the flavor structure do not intro-

duce additional breaking of the above symmetries, their

introduction at low energy maps onto flavor-dependent

suppressions of the η, η� and η�� operators. For example,

η��ijk take the form

η��ijk ∼ �|qQi+qQj−qdk | , (6)

where � is a small parameter and qα are, for example, the

various charges of the SM fields under the FN symmetry,

or characterize the partial compositeness in the case of an

RS-type scenario. A complete FN model of this kind will

be discussed in an upcoming publication [7]. For now

we just note that it is straightforward to find charges

that easily comply with the constraints discussed below,

without assuming additional small parameters. Below we

will assume � = 0.2 and explicitly write the constraints

on the various charges. We will be writing most bounds

by explicitly separating the �X factor arising from the

fact that the breaking happens in the hidden sector

2

phenomenology of the above new operators, demonstrat-

ing their distinct and interesting features, as well as the

viability of this scheme. A more detailed LHC study and

a UV complete model of flavored RPV and Supersymme-

try mediation will appear in upcoming publications [7].

FRAMEWORK

In accordance to the assumptions (I) and (II) discussed

above, we consider a two-scale scenario in which a single

spurion, X = M + θ2FX , breaks both R-parity and su-

persymmetry in a hidden sector, while providing the mes-

senger mass scale. We will see below that FX/M2 � 1 is

preferable, following constraints on RPV operators. We

further assume that M � MPl for the mediator scale.

To derive constraints on dRPV, its low energy de-

scription must be understood. As is customary when

studying supersymmetry breaking, the low energy SM

Lagrangian is assumed to be accompanied with the above

spurion X. Depending on the UV completion, X may

be charged under various continuous and discrete sym-

metries which will constrain its low-energy effective cou-

plings. Nonetheless, a low-energy analysis suffices to re-

strict the form of the RPV operators which may show

up. Indeed, one may assume that B − L is preserved at

low energy, as is typically the case. In order to break

R-parity X must be then charged under B−L, while we
will also consider the possibility that it is additionally

charged under an unbroken U(1)R symmetry.

As a consequence, since OnhRPV and OhRPV are

charged ± under B−L, respectively, they are strictly dis-

tinguishable at low energy. If, for example, X is charged

+1 under B−L, the Kahler potential and superpotential

take the following form at leading order,

KdRPV =
1

X†OnhRPV +
X†

M2
Pl

OhRPV + h.c. , (3)

WdRPV =
X

M2
Pl

κijkHdQiQjQk . (4)

Note, that the Kähler term
1
XOhRPV is removed by a

Kähler transformation, while the term XOnhRPV /M2
Pl

is subleading. We thus find that in this case the holo-

morphic RPV operators, when generated dynamically,

are highly suppressed in comparison to the new non-

holomorphic ones.

If instead X has charge −1 under B − L, then the

leading allowed holomorphic RPV operator is
1
X†OhRPV ,

while the leading non-holomorphic term is
1
XOnhRPV .

At this stage the two terms appear to be of the same

order, hower the non-holomorphic term might still be

suppressed since one will need to pick out an F †
term

from OnhRPV , for example for the QQd̄† case it will be

proportional to Fd ∝ md, and one obtains a suppression

of order md/M , which may be less than the FX/M , the

suppression of OhRPV .

Assuming that no fractional powers of X appears in

the Lagrangian, one can easily see that the RPV opera-

tors can be generated perturbitively only when the charge

of X is ±
1
n where n is an integer. In the special case

when n is even, the leading allowed operators will be

(X/X†
)
nOhRPV /MPl and (X†/X)

nOnhRPV /MPl, the

two terms will have the same suppression; otherwise, the

dominant RPV operator will depend on the sign of the

charge.

If X is further charged under a U(1)R symmetry

(assuming flavor-independent charges), it is impossible

to generate both the holomorphic and non-holomorphic

RPV operators at the same time, without further as-

suming lepton-number conservation [EK: I don’t get this

sentence]. Thus, depending on the X R-charge, only one

type will appear at low energy. Finally, if the B − L
symmetry is instead promoted to an R-symmetry, one

finds once again that the non-holomorphic RPV opera-

tors dominate while the superpotential term of Eq. (4) is

less suppressed,

WdRPV =
1

X
κijkHdQiQjQk . (5)

We therefore conclude that in dRPV either the holo-

morphic or non-holomorphic RPV operators dominate,

but the non-holomorphic ones should typically not be
neglected. Given that previous studies only focus on

holomorphic RPV, we therefore study below the non-

holomorphic case alone.

Before analyzing the constraints, let us briefly discuss

assumption (III). Its main consequence is that the vari-

ous operators discussed above are suppressed according

to their flavor structure. This, for example, is the case

in Froggatt-Nielsen (FN) models [? ], or models with

some strong dynamics [? ? ? ]. Assuming that the

spurions responsible for the flavor structure do not intro-

duce additional breaking of the above symmetries, their

introduction at low energy maps onto flavor-dependent

suppressions of the η, η� and η�� operators. For example,

η��ijk take the form

η��ijk ∼ �|qQi+qQj−qdk | , (6)

where � is a small parameter and qα are, for example, the

various charges of the SM fields under the FN symmetry,

or characterize the partial compositeness in the case of an

RS-type scenario. A complete FN model of this kind will

be discussed in an upcoming publication [7]. For now

we just note that it is straightforward to find charges

that easily comply with the constraints discussed below,

without assuming additional small parameters. Below we

will assume � = 0.2 and explicitly write the constraints

on the various charges. We will be writing most bounds

by explicitly separating the �X factor arising from the

fact that the breaking happens in the hidden sector
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phenomenology of the above new operators, demonstrat-

ing their distinct and interesting features, as well as the

viability of this scheme. A more detailed LHC study and

a UV complete model of flavored RPV and Supersymme-

try mediation will appear in upcoming publications [7].

FRAMEWORK

In accordance to the assumptions (I) and (II) discussed

above, we consider a two-scale scenario in which a single

spurion, X = M + θ2FX , breaks both R-parity and su-

persymmetry in a hidden sector, while providing the mes-

senger mass scale. We will see below that FX/M2 � 1 is

preferable, following constraints on RPV operators. We

further assume that M � MPl for the mediator scale.

To derive constraints on dRPV, its low energy de-

scription must be understood. As is customary when

studying supersymmetry breaking, the low energy SM

Lagrangian is assumed to be accompanied with the above

spurion X. Depending on the UV completion, X may

be charged under various continuous and discrete sym-

metries which will constrain its low-energy effective cou-

plings. Nonetheless, a low-energy analysis suffices to re-

strict the form of the RPV operators which may show

up. Indeed, one may assume that B − L is preserved at

low energy, as is typically the case. In order to break

R-parity X must be then charged under B−L, while we
will also consider the possibility that it is additionally

charged under an unbroken U(1)R symmetry.

As a consequence, since OnhRPV and OhRPV are

charged ± under B−L, respectively, they are strictly dis-

tinguishable at low energy. If, for example, X is charged

+1 under B−L, the Kahler potential and superpotential

take the following form at leading order,

KdRPV =
1

X†OnhRPV +
X†

M2
Pl

OhRPV + h.c. , (3)

WdRPV =
X

M2
Pl

κijkHdQiQjQk . (4)

Note, that the Kähler term
1
XOhRPV is removed by a

Kähler transformation, while the term XOnhRPV /M2
Pl

is subleading. We thus find that in this case the holo-

morphic RPV operators, when generated dynamically,

are highly suppressed in comparison to the new non-

holomorphic ones.

If instead X has charge −1 under B − L, then the

leading allowed holomorphic RPV operator is
1
X†OhRPV ,

while the leading non-holomorphic term is
1
XOnhRPV .

At this stage the two terms appear to be of the same

order, hower the non-holomorphic term might still be

suppressed since one will need to pick out an F †
term

from OnhRPV , for example for the QQd̄† case it will be

proportional to Fd ∝ md, and one obtains a suppression

of order md/M , which may be less than the FX/M , the

suppression of OhRPV .

Assuming that no fractional powers of X appears in

the Lagrangian, one can easily see that the RPV opera-

tors can be generated perturbitively only when the charge

of X is ±
1
n where n is an integer. In the special case

when n is even, the leading allowed operators will be

(X/X†
)
nOhRPV /MPl and (X†/X)

nOnhRPV /MPl, the

two terms will have the same suppression; otherwise, the

dominant RPV operator will depend on the sign of the

charge.

If X is further charged under a U(1)R symmetry

(assuming flavor-independent charges), it is impossible

to generate both the holomorphic and non-holomorphic

RPV operators at the same time, without further as-

suming lepton-number conservation [EK: I don’t get this

sentence]. Thus, depending on the X R-charge, only one

type will appear at low energy. Finally, if the B − L
symmetry is instead promoted to an R-symmetry, one

finds once again that the non-holomorphic RPV opera-

tors dominate while the superpotential term of Eq. (4) is

less suppressed,

WdRPV =
1

X
κijkHdQiQjQk . (5)

We therefore conclude that in dRPV either the holo-

morphic or non-holomorphic RPV operators dominate,

but the non-holomorphic ones should typically not be
neglected. Given that previous studies only focus on

holomorphic RPV, we therefore study below the non-

holomorphic case alone.

Before analyzing the constraints, let us briefly discuss

assumption (III). Its main consequence is that the vari-

ous operators discussed above are suppressed according

to their flavor structure. This, for example, is the case

in Froggatt-Nielsen (FN) models [? ], or models with

some strong dynamics [? ? ? ]. Assuming that the

spurions responsible for the flavor structure do not intro-

duce additional breaking of the above symmetries, their

introduction at low energy maps onto flavor-dependent

suppressions of the η, η� and η�� operators. For example,

η��ijk take the form

η��ijk ∼ �|qQi+qQj−qdk | , (6)

where � is a small parameter and qα are, for example, the

various charges of the SM fields under the FN symmetry,

or characterize the partial compositeness in the case of an

RS-type scenario. A complete FN model of this kind will

be discussed in an upcoming publication [7]. For now

we just note that it is straightforward to find charges

that easily comply with the constraints discussed below,

without assuming additional small parameters. Below we

will assume � = 0.2 and explicitly write the constraints

on the various charges. We will be writing most bounds

by explicitly separating the �X factor arising from the

fact that the breaking happens in the hidden sector

� ∼ 0.2
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ηijkūiēj d̄

†
k + η�ijkQiūjL
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phenomenology of the above new operators, demonstrat-

ing their distinct and interesting features, as well as the

viability of this scheme. A more detailed LHC study and

a UV complete model of flavored RPV and Supersymme-

try mediation will appear in upcoming publications [7].

FRAMEWORK

In accordance to the assumptions (I) and (II) discussed

above, we consider a two-scale scenario in which a single

spurion, X = M + θ2FX , breaks both R-parity and su-

persymmetry in a hidden sector, while providing the mes-

senger mass scale. We will see below that FX/M2 � 1 is

preferable, following constraints on RPV operators. We

further assume that M � MPl for the mediator scale.

To derive constraints on dRPV, its low energy de-

scription must be understood. As is customary when

studying supersymmetry breaking, the low energy SM

Lagrangian is assumed to be accompanied with the above

spurion X. Depending on the UV completion, X may

be charged under various continuous and discrete sym-

metries which will constrain its low-energy effective cou-

plings. Nonetheless, a low-energy analysis suffices to re-

strict the form of the RPV operators which may show

up. Indeed, one may assume that B − L is preserved at

low energy, as is typically the case. In order to break

R-parity X must be then charged under B−L, while we
will also consider the possibility that it is additionally

charged under an unbroken U(1)R symmetry.

As a consequence, since OnhRPV and OhRPV are

charged ± under B−L, respectively, they are strictly dis-

tinguishable at low energy. If, for example, X is charged

+1 under B−L, the Kahler potential and superpotential

take the following form at leading order,

KdRPV =
1

X†OnhRPV +
X†

M2
Pl

OhRPV + h.c. , (3)

WdRPV =
X

M2
Pl

κijkHdQiQjQk . (4)

Note, that the Kähler term
1
XOhRPV is removed by a

Kähler transformation, while the term XOnhRPV /M2
Pl

is subleading. We thus find that in this case the holo-

morphic RPV operators, when generated dynamically,

are highly suppressed in comparison to the new non-

holomorphic ones.

If instead X has charge −1 under B − L, then the

leading allowed holomorphic RPV operator is
1
X†OhRPV ,

while the leading non-holomorphic term is
1
XOnhRPV .

At this stage the two terms appear to be of the same

order, hower the non-holomorphic term might still be

suppressed since one will need to pick out an F †
term

from OnhRPV , for example for the QQd̄† case it will be

proportional to Fd ∝ md, and one obtains a suppression

of order md/M , which may be less than the FX/M , the

suppression of OhRPV .

Assuming that no fractional powers of X appears in

the Lagrangian, one can easily see that the RPV opera-

tors can be generated perturbitively only when the charge

of X is ±
1
n where n is an integer. In the special case

when n is even, the leading allowed operators will be

(X/X†
)
nOhRPV /MPl and (X†/X)

nOnhRPV /MPl, the

two terms will have the same suppression; otherwise, the

dominant RPV operator will depend on the sign of the

charge.

If X is further charged under a U(1)R symmetry

(assuming flavor-independent charges), it is impossible

to generate both the holomorphic and non-holomorphic

RPV operators at the same time, without further as-

suming lepton-number conservation [EK: I don’t get this

sentence]. Thus, depending on the X R-charge, only one

type will appear at low energy. Finally, if the B − L
symmetry is instead promoted to an R-symmetry, one

finds once again that the non-holomorphic RPV opera-

tors dominate while the superpotential term of Eq. (4) is

less suppressed,

WdRPV =
1

X
κijkHdQiQjQk . (5)

We therefore conclude that in dRPV either the holo-

morphic or non-holomorphic RPV operators dominate,

but the non-holomorphic ones should typically not be
neglected. Given that previous studies only focus on

holomorphic RPV, we therefore study below the non-

holomorphic case alone.

Before analyzing the constraints, let us briefly discuss

assumption (III). Its main consequence is that the vari-

ous operators discussed above are suppressed according

to their flavor structure. This, for example, is the case

in Froggatt-Nielsen (FN) models [? ], or models with

some strong dynamics [? ? ? ]. Assuming that the

spurions responsible for the flavor structure do not intro-

duce additional breaking of the above symmetries, their

introduction at low energy maps onto flavor-dependent

suppressions of the η, η� and η�� operators. For example,

η��ijk take the form

η��ijk ∼ �|qQi+qQj−qdk | , (6)

where � is a small parameter and qα are, for example, the

various charges of the SM fields under the FN symmetry,

or characterize the partial compositeness in the case of an

RS-type scenario. A complete FN model of this kind will

be discussed in an upcoming publication [7]. For now

we just note that it is straightforward to find charges

that easily comply with the constraints discussed below,

without assuming additional small parameters. Below we

will assume � = 0.2 and explicitly write the constraints

on the various charges. We will be writing most bounds

by explicitly separating the �X factor arising from the

fact that the breaking happens in the hidden sector
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Low-energy constraints: ΔB=2

•n-nbar oscillation and dinucleon decay

•Dim 9 operator generated

•Suppression scale: 

3
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FIG. 1: Diagram for ∆B = 2 processes. Induces n − n̄
oscillations and dinucleon decay.

LOW ENERGY CONSTRAINTS

The operators in (2) violate baryon (B)- and/or lepton-

number (L), in addition to the non-abelian SU(3)5 flavor

symmetries of the SM. Consequently a carefully check is

required to ensure that the various low-energy bounds

are all satisfied. [EK: I need to check all these results,

and I hope someone else does too]

[EK: So we need to think about what we should be

taking for �X and M . One possibility is that �X =

10−5, M = 108 GeV, and FX = 1011 GeV
2
. Then

F/M = TeV. In our FN model, the tree-level con-

tribution to the soft masses is roughly −�2 F
M , which

will be small. We know that this will can dominate

over gauge-mediation if M is the messenger scale, and

there must be another source of mediation in our FN

model. Another possibility is �X = 10−3, M = 108 GeV,

and FX = 1011 GeV
2
. Then F/M = 102 TeV. This

would probably make sense for a model in which stan-

dard gauge-mediation is the only source of mediation.

Note that proton-lifetime via lepton-violation is propor-

tional to �−4
X , so is very sensitive to the value we choose.

]

∆B = 2 Processes

The η�� term in (2) violates baryon-number (B) by one

unit, thus one needs to check that the bounds on ∆B = 2

processes (n − n̄ oscillations and dinucleon decay) ob-

tained by two insertions of this of this vertex are obeyed.

The simplest way is to integrate out the squarks which

will generate the following dimension 9 operator (the

most general flavor index structure is allowed, though

we only display the subset necessary for the constraints):

1

Λ5
ijk

(QiQiQjQj d̄
†
kd̄

†
k) (7)

via the diagram in Fig. 1. The suppression scale is given

by

1

Λ5
ijk

= 4παs

η��iikη
��
jjk

mg̃m4
d̃.R,k

�2X (8)

This leads to n − n̄ oscillations and dinucleon decay

pp → π+π+ when i, j, k = 1 and pp → K+K+ when

i, j = 1; k = 2.

The n− n̄ oscillation time is approximately given by

τn−n̄ � Λ5
111

2πΛ̃6
QCD

(9)

where Λ̃QCD is the hadronic matrix element and can be

conservatively estimated around 200 MeV. For this value

of Λ̃QCD we find

τn−n̄ � 3×10
8
s

�md̃R1

TeV

�4 � mg̃

TeV

��
2 · 10−4

η��111

�2 �
10−3

�X

�2

.

(10)

to be compared with the experimental bound

τn−n̄ > 2.44× 108 s [9].

The same operator also contributes to the dinucleon

decay process pp → π+π+(K+K+). The approximate

expression of the width is given by [8]

Γ � 8

π

ρN
m2

N

Λ̃10
QCD

Λ10
11k

(11)

where ρN ∼ 0.25 fm
−3

is the nuclear matter density

(ρN/m2
N � 3 · 1021 s−1), and i = 1 or 2, depending if

the decay is to pions or kaons. The bound on the life-

time is 1.7 × 1032 years [10]. The lifetime in our model

is (again for Λ̃QCD = 200 MeV)

τpp � 2× 10
34

yr

�
m8

d̃R,k
m2

g̃

TeV
10

��
2 · 10−4

η��11k

�4 �
10−3

�X

�4

.

(12)

∆F = 2 Processes

d̃k

Qα
i

Qβ
i

Qβ†
j

Qα†
j

L̃k

Qα
i

ūα
j

Qβ†
j

uβ†
i

FIG. 2: RPV contributions to ∆F = 2 operators Qqiqj
1 ≡

− 1
2 (Q

α
i Q

β
i )(Q

α†
j Qβ†

j ) (left) and Qqiqj
4 ≡ ūα

j Q
α
i Q

β†
j ūβ†

i (right).

Within the Standard Model, flavor changing neutral

currents (FCNC) are absent at tree-level, and highly sup-

pressed by the GIM mechanism at one loop. Thus, FCNC

observables are extremely sensitive to new-physics. This

generically leads to the SUSY flavor problem: unless

squarks are very close to degenrate, or the squark masses

very closely aligned with the quark masses the the loop

induced FCNC’s will be too large as there is not, gener-

ically a GIM-like mechanism to suppress these contribu-

tions.
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FIG. 1: Diagram for ∆B = 2 processes. Induces n − n̄
oscillations and dinucleon decay.

LOW ENERGY CONSTRAINTS

The operators in (2) violate baryon (B)- and/or lepton-

number (L), in addition to the non-abelian SU(3)5 flavor

symmetries of the SM. Consequently a carefully check is

required to ensure that the various low-energy bounds

are all satisfied. [EK: I need to check all these results,

and I hope someone else does too]

[EK: So we need to think about what we should be

taking for �X and M . One possibility is that �X =

10−5, M = 108 GeV, and FX = 1011 GeV
2
. Then

F/M = TeV. In our FN model, the tree-level con-

tribution to the soft masses is roughly −�2 F
M , which

will be small. We know that this will can dominate

over gauge-mediation if M is the messenger scale, and

there must be another source of mediation in our FN

model. Another possibility is �X = 10−3, M = 108 GeV,

and FX = 1011 GeV
2
. Then F/M = 102 TeV. This

would probably make sense for a model in which stan-

dard gauge-mediation is the only source of mediation.

Note that proton-lifetime via lepton-violation is propor-

tional to �−4
X , so is very sensitive to the value we choose.

]

∆B = 2 Processes

The η�� term in (2) violates baryon-number (B) by one

unit, thus one needs to check that the bounds on ∆B = 2

processes (n − n̄ oscillations and dinucleon decay) ob-

tained by two insertions of this of this vertex are obeyed.

The simplest way is to integrate out the squarks which

will generate the following dimension 9 operator (the

most general flavor index structure is allowed, though

we only display the subset necessary for the constraints):

1

Λ5
ijk

(QiQiQjQj d̄
†
kd̄

†
k) (7)

via the diagram in Fig. 1. The suppression scale is given

by

1

Λ5
ijk

= 4παs

η��iikη
��
jjk

mg̃m4
d̃.R,k

�2X (8)

This leads to n − n̄ oscillations and dinucleon decay

pp → π+π+ when i, j, k = 1 and pp → K+K+ when

i, j = 1; k = 2.

The n− n̄ oscillation time is approximately given by

τn−n̄ � Λ5
111

2πΛ̃6
QCD

(9)

where Λ̃QCD is the hadronic matrix element and can be

conservatively estimated around 200 MeV. For this value

of Λ̃QCD we find

τn−n̄ � 3×10
8
s

�md̃R1

TeV

�4 � mg̃

TeV
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2 · 10−4

η��111
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10−3
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(10)

to be compared with the experimental bound

τn−n̄ > 2.44× 108 s [9].

The same operator also contributes to the dinucleon

decay process pp → π+π+(K+K+). The approximate

expression of the width is given by [8]

Γ � 8

π

ρN
m2

N

Λ̃10
QCD

Λ10
11k

(11)

where ρN ∼ 0.25 fm
−3

is the nuclear matter density

(ρN/m2
N � 3 · 1021 s−1), and i = 1 or 2, depending if

the decay is to pions or kaons. The bound on the life-

time is 1.7 × 1032 years [10]. The lifetime in our model

is (again for Λ̃QCD = 200 MeV)
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Within the Standard Model, flavor changing neutral

currents (FCNC) are absent at tree-level, and highly sup-

pressed by the GIM mechanism at one loop. Thus, FCNC

observables are extremely sensitive to new-physics. This

generically leads to the SUSY flavor problem: unless

squarks are very close to degenrate, or the squark masses

very closely aligned with the quark masses the the loop

induced FCNC’s will be too large as there is not, gener-

ically a GIM-like mechanism to suppress these contribu-

tions.
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LOW ENERGY CONSTRAINTS

The operators in (2) violate baryon (B)- and/or lepton-

number (L), in addition to the non-abelian SU(3)5 flavor

symmetries of the SM. Consequently a carefully check is

required to ensure that the various low-energy bounds

are all satisfied. [EK: I need to check all these results,

and I hope someone else does too]

[EK: So we need to think about what we should be

taking for �X and M . One possibility is that �X =

10−5, M = 108 GeV, and FX = 1011 GeV
2
. Then

F/M = TeV. In our FN model, the tree-level con-

tribution to the soft masses is roughly −�2 F
M , which

will be small. We know that this will can dominate

over gauge-mediation if M is the messenger scale, and

there must be another source of mediation in our FN

model. Another possibility is �X = 10−3, M = 108 GeV,

and FX = 1011 GeV
2
. Then F/M = 102 TeV. This

would probably make sense for a model in which stan-

dard gauge-mediation is the only source of mediation.

Note that proton-lifetime via lepton-violation is propor-

tional to �−4
X , so is very sensitive to the value we choose.

]

∆B = 2 Processes

The η�� term in (2) violates baryon-number (B) by one

unit, thus one needs to check that the bounds on ∆B = 2

processes (n − n̄ oscillations and dinucleon decay) ob-

tained by two insertions of this of this vertex are obeyed.

The simplest way is to integrate out the squarks which

will generate the following dimension 9 operator (the

most general flavor index structure is allowed, though

we only display the subset necessary for the constraints):
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τn−n̄ > 2.44× 108 s [9].
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expression of the width is given by [8]
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is the nuclear matter density
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N � 3 · 1021 s−1), and i = 1 or 2, depending if
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Within the Standard Model, flavor changing neutral

currents (FCNC) are absent at tree-level, and highly sup-

pressed by the GIM mechanism at one loop. Thus, FCNC

observables are extremely sensitive to new-physics. This

generically leads to the SUSY flavor problem: unless

squarks are very close to degenrate, or the squark masses

very closely aligned with the quark masses the the loop

induced FCNC’s will be too large as there is not, gener-

ically a GIM-like mechanism to suppress these contribu-

tions.
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. Then
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M , which

will be small. We know that this will can dominate

over gauge-mediation if M is the messenger scale, and

there must be another source of mediation in our FN

model. Another possibility is �X = 10−3, M = 108 GeV,

and FX = 1011 GeV
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. Then F/M = 102 TeV. This

would probably make sense for a model in which stan-
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Note that proton-lifetime via lepton-violation is propor-

tional to �−4
X , so is very sensitive to the value we choose.
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to be compared with the experimental bound
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Within the Standard Model, flavor changing neutral

currents (FCNC) are absent at tree-level, and highly sup-

pressed by the GIM mechanism at one loop. Thus, FCNC

observables are extremely sensitive to new-physics. This

generically leads to the SUSY flavor problem: unless

squarks are very close to degenrate, or the squark masses

very closely aligned with the quark masses the the loop

induced FCNC’s will be too large as there is not, gener-

ically a GIM-like mechanism to suppress these contribu-

tions.
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LOW ENERGY CONSTRAINTS

The operators in (2) violate baryon (B)- and/or lepton-

number (L), in addition to the non-abelian SU(3)5 flavor

symmetries of the SM. Consequently a carefully check is

required to ensure that the various low-energy bounds

are all satisfied. [EK: I need to check all these results,

and I hope someone else does too]

[EK: So we need to think about what we should be

taking for �X and M . One possibility is that �X =

10−5, M = 108 GeV, and FX = 1011 GeV
2
. Then

F/M = TeV. In our FN model, the tree-level con-

tribution to the soft masses is roughly −�2 F
M , which

will be small. We know that this will can dominate

over gauge-mediation if M is the messenger scale, and

there must be another source of mediation in our FN

model. Another possibility is �X = 10−3, M = 108 GeV,

and FX = 1011 GeV
2
. Then F/M = 102 TeV. This

would probably make sense for a model in which stan-

dard gauge-mediation is the only source of mediation.

Note that proton-lifetime via lepton-violation is propor-

tional to �−4
X , so is very sensitive to the value we choose.
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∆B = 2 Processes

The η�� term in (2) violates baryon-number (B) by one

unit, thus one needs to check that the bounds on ∆B = 2

processes (n − n̄ oscillations and dinucleon decay) ob-

tained by two insertions of this of this vertex are obeyed.

The simplest way is to integrate out the squarks which

will generate the following dimension 9 operator (the

most general flavor index structure is allowed, though

we only display the subset necessary for the constraints):
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to be compared with the experimental bound

τn−n̄ > 2.44× 108 s [9].

The same operator also contributes to the dinucleon

decay process pp → π+π+(K+K+). The approximate

expression of the width is given by [8]
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Within the Standard Model, flavor changing neutral

currents (FCNC) are absent at tree-level, and highly sup-

pressed by the GIM mechanism at one loop. Thus, FCNC

observables are extremely sensitive to new-physics. This

generically leads to the SUSY flavor problem: unless

squarks are very close to degenrate, or the squark masses

very closely aligned with the quark masses the the loop

induced FCNC’s will be too large as there is not, gener-

ically a GIM-like mechanism to suppress these contribu-

tions.
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LOW ENERGY CONSTRAINTS

The operators in (2) violate baryon (B)- and/or lepton-

number (L), in addition to the non-abelian SU(3)5 flavor

symmetries of the SM. Consequently a carefully check is

required to ensure that the various low-energy bounds

are all satisfied. [EK: I need to check all these results,

and I hope someone else does too]

[EK: So we need to think about what we should be

taking for �X and M . One possibility is that �X =

10−5, M = 108 GeV, and FX = 1011 GeV
2
. Then

F/M = TeV. In our FN model, the tree-level con-

tribution to the soft masses is roughly −�2 F
M , which

will be small. We know that this will can dominate

over gauge-mediation if M is the messenger scale, and

there must be another source of mediation in our FN

model. Another possibility is �X = 10−3, M = 108 GeV,

and FX = 1011 GeV
2
. Then F/M = 102 TeV. This

would probably make sense for a model in which stan-

dard gauge-mediation is the only source of mediation.

Note that proton-lifetime via lepton-violation is propor-

tional to �−4
X , so is very sensitive to the value we choose.
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∆B = 2 Processes

The η�� term in (2) violates baryon-number (B) by one

unit, thus one needs to check that the bounds on ∆B = 2

processes (n − n̄ oscillations and dinucleon decay) ob-

tained by two insertions of this of this vertex are obeyed.

The simplest way is to integrate out the squarks which
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most general flavor index structure is allowed, though

we only display the subset necessary for the constraints):
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to be compared with the experimental bound

τn−n̄ > 2.44× 108 s [9].

The same operator also contributes to the dinucleon
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Within the Standard Model, flavor changing neutral

currents (FCNC) are absent at tree-level, and highly sup-

pressed by the GIM mechanism at one loop. Thus, FCNC

observables are extremely sensitive to new-physics. This

generically leads to the SUSY flavor problem: unless

squarks are very close to degenrate, or the squark masses

very closely aligned with the quark masses the the loop

induced FCNC’s will be too large as there is not, gener-

ically a GIM-like mechanism to suppress these contribu-

tions.
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The operators in (2) violate baryon (B)- and/or lepton-

number (L), in addition to the non-abelian SU(3)5 flavor

symmetries of the SM. Consequently a carefully check is

required to ensure that the various low-energy bounds

are all satisfied. [EK: I need to check all these results,

and I hope someone else does too]

[EK: So we need to think about what we should be

taking for �X and M . One possibility is that �X =

10−5, M = 108 GeV, and FX = 1011 GeV
2
. Then

F/M = TeV. In our FN model, the tree-level con-

tribution to the soft masses is roughly −�2 F
M , which

will be small. We know that this will can dominate

over gauge-mediation if M is the messenger scale, and

there must be another source of mediation in our FN

model. Another possibility is �X = 10−3, M = 108 GeV,

and FX = 1011 GeV
2
. Then F/M = 102 TeV. This

would probably make sense for a model in which stan-

dard gauge-mediation is the only source of mediation.

Note that proton-lifetime via lepton-violation is propor-

tional to �−4
X , so is very sensitive to the value we choose.
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Within the Standard Model, flavor changing neutral

currents (FCNC) are absent at tree-level, and highly sup-

pressed by the GIM mechanism at one loop. Thus, FCNC

observables are extremely sensitive to new-physics. This

generically leads to the SUSY flavor problem: unless

squarks are very close to degenrate, or the squark masses

very closely aligned with the quark masses the the loop

induced FCNC’s will be too large as there is not, gener-

ically a GIM-like mechanism to suppress these contribu-

tions.
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FIG. 1: Diagram for ∆B = 2 processes. Induces n − n̄
oscillations and dinucleon decay.

LOW ENERGY CONSTRAINTS

The operators in (2) violate baryon (B)- and/or lepton-

number (L), in addition to the non-abelian SU(3)5 flavor

symmetries of the SM. Consequently a carefully check is

required to ensure that the various low-energy bounds

are all satisfied. [EK: I need to check all these results,

and I hope someone else does too]

[EK: So we need to think about what we should be

taking for �X and M . One possibility is that �X =

10−5, M = 108 GeV, and FX = 1011 GeV
2
. Then

F/M = TeV. In our FN model, the tree-level con-

tribution to the soft masses is roughly −�2 F
M , which

will be small. We know that this will can dominate

over gauge-mediation if M is the messenger scale, and

there must be another source of mediation in our FN

model. Another possibility is �X = 10−3, M = 108 GeV,

and FX = 1011 GeV
2
. Then F/M = 102 TeV. This

would probably make sense for a model in which stan-

dard gauge-mediation is the only source of mediation.

Note that proton-lifetime via lepton-violation is propor-

tional to �−4
X , so is very sensitive to the value we choose.

]

∆B = 2 Processes

The η�� term in (2) violates baryon-number (B) by one

unit, thus one needs to check that the bounds on ∆B = 2

processes (n − n̄ oscillations and dinucleon decay) ob-

tained by two insertions of this of this vertex are obeyed.

The simplest way is to integrate out the squarks which

will generate the following dimension 9 operator (the

most general flavor index structure is allowed, though

we only display the subset necessary for the constraints):

1

Λ5
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(QiQiQjQj d̄
†
kd̄

†
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via the diagram in Fig. 1. The suppression scale is given

by
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This leads to n − n̄ oscillations and dinucleon decay

pp → π+π+ when i, j, k = 1 and pp → K+K+ when

i, j = 1; k = 2.

The n− n̄ oscillation time is approximately given by

τn−n̄ � Λ5
111

2πΛ̃6
QCD

(9)

where Λ̃QCD is the hadronic matrix element and can be

conservatively estimated around 200 MeV. For this value

of Λ̃QCD we find
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to be compared with the experimental bound

τn−n̄ > 2.44× 108 s [9].

The same operator also contributes to the dinucleon

decay process pp → π+π+(K+K+). The approximate

expression of the width is given by [8]

Γ � 8

π

ρN
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Λ̃10
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Λ10
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where ρN ∼ 0.25 fm
−3

is the nuclear matter density

(ρN/m2
N � 3 · 1021 s−1), and i = 1 or 2, depending if

the decay is to pions or kaons. The bound on the life-

time is 1.7 × 1032 years [10]. The lifetime in our model

is (again for Λ̃QCD = 200 MeV)

τpp � 2× 10
34
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i (right).

Within the Standard Model, flavor changing neutral

currents (FCNC) are absent at tree-level, and highly sup-

pressed by the GIM mechanism at one loop. Thus, FCNC

observables are extremely sensitive to new-physics. This

generically leads to the SUSY flavor problem: unless

squarks are very close to degenrate, or the squark masses

very closely aligned with the quark masses the the loop

induced FCNC’s will be too large as there is not, gener-

ically a GIM-like mechanism to suppress these contribu-

tions.
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Low-energy constraints: ΔF=2

•FCNC’s generated at tree-level:

•Operators generated:

•Suppression scales:
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symmetries of the SM. Consequently a carefully check is

required to ensure that the various low-energy bounds

are all satisfied. [EK: I need to check all these results,

and I hope someone else does too]

[EK: So we need to think about what we should be

taking for �X and M . One possibility is that �X =

10−5, M = 108 GeV, and FX = 1011 GeV
2
. Then

F/M = TeV. In our FN model, the tree-level con-

tribution to the soft masses is roughly −�2 F
M , which

will be small. We know that this will can dominate

over gauge-mediation if M is the messenger scale, and

there must be another source of mediation in our FN

model. Another possibility is �X = 10−3, M = 108 GeV,

and FX = 1011 GeV
2
. Then F/M = 102 TeV. This

would probably make sense for a model in which stan-

dard gauge-mediation is the only source of mediation.

Note that proton-lifetime via lepton-violation is propor-

tional to �−4
X , so is very sensitive to the value we choose.
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unit, thus one needs to check that the bounds on ∆B = 2

processes (n − n̄ oscillations and dinucleon decay) ob-

tained by two insertions of this of this vertex are obeyed.

The simplest way is to integrate out the squarks which

will generate the following dimension 9 operator (the

most general flavor index structure is allowed, though

we only display the subset necessary for the constraints):
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This leads to n − n̄ oscillations and dinucleon decay
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The n− n̄ oscillation time is approximately given by
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to be compared with the experimental bound

τn−n̄ > 2.44× 108 s [9].

The same operator also contributes to the dinucleon

decay process pp → π+π+(K+K+). The approximate

expression of the width is given by [8]
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where ρN ∼ 0.25 fm
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is the nuclear matter density

(ρN/m2
N � 3 · 1021 s−1), and i = 1 or 2, depending if

the decay is to pions or kaons. The bound on the life-
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Within the Standard Model, flavor changing neutral

currents (FCNC) are absent at tree-level, and highly sup-

pressed by the GIM mechanism at one loop. Thus, FCNC

observables are extremely sensitive to new-physics. This

generically leads to the SUSY flavor problem: unless

squarks are very close to degenrate, or the squark masses

very closely aligned with the quark masses the the loop

induced FCNC’s will be too large as there is not, gener-

ically a GIM-like mechanism to suppress these contribu-

tions.
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FIG. 3: Diagrams for proton decay: left with L violation,
right via gravitino.

In models of RPV, FCNC operators are generated at
tree-level, with the strongest constraints obtained from
the ∆F = 2 neutral meson-mixing processes. If either
of the operators, QiūjL∗

k or QiQj d̄∗k, are present, neutral
meson-mixing is generated at tree-level when integrating
out the squarks via the diagrams in Fig. 2. The operators
generated are

Qqiqj
1 ≡ − 1

2 (Q
α
i Q

β
i )(Q

α†
j Qβ†

j )

Qqiqj
4 ≡ ūα

j Q
α
i Q

β†
j ūβ†

i

(13)

with suppressions

1

Λ2
1,ij

=
η��iikη

��∗
jjk

m2
d̃R,k

�2X ,
1

Λ2
4,ij

=
|η�ijk|2

m2
ν̃L,k

�2X . (14)

For mf̃ � TeV the bounds from neutral meson mixing
are [? ]

∆mK : |η��11kη��∗22k�2X | � 10−10,
∆mD : |η��11kη��∗22k�2X | � 10−8, |η�12k�X |2 � 10−9

∆mBd : |η��11kη��∗33k�2X | � 10−7,
∆mBs : |η��23kη��∗33k�2X | � 10−7.

(15)
Note, that the most constrained operator, giving K − K̄
mixing, is Qd1d2

4 , and is not generated at tree-level here
(only involving up-type RH quarks), while it is gener-
ated at tree-level in standard RPV. Choosing �X ∼ 10−3

and reasonable FN charges all of these constraints can be
easily satisfied.

∆F = 1 Processes (B → Xs�
+�−)

[EK: do we want this section, i think not]

Proton Decay

If B and L violating couplings are present, the pro-
ton can decay. The leading contribution to proton decay
comes from the diagram on the left in Fig. 3 and gives
the decays p → (π or K)(e− or µ+). The matrix element

for the process is

M � 2η∗m�kη
��
11k�

2
X

Λ̃2
QCD

m2
d̃R,k

(16)

where m = 1(2) for a pion(kaon) and � = 1(2) for
electron(muon), and a hadronic matrix element appears
again, leading to a lifetime of order (for Λ̃QCD = 200
MeV)

τ � 5·1033yr
�md̃Rk

TeV

�4
�

6 · 10−19

|ηm�kη��11k|

�2 �
10−3

�X

�4

. (17)

Another channel for proton decay can appear if the
gravitino is light leading to the decays p → (π,K) + G̃
as shown on the right in Fig. 3. The matrix element is
estimated to be

|M|2 ∼ 1

3
|α��

11i|2�2X
m4

pΛ̃
4
QCD

m4
d̃i
m2

3/2M
2
Pl

. (18)

and the corresponding lifetime is

τ ∼ 5 · 1032yr
�md̃i

TeV

�4
�

M

105TeV

�4 � 10−8

|η��11i|

�2 �
F

FX

�2

(19)
where F =

√
3m3/2Mpl. In the case where ψX is aligned

in the golstino direction, i.e., FX is the only source of
SUSY breaking, the lifetime will be minimized, but if
there are additional sources of SUSY-breaking the life-
time will be enhanced, relaxing the constraints.

LHC PHENOMENOLOGY

The phenomenology of the models with dRPV can be
very different from those with R-parity conservation and
even from those with traditional RPV described by (1).
The details of the resulting phenomenology will greatly
depend on what particle is the LSP. Here we focus on
the most interesting possibility for higgs naturalness: the
case when the LSP is a third generation squark, in which
case only the η�� term is relevant for the LSP decay. Other
interesting possibilities will be considered in [? ].
For the case of a stop LSP the derivation of the LSP

lifetime is somewhat subtle. The reason is that if one
picks out the F †

X term from
�
d4θ 1

X†QiQj d̄∗k then one

gets a d̃†kQiQj-type vertex. For a sbottom LSP this will

result directly in the decay b̃ → t̄+ b̄ with a lifetime given
by

τ−1
b̃

=
|η��333|2

8π
�2Xmb̃ (20)

in which case the decay is expected to be prompt.
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In models of RPV, FCNC operators are generated at
tree-level, with the strongest constraints obtained from
the ∆F = 2 neutral meson-mixing processes. If either
of the operators, QiūjL∗

k or QiQj d̄∗k, are present, neutral
meson-mixing is generated at tree-level when integrating
out the squarks via the diagrams in Fig. 2. The operators
generated are
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with suppressions

1

Λ2
1,ij

=
η��iikη

��∗
jjk

m2
d̃R,k

�2X ,
1

Λ2
4,ij

=
|η�ijk|2

m2
ν̃L,k

�2X . (14)

For mf̃ � TeV the bounds from neutral meson mixing
are [? ]

∆mK : |η��11kη��∗22k�2X | � 10−10,
∆mD : |η��11kη��∗22k�2X | � 10−8, |η�12k�X |2 � 10−9

∆mBd : |η��11kη��∗33k�2X | � 10−7,
∆mBs : |η��23kη��∗33k�2X | � 10−7.

(15)
Note, that the most constrained operator, giving K − K̄
mixing, is Qd1d2

4 , and is not generated at tree-level here
(only involving up-type RH quarks), while it is gener-
ated at tree-level in standard RPV. Choosing �X ∼ 10−3

and reasonable FN charges all of these constraints can be
easily satisfied.

∆F = 1 Processes (B → Xs�
+�−)

[EK: do we want this section, i think not]

Proton Decay

If B and L violating couplings are present, the pro-
ton can decay. The leading contribution to proton decay
comes from the diagram on the left in Fig. 3 and gives
the decays p → (π or K)(e− or µ+). The matrix element

for the process is

M � 2η∗m�kη
��
11k�

2
X

Λ̃2
QCD

m2
d̃R,k

(16)

where m = 1(2) for a pion(kaon) and � = 1(2) for
electron(muon), and a hadronic matrix element appears
again, leading to a lifetime of order (for Λ̃QCD = 200
MeV)

τ � 5·1033yr
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TeV
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Another channel for proton decay can appear if the
gravitino is light leading to the decays p → (π,K) + G̃
as shown on the right in Fig. 3. The matrix element is
estimated to be

|M|2 ∼ 1

3
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and the corresponding lifetime is
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where F =

√
3m3/2Mpl. In the case where ψX is aligned

in the golstino direction, i.e., FX is the only source of
SUSY breaking, the lifetime will be minimized, but if
there are additional sources of SUSY-breaking the life-
time will be enhanced, relaxing the constraints.

LHC PHENOMENOLOGY

The phenomenology of the models with dRPV can be
very different from those with R-parity conservation and
even from those with traditional RPV described by (1).
The details of the resulting phenomenology will greatly
depend on what particle is the LSP. Here we focus on
the most interesting possibility for higgs naturalness: the
case when the LSP is a third generation squark, in which
case only the η�� term is relevant for the LSP decay. Other
interesting possibilities will be considered in [? ].
For the case of a stop LSP the derivation of the LSP

lifetime is somewhat subtle. The reason is that if one
picks out the F †

X term from
�
d4θ 1

X†QiQj d̄∗k then one

gets a d̃†kQiQj-type vertex. For a sbottom LSP this will

result directly in the decay b̃ → t̄+ b̄ with a lifetime given
by

τ−1
b̃

=
|η��333|2

8π
�2Xmb̃ (20)

in which case the decay is expected to be prompt.
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Low-energy constraints: ΔF=2

•Bounds from neutral meson mixings:
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FIG. 3: Diagrams for proton decay: left with L violation,
right via gravitino.

In models of RPV, FCNC operators are generated at
tree-level, with the strongest constraints obtained from
the ∆F = 2 neutral meson-mixing processes. If either
of the operators, QiūjL∗

k or QiQj d̄∗k, are present, neutral
meson-mixing is generated at tree-level when integrating
out the squarks via the diagrams in Fig. 2. The operators
generated are
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j Q
α
i Q

β†
j ūβ†
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For mf̃ � TeV the bounds from neutral meson mixing
are [? ]

∆mK : |η��11kη��∗22k�2X | � 10−10,
∆mD : |η��11kη��∗22k�2X | � 10−8, |η�12k�X |2 � 10−9

∆mBd : |η��11kη��∗33k�2X | � 10−7,
∆mBs : |η��23kη��∗33k�2X | � 10−7.

(15)
Note, that the most constrained operator, giving K − K̄
mixing, is Qd1d2

4 , and is not generated at tree-level here
(only involving up-type RH quarks), while it is gener-
ated at tree-level in standard RPV. Choosing �X ∼ 10−3

and reasonable FN charges all of these constraints can be
easily satisfied.

∆F = 1 Processes (B → Xs�
+�−)

[EK: do we want this section, i think not]

Proton Decay

If B and L violating couplings are present, the pro-
ton can decay. The leading contribution to proton decay
comes from the diagram on the left in Fig. 3 and gives
the decays p → (π or K)(e− or µ+). The matrix element

for the process is

M � 2η∗m�kη
��
11k�

2
X

Λ̃2
QCD

m2
d̃R,k

(16)

where m = 1(2) for a pion(kaon) and � = 1(2) for
electron(muon), and a hadronic matrix element appears
again, leading to a lifetime of order (for Λ̃QCD = 200
MeV)

τ � 5·1033yr
�md̃Rk

TeV
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Another channel for proton decay can appear if the
gravitino is light leading to the decays p → (π,K) + G̃
as shown on the right in Fig. 3. The matrix element is
estimated to be

|M|2 ∼ 1

3
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and the corresponding lifetime is
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where F =

√
3m3/2Mpl. In the case where ψX is aligned

in the golstino direction, i.e., FX is the only source of
SUSY breaking, the lifetime will be minimized, but if
there are additional sources of SUSY-breaking the life-
time will be enhanced, relaxing the constraints.

LHC PHENOMENOLOGY

The phenomenology of the models with dRPV can be
very different from those with R-parity conservation and
even from those with traditional RPV described by (1).
The details of the resulting phenomenology will greatly
depend on what particle is the LSP. Here we focus on
the most interesting possibility for higgs naturalness: the
case when the LSP is a third generation squark, in which
case only the η�� term is relevant for the LSP decay. Other
interesting possibilities will be considered in [? ].
For the case of a stop LSP the derivation of the LSP

lifetime is somewhat subtle. The reason is that if one
picks out the F †

X term from
�
d4θ 1

X†QiQj d̄∗k then one

gets a d̃†kQiQj-type vertex. For a sbottom LSP this will

result directly in the decay b̃ → t̄+ b̄ with a lifetime given
by

τ−1
b̃

=
|η��333|2

8π
�2Xmb̃ (20)

in which case the decay is expected to be prompt.
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Proton decay to leptons

•If both B and L violated:

•Lifetime:
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FIG. 3: Diagrams for proton decay: left with L violation,
right via gravitino.

In models of RPV, FCNC operators are generated at
tree-level, with the strongest constraints obtained from
the ∆F = 2 neutral meson-mixing processes. If either
of the operators, QiūjL∗

k or QiQj d̄∗k, are present, neutral
meson-mixing is generated at tree-level when integrating
out the squarks via the diagrams in Fig. 2. The operators
generated are
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with suppressions
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For mf̃ � TeV the bounds from neutral meson mixing
are [? ]

∆mK : |η��11kη��∗22k�2X | � 10−10,
∆mD : |η��11kη��∗22k�2X | � 10−8, |η�12k�X |2 � 10−9

∆mBd : |η��11kη��∗33k�2X | � 10−7,
∆mBs : |η��23kη��∗33k�2X | � 10−7.

(15)
Note, that the most constrained operator, giving K − K̄
mixing, is Qd1d2

4 , and is not generated at tree-level here
(only involving up-type RH quarks), while it is gener-
ated at tree-level in standard RPV. Choosing �X ∼ 10−3

and reasonable FN charges all of these constraints can be
easily satisfied.

∆F = 1 Processes (B → Xs�
+�−)

[EK: do we want this section, i think not]

Proton Decay

If B and L violating couplings are present, the pro-
ton can decay. The leading contribution to proton decay
comes from the diagram on the left in Fig. 3 and gives
the decays p → (π or K)(e− or µ+). The matrix element

for the process is

M � 2η∗m�kη
��
11k�

2
X

Λ̃2
QCD

m2
d̃R,k

(16)

where m = 1(2) for a pion(kaon) and � = 1(2) for
electron(muon), and a hadronic matrix element appears
again, leading to a lifetime of order (for Λ̃QCD = 200
MeV)

τ � 5·1033yr
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6 · 10−19
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�X
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Another channel for proton decay can appear if the
gravitino is light leading to the decays p → (π,K) + G̃
as shown on the right in Fig. 3. The matrix element is
estimated to be

|M|2 ∼ 1
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and the corresponding lifetime is

τ ∼ 5 · 1032yr
�md̃i

TeV
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F
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(19)
where F =

√
3m3/2Mpl. In the case where ψX is aligned

in the golstino direction, i.e., FX is the only source of
SUSY breaking, the lifetime will be minimized, but if
there are additional sources of SUSY-breaking the life-
time will be enhanced, relaxing the constraints.

LHC PHENOMENOLOGY

The phenomenology of the models with dRPV can be
very different from those with R-parity conservation and
even from those with traditional RPV described by (1).
The details of the resulting phenomenology will greatly
depend on what particle is the LSP. Here we focus on
the most interesting possibility for higgs naturalness: the
case when the LSP is a third generation squark, in which
case only the η�� term is relevant for the LSP decay. Other
interesting possibilities will be considered in [? ].
For the case of a stop LSP the derivation of the LSP

lifetime is somewhat subtle. The reason is that if one
picks out the F †

X term from
�
d4θ 1

X†QiQj d̄∗k then one

gets a d̃†kQiQj-type vertex. For a sbottom LSP this will

result directly in the decay b̃ → t̄+ b̄ with a lifetime given
by

τ−1
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=
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in which case the decay is expected to be prompt.
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FIG. 3: Diagrams for proton decay: left with L violation,
right via gravitino.

In models of RPV, FCNC operators are generated at
tree-level, with the strongest constraints obtained from
the ∆F = 2 neutral meson-mixing processes. If either
of the operators, QiūjL∗

k or QiQj d̄∗k, are present, neutral
meson-mixing is generated at tree-level when integrating
out the squarks via the diagrams in Fig. 2. The operators
generated are
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For mf̃ � TeV the bounds from neutral meson mixing
are [? ]

∆mK : |η��11kη��∗22k�2X | � 10−10,
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∆mBs : |η��23kη��∗33k�2X | � 10−7.

(15)
Note, that the most constrained operator, giving K − K̄
mixing, is Qd1d2

4 , and is not generated at tree-level here
(only involving up-type RH quarks), while it is gener-
ated at tree-level in standard RPV. Choosing �X ∼ 10−3

and reasonable FN charges all of these constraints can be
easily satisfied.
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+�−)

[EK: do we want this section, i think not]

Proton Decay

If B and L violating couplings are present, the pro-
ton can decay. The leading contribution to proton decay
comes from the diagram on the left in Fig. 3 and gives
the decays p → (π or K)(e− or µ+). The matrix element

for the process is

M � 2η∗m�kη
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where m = 1(2) for a pion(kaon) and � = 1(2) for
electron(muon), and a hadronic matrix element appears
again, leading to a lifetime of order (for Λ̃QCD = 200
MeV)
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Another channel for proton decay can appear if the
gravitino is light leading to the decays p → (π,K) + G̃
as shown on the right in Fig. 3. The matrix element is
estimated to be
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where F =

√
3m3/2Mpl. In the case where ψX is aligned

in the golstino direction, i.e., FX is the only source of
SUSY breaking, the lifetime will be minimized, but if
there are additional sources of SUSY-breaking the life-
time will be enhanced, relaxing the constraints.

LHC PHENOMENOLOGY

The phenomenology of the models with dRPV can be
very different from those with R-parity conservation and
even from those with traditional RPV described by (1).
The details of the resulting phenomenology will greatly
depend on what particle is the LSP. Here we focus on
the most interesting possibility for higgs naturalness: the
case when the LSP is a third generation squark, in which
case only the η�� term is relevant for the LSP decay. Other
interesting possibilities will be considered in [? ].
For the case of a stop LSP the derivation of the LSP

lifetime is somewhat subtle. The reason is that if one
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X term from
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d4θ 1

X†QiQj d̄∗k then one

gets a d̃†kQiQj-type vertex. For a sbottom LSP this will

result directly in the decay b̃ → t̄+ b̄ with a lifetime given
by
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in which case the decay is expected to be prompt.
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Proton decay to light gravitino

•Don’t need L violation

•Lifetime:

•If FX the only source of SUSY breaking F drops 
out from expression, depends only on M and 
couplings. Can be reduced by FX<F.
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FIG. 3: Diagrams for proton decay: left with L violation,
right via gravitino.

In models of RPV, FCNC operators are generated at
tree-level, with the strongest constraints obtained from
the ∆F = 2 neutral meson-mixing processes. If either
of the operators, QiūjL∗

k or QiQj d̄∗k, are present, neutral
meson-mixing is generated at tree-level when integrating
out the squarks via the diagrams in Fig. 2. The operators
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are [? ]
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∆mBs : |η��23kη��∗33k�2X | � 10−7.
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Note, that the most constrained operator, giving K − K̄
mixing, is Qd1d2

4 , and is not generated at tree-level here
(only involving up-type RH quarks), while it is gener-
ated at tree-level in standard RPV. Choosing �X ∼ 10−3

and reasonable FN charges all of these constraints can be
easily satisfied.
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Proton Decay
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Another channel for proton decay can appear if the
gravitino is light leading to the decays p → (π,K) + G̃
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where F =

√
3m3/2Mpl. In the case where ψX is aligned

in the golstino direction, i.e., FX is the only source of
SUSY breaking, the lifetime will be minimized, but if
there are additional sources of SUSY-breaking the life-
time will be enhanced, relaxing the constraints.
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FIG. 3: Diagrams for proton decay: left with L violation,
right via gravitino.

In models of RPV, FCNC operators are generated at
tree-level, with the strongest constraints obtained from
the ∆F = 2 neutral meson-mixing processes. If either
of the operators, QiūjL∗

k or QiQj d̄∗k, are present, neutral
meson-mixing is generated at tree-level when integrating
out the squarks via the diagrams in Fig. 2. The operators
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Note, that the most constrained operator, giving K − K̄
mixing, is Qd1d2

4 , and is not generated at tree-level here
(only involving up-type RH quarks), while it is gener-
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where F =

√
3m3/2Mpl. In the case where ψX is aligned

in the golstino direction, i.e., FX is the only source of
SUSY breaking, the lifetime will be minimized, but if
there are additional sources of SUSY-breaking the life-
time will be enhanced, relaxing the constraints.
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LHC phenomenology

•Again depends crucially on who the LSP is

•E.g. third generation squarks

1. sbottom LSP

Can decay                       unusual mode, not there 
in usual RPV. 

•These sbottom decays expected to be prompt
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FIG. 3: Diagrams for proton decay: left with L violation,
right via gravitino.

In models of RPV, FCNC operators are generated at
tree-level, with the strongest constraints obtained from
the ∆F = 2 neutral meson-mixing processes. If either
of the operators, QiūjL∗
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Note, that the most constrained operator, giving K − K̄
mixing, is Qd1d2
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again, leading to a lifetime of order (for Λ̃QCD = 200
MeV)

τ � 5·1033yr
�md̃Rk

TeV

�4
�

6 · 10−19

|ηm�kη��11k|

�2 �
10−3

�X

�4

. (17)

Another channel for proton decay can appear if the
gravitino is light leading to the decays p → (π,K) + G̃
as shown on the right in Fig. 3. The matrix element is
estimated to be

|M|2 ∼ 1

3
|α��

11i|2�2X
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m4
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m2
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. (18)

and the corresponding lifetime is

τ ∼ 5 · 1032yr
�md̃i

TeV

�4
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|η��11i|

�2 �
F

FX

�2

(19)
where F =

√
3m3/2Mpl. In the case where ψX is aligned

in the golstino direction, i.e., FX is the only source of
SUSY breaking, the lifetime will be minimized, but if
there are additional sources of SUSY-breaking the life-
time will be enhanced, relaxing the constraints.

LHC PHENOMENOLOGY

The phenomenology of the models with dRPV can be
very different from those with R-parity conservation and
even from those with traditional RPV described by (1).
The details of the resulting phenomenology will greatly
depend on what particle is the LSP. Here we focus on
the most interesting possibility for higgs naturalness: the
case when the LSP is a third generation squark, in which
case only the η�� term is relevant for the LSP decay. Other
interesting possibilities will be considered in [? ].
For the case of a stop LSP the derivation of the LSP

lifetime is somewhat subtle. The reason is that if one
picks out the F †

X term from
�
d4θ 1

X†QiQj d̄∗k then one

gets a d̃†kQiQj-type vertex. For a sbottom LSP this will

result directly in the decay b̃ → t̄+ b̄ with a lifetime given
by

τ−1
b̃

=
|η��333|2

8π
�2Xmb̃ (20)

in which case the decay is expected to be prompt.
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FIG. 3: Diagrams for proton decay: left with L violation,
right via gravitino.
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where F =

√
3m3/2Mpl. In the case where ψX is aligned

in the golstino direction, i.e., FX is the only source of
SUSY breaking, the lifetime will be minimized, but if
there are additional sources of SUSY-breaking the life-
time will be enhanced, relaxing the constraints.
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very different from those with R-parity conservation and
even from those with traditional RPV described by (1).
The details of the resulting phenomenology will greatly
depend on what particle is the LSP. Here we focus on
the most interesting possibility for higgs naturalness: the
case when the LSP is a third generation squark, in which
case only the η�� term is relevant for the LSP decay. Other
interesting possibilities will be considered in [? ].
For the case of a stop LSP the derivation of the LSP

lifetime is somewhat subtle. The reason is that if one
picks out the F †

X term from
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X†QiQj d̄∗k then one
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in which case the decay is expected to be prompt.
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LHC phenomenology

2. stop LSP

•More subtle: decay amplitude chirally suppressed

•Resulting decay:                 again special to dRPV

•Might be displaced 

5

To get a decay for an up-type squark one instead needs

to pick out the VEV of �X†�. The corresponding operator
will be

i

M
(Q̃iQj + Q̃jQi)σ

µ∂µd̄
†k ⊂

�
d4θ

1

X†QiQj d̄
∗k, (21)

in which case the resulting decay will be chirally sup-

pressed
1
. For a stop LSP, the dominant decay will be

t̃ → b̄b̄. In the holomorphic RPV scenario, this decay is

not generated by the udd operator because of antisym-

metric nature of the flavor indices. The stop LSP width

is

Γt̃→b̄b̄ =
|η��333|2

π

�mb

M

�2
mt̃L (22)

while the stop decay-length is

cτt̃ � 1 mm

�
300 GeV

mt̃

��
M

108GeV

�2 �
1

|η��333|

�2

. (23)

This is interesting.
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F

M2
�qi+qj+qk

Summary

•No hint for SUSY from LHC yet, no MET events, Higgs at 
125 GeV problematic for MSSM

•RPV provides a potential way out

•Why is RPV so small?

 1. RPV related to Yukawa couplings. If RPV generated by 
same mechanism as flavor in visible sector, expect relations 

 2. RPV from the hidden sector. Expect couplings suppressed 

λ�� ∝ YuYdYd
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Summary
•Both possibilities can satisfy low-energy constraints

•Both give distinct LHC phenomenology 

•MFV:                       usually prompt, hard to disentangle from 
background

•dRPV: different operators in Lagrangian

Prompt                     or chirally suppressed  

t̃ → b̄+ s̄
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FIG. 3: Diagrams for proton decay: left with L violation,
right via gravitino.

In models of RPV, FCNC operators are generated at
tree-level, with the strongest constraints obtained from
the ∆F = 2 neutral meson-mixing processes. If either
of the operators, QiūjL∗

k or QiQj d̄∗k, are present, neutral
meson-mixing is generated at tree-level when integrating
out the squarks via the diagrams in Fig. 2. The operators
generated are

Qqiqj
1 ≡ − 1

2 (Q
α
i Q

β
i )(Q

α†
j Qβ†

j )

Qqiqj
4 ≡ ūα

j Q
α
i Q

β†
j ūβ†

i

(13)

with suppressions

1

Λ2
1,ij

=
η��iikη

��∗
jjk

m2
d̃R,k

�2X ,
1

Λ2
4,ij

=
|η�ijk|2

m2
ν̃L,k

�2X . (14)

For mf̃ � TeV the bounds from neutral meson mixing
are [? ]

∆mK : |η��11kη��∗22k�2X | � 10−10,
∆mD : |η��11kη��∗22k�2X | � 10−8, |η�12k�X |2 � 10−9

∆mBd : |η��11kη��∗33k�2X | � 10−7,
∆mBs : |η��23kη��∗33k�2X | � 10−7.

(15)
Note, that the most constrained operator, giving K − K̄
mixing, is Qd1d2

4 , and is not generated at tree-level here
(only involving up-type RH quarks), while it is gener-
ated at tree-level in standard RPV. Choosing �X ∼ 10−3

and reasonable FN charges all of these constraints can be
easily satisfied.

∆F = 1 Processes (B → Xs�
+�−)

[EK: do we want this section, i think not]

Proton Decay

If B and L violating couplings are present, the pro-
ton can decay. The leading contribution to proton decay
comes from the diagram on the left in Fig. 3 and gives
the decays p → (π or K)(e− or µ+). The matrix element

for the process is

M � 2η∗m�kη
��
11k�

2
X

Λ̃2
QCD

m2
d̃R,k

(16)

where m = 1(2) for a pion(kaon) and � = 1(2) for
electron(muon), and a hadronic matrix element appears
again, leading to a lifetime of order (for Λ̃QCD = 200
MeV)

τ � 5·1033yr
�md̃Rk

TeV

�4
�

6 · 10−19

|ηm�kη��11k|

�2 �
10−3

�X

�4

. (17)

Another channel for proton decay can appear if the
gravitino is light leading to the decays p → (π,K) + G̃
as shown on the right in Fig. 3. The matrix element is
estimated to be

|M|2 ∼ 1

3
|α��

11i|2�2X
m4

pΛ̃
4
QCD

m4
d̃i
m2

3/2M
2
Pl

. (18)

and the corresponding lifetime is

τ ∼ 5 · 1032yr
�md̃i

TeV

�4
�

M

105TeV

�4 � 10−8

|η��11i|

�2 �
F

FX

�2

(19)
where F =

√
3m3/2Mpl. In the case where ψX is aligned

in the golstino direction, i.e., FX is the only source of
SUSY breaking, the lifetime will be minimized, but if
there are additional sources of SUSY-breaking the life-
time will be enhanced, relaxing the constraints.

LHC PHENOMENOLOGY

The phenomenology of the models with dRPV can be
very different from those with R-parity conservation and
even from those with traditional RPV described by (1).
The details of the resulting phenomenology will greatly
depend on what particle is the LSP. Here we focus on
the most interesting possibility for higgs naturalness: the
case when the LSP is a third generation squark, in which
case only the η�� term is relevant for the LSP decay. Other
interesting possibilities will be considered in [? ].
For the case of a stop LSP the derivation of the LSP

lifetime is somewhat subtle. The reason is that if one
picks out the F †

X term from
�
d4θ 1

X†QiQj d̄∗k then one

gets a d̃†kQiQj-type vertex. For a sbottom LSP this will

result directly in the decay b̃ → t̄+ b̄ with a lifetime given
by

τ−1
b̃

=
|η��333|2

8π
�2Xmb̃ (20)

in which case the decay is expected to be prompt.

5

To get a decay for an up-type squark one instead needs

to pick out the VEV of �X†�. The corresponding operator
will be

i

M
(Q̃iQj + Q̃jQi)σ

µ∂µd̄
†k ⊂

�
d4θ

1

X†QiQj d̄
∗k, (21)

in which case the resulting decay will be chirally sup-

pressed
1
. For a stop LSP, the dominant decay will be

t̃ → b̄b̄. In the holomorphic RPV scenario, this decay is

not generated by the udd operator because of antisym-

metric nature of the flavor indices. The stop LSP width

is

Γt̃→b̄b̄ =
|η��333|2

π

�mb

M

�2
mt̃L (22)

while the stop decay-length is

cτt̃ � 1 mm

�
300 GeV

mt̃

��
M

108GeV

�2 �
1

|η��333|

�2

. (23)

This is interesting.
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Incorporating neutrino masses

•Once added can have L violation & proton decay

•Assume mass from heavy RH neutrinos & see-
saw

•Symmetry in lepton sector SU(3)L x SU(3)e x 
SU(3)N

•Now we have three spurions Ye,ν and M

•M is a symmetric, different patterns allowed

�
�
� 100 MeV

�
�
� 150 MeV

�
�
� 200 MeV

10 20 30 40
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200

300

400

500
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700

800

tan Β

m
q� ,
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�

Figure 3: Constraints on tan β and superparter masses due to the nonobservation of dinucleon
decay. The red region is excluded assuming that Λ̃ ≥ 100 MeV, whereas the orange region
is also excluded when Λ̃ ≥ 150 MeV, and the yellow for Λ̃ ≥ 200 MeV.

5 Incorporating neutrino masses

We have seen that in the absence of neutrino masses the MFV SUSY approach approxi-
mately conserves lepton number, leaving an exact ZL

3 lepton number symmetry unbroken.
To introduce neutrino masses, we therefore require additional spurions, which will lead to
additional allowed operators in the Lagrangian [21,22]. It is important to fully characterize
such operators as, in combination with the baryon number violating vertex (2.4), they can
induce proton decay.

We focus on the see-saw mechanism to generate Majorana masses for the neutrinos. We
add three right-handed sterile neutrinos, N̄ , which obtain Majorana masses at a heavy scale
MR. Through a Yukawa coupling YN to the left-handed neutrinos, this gives the left-handed
neutrinos a small Majorana mass of order Y 2

N v
2
/MR upon electroweak symmetry breaking.

Due to the additional flavored field, the nonabelian spurious symmetry of the lepton sector
is extended to SU(3)L×SU(3)e×SU(3)N . The superpotential required to generate neutrino
masses is

Wlept = YeLHd ē+ YNLHuN̄ +
1

2
MNN̄N̄ , (5.1)

where the elements ofMN are assumed to be of orderMR. Thus, there are now three spurions
in the lepton sector: Ye, YN and MN . The transformation properties of the leptonic sector
under the spurious symmetries are shown in Table 4. As before, we do not impose the MFV
hypothesis on the (spurious) U(1) symmetries.

A subtlety arises when applying the MFV hypothesis to MN , since it is dimensionful.

12
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Incorporating neutrino masses

•The table of symmetries:

SU(3)L SU(3)e SU(3)N U(1)B−L U(1)H U(1)N
L 1 1 −1 0 0
ē 1 1 1 0 0
N̄ 1 1 1 0 1
Ye 1 0 1 0
YN 1 0 −1 −1
MN 1 1 −2 0 −2

Table 4: The spurious leptonic flavor symmetries of the MSSM with right-handed neutrinos.
We omit discrete and anomalous symmetries.

Instead, we will expand in the dimensionless spurion:

µN ≡ 1

ΛR

MN , (5.2)

where ΛR is an unknown heavy scale. Perturbativity of the spurion expansion requires
MR

<∼ ΛR. In addition ΛR � msoft is required for a valid low-energy description. Otherwise,
ΛR is an unknown scale, which may or may not be related to other cutoff scales in the theory.

As shown in Appendix A, the complete list of holomorphic flavor singlets involving YN ,
MN or N̄ is that given in Table 5, where we denote the matrix of cofactors of a matrix Y

as Ỹ ≡ (detY )Y −1. From these flavor singlets, only one of the three renormalizable lepton
number violating superpotential terms of (2.2), λ�

LLē, can be constructed:

WLNV =
1

2ΛR

w
� (LL)

�
ỸNMN ỸN

�
(Yeē) , (5.3)

where w
� is an unknown O(1) coefficient.

The Kähler and soft breaking terms become somewhat more complicated with the addi-
tion of neutrino masses. This is due to the fact that the gauge quantum numbers of L and
Hd are the same. Thus quadratic mixing terms are allowed, either as kinetic mixing in the
Kähler potential or as mass mixing in the soft terms. As we saw before in the absence of
neutrino masses, a ZL

3 symmetry ensures that lepton number is preserved mod 3, forbidding
such mixings. However, while the ZL

3 symmetry is not broken by YN , it is broken by MN ,
which is charged under ZL

3 . Therefore, bilinear lepton-number violating terms are allowed,
though they necessarily involve at least one factor of µN ∼ MR/ΛR.

The Kähler (kinetic) mixing is given by

KLNV = [V†]aLaH
†
d
+ h.c. , (5.4)

where there are two potentially leading contributions to the dimensionless spurion V :

V
(1)
a

=
1

ΛR

εabc
�
Ỹ

†
N

�b
i

[M †
N
]ij [YN ]

c

j
, V

(2)
a

=
1

ΛR

εabc
�
YeY

†
e

�b
d

�
YNM

†
N
YN

�cd
. (5.5)
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Ỹ = cof Y = Y −1 detY

Incorporating neutrino masses

•Table of holomorphic invariants:

SU(2)L U(1)Y U(1)L ZR
2

(LL)

�
ỸNMN ỸN

�
(LL) 1 −2 4 +

(LL)

�
ỸNMN ỸN

�
(Yeē) 1 0 1 −

(LL) ỸNMNN̄ 1 −1 1 −
L

�
YNM̃NYN

�
(Yeē)

�
YNN̄

�
1/2 −1 −

LYNN̄ −1/2 0 +

ēYeỸNMNN̄ 1 1 −2 +

(Yeē)

�
ỸNMN ỸN

�
(Yeē) 1 2 −2 +

L

�
YNM̃NYN

�
L −1 2 +

MNN̄N̄ 1 0 −2 +

Table 5: A complete list of holomorphic flavor singlets involving YN and MN . We indicate

the lepton number of the fields only, not counting that “carried” by the spurion MN .

V (2)
contains more spurions, but if YN � 1 then the presence of the additional Ye spurions

can be easily compensated by the omission of one YN insertion, especially at large tanβ.
The structure of the soft breaking mass terms matches those of the Kähler terms, and

the leading contribution is

Lmix = m
2
soft[V

†
]
a
L̃aH

†
d + h.c. , (5.6)

This will lead to a left-handed sneutrino VEV

�La� ∼ −vd Va , (5.7)

up to an unknown O(1) coefficient. Inserting this VEV into the canonical Kähler potential

L
†
L, we obtain the gaugino/lepton mixing

L ⊃ −vd λ (V
†
L) + c.c. . (5.8)

Inserting the Higgs VEV into the off-diagonal Kähler term (5.4), we obtain another contri-

bution of the same order to this mixing. Note that there are also higgsino/lepton mixing

terms which arise from inserting the sneutrino VEV (5.7) into the superpotential. However,

these are Yukawa suppressed relative to (5.8).

In the presence of R-parity violation it is not always simple to define which linear combi-

nation of the four fields Li, Hd is the Higgs, and which are leptons [23]. The physical effects
of R-parity violation arise from a basis independent misalignment of the different mixings

between the lepton and Higss superfields. In our case there are two such effects and thus

cancelation can occur. Such a cancelation is expected for gauge-mediated supersymmetry

breaking, since then the soft-terms should be universal in the same basis that the kinetic

terms are canonical, due to the flavor-blind nature of gauge interactions (such a basis can

14
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Incorporating neutrino masses

•Allowed renormalizable superpotential term

•Dimensionless expansion parameter

•ΛR some heavy scale, usually take MGUT

•Since                       we can now also add 
quadratic L violating terms, these will be more 
important! Both superpotential and Kahler

SU(3)L SU(3)e SU(3)N U(1)B−L U(1)H U(1)N
L 1 1 −1 0 0
ē 1 1 1 0 0
N̄ 1 1 1 0 1
Ye 1 0 1 0
YN 1 0 −1 −1
MN 1 1 −2 0 −2

Table 4: The spurious leptonic flavor symmetries of the MSSM with right-handed neutrinos.
We omit discrete and anomalous symmetries.

Instead, we will expand in the dimensionless spurion:

µN ≡ 1

ΛR

MN , (5.2)

where ΛR is an unknown heavy scale. Perturbativity of the spurion expansion requires
MR

<∼ ΛR. In addition ΛR � msoft is required for a valid low-energy description. Otherwise,
ΛR is an unknown scale, which may or may not be related to other cutoff scales in the theory.

As shown in Appendix A, the complete list of holomorphic flavor singlets involving YN ,
MN or N̄ is that given in Table 5, where we denote the matrix of cofactors of a matrix Y

as Ỹ ≡ (detY )Y −1. From these flavor singlets, only one of the three renormalizable lepton
number violating superpotential terms of (2.2), λ�

LLē, can be constructed:

WLNV =
1

2ΛR

w
� (LL)

�
ỸNMN ỸN

�
(Yeē) , (5.3)

where w
� is an unknown O(1) coefficient.

The Kähler and soft breaking terms become somewhat more complicated with the addi-
tion of neutrino masses. This is due to the fact that the gauge quantum numbers of L and
Hd are the same. Thus quadratic mixing terms are allowed, either as kinetic mixing in the
Kähler potential or as mass mixing in the soft terms. As we saw before in the absence of
neutrino masses, a ZL

3 symmetry ensures that lepton number is preserved mod 3, forbidding
such mixings. However, while the ZL

3 symmetry is not broken by YN , it is broken by MN ,
which is charged under ZL

3 . Therefore, bilinear lepton-number violating terms are allowed,
though they necessarily involve at least one factor of µN ∼ MR/ΛR.

The Kähler (kinetic) mixing is given by

KLNV = [V†]aLaH
†
d
+ h.c. , (5.4)

where there are two potentially leading contributions to the dimensionless spurion V :

V
(1)
a

=
1

ΛR

εabc
�
Ỹ

†
N

�b
i

[M †
N
]ij [YN ]

c

j
, V

(2)
a

=
1

ΛR

εabc
�
YeY

†
e

�b
d

�
YNM

†
N
YN

�cd
. (5.5)

13

SU(3)L SU(3)e SU(3)N U(1)B−L U(1)H U(1)N
L 1 1 −1 0 0
ē 1 1 1 0 0
N̄ 1 1 1 0 1
Ye 1 0 1 0
YN 1 0 −1 −1
MN 1 1 −2 0 −2

Table 4: The spurious leptonic flavor symmetries of the MSSM with right-handed neutrinos.
We omit discrete and anomalous symmetries.

Instead, we will expand in the dimensionless spurion:

µN ≡ 1

ΛR

MN , (5.2)

where ΛR is an unknown heavy scale. Perturbativity of the spurion expansion requires
MR

<∼ ΛR. In addition ΛR � msoft is required for a valid low-energy description. Otherwise,
ΛR is an unknown scale, which may or may not be related to other cutoff scales in the theory.

As shown in Appendix A, the complete list of holomorphic flavor singlets involving YN ,
MN or N̄ is that given in Table 5, where we denote the matrix of cofactors of a matrix Y

as Ỹ ≡ (detY )Y −1. From these flavor singlets, only one of the three renormalizable lepton
number violating superpotential terms of (2.2), λ�

LLē, can be constructed:

WLNV =
1

2ΛR

w
� (LL)

�
ỸNMN ỸN

�
(Yeē) , (5.3)

where w
� is an unknown O(1) coefficient.

The Kähler and soft breaking terms become somewhat more complicated with the addi-
tion of neutrino masses. This is due to the fact that the gauge quantum numbers of L and
Hd are the same. Thus quadratic mixing terms are allowed, either as kinetic mixing in the
Kähler potential or as mass mixing in the soft terms. As we saw before in the absence of
neutrino masses, a ZL

3 symmetry ensures that lepton number is preserved mod 3, forbidding
such mixings. However, while the ZL

3 symmetry is not broken by YN , it is broken by MN ,
which is charged under ZL

3 . Therefore, bilinear lepton-number violating terms are allowed,
though they necessarily involve at least one factor of µN ∼ MR/ΛR.

The Kähler (kinetic) mixing is given by

KLNV = [V†]aLaH
†
d
+ h.c. , (5.4)

where there are two potentially leading contributions to the dimensionless spurion V :

V
(1)
a

=
1

ΛR

εabc
�
Ỹ

†
N

�b
i

[M †
N
]ij [YN ]

c

j
, V

(2)
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ΛR

εabc
�
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YNM

†
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�cd
. (5.5)
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Incorporating neutrino masses

•Leading bilinear terms:

•Possible contributions:

•Similar soft breaking masses:

•After EWSB will give small sneutrino VEV and 
neutrino gaugino mixing

SU(3)L SU(3)e SU(3)N U(1)B−L U(1)H U(1)N
L 1 1 −1 0 0
ē 1 1 1 0 0
N̄ 1 1 1 0 1
Ye 1 0 1 0
YN 1 0 −1 −1
MN 1 1 −2 0 −2

Table 4: The spurious leptonic flavor symmetries of the MSSM with right-handed neutrinos.
We omit discrete and anomalous symmetries.

Instead, we will expand in the dimensionless spurion:

µN ≡ 1

ΛR

MN , (5.2)

where ΛR is an unknown heavy scale. Perturbativity of the spurion expansion requires
MR

<∼ ΛR. In addition ΛR � msoft is required for a valid low-energy description. Otherwise,
ΛR is an unknown scale, which may or may not be related to other cutoff scales in the theory.

As shown in Appendix A, the complete list of holomorphic flavor singlets involving YN ,
MN or N̄ is that given in Table 5, where we denote the matrix of cofactors of a matrix Y

as Ỹ ≡ (detY )Y −1. From these flavor singlets, only one of the three renormalizable lepton
number violating superpotential terms of (2.2), λ�

LLē, can be constructed:

WLNV =
1

2ΛR

w
� (LL)

�
ỸNMN ỸN

�
(Yeē) , (5.3)

where w
� is an unknown O(1) coefficient.

The Kähler and soft breaking terms become somewhat more complicated with the addi-
tion of neutrino masses. This is due to the fact that the gauge quantum numbers of L and
Hd are the same. Thus quadratic mixing terms are allowed, either as kinetic mixing in the
Kähler potential or as mass mixing in the soft terms. As we saw before in the absence of
neutrino masses, a ZL

3 symmetry ensures that lepton number is preserved mod 3, forbidding
such mixings. However, while the ZL

3 symmetry is not broken by YN , it is broken by MN ,
which is charged under ZL

3 . Therefore, bilinear lepton-number violating terms are allowed,
though they necessarily involve at least one factor of µN ∼ MR/ΛR.

The Kähler (kinetic) mixing is given by

KLNV = [V†]aLaH
†
d
+ h.c. , (5.4)

where there are two potentially leading contributions to the dimensionless spurion V :
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(1)
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=
1
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SU(3)L SU(3)e SU(3)N U(1)B−L U(1)H U(1)N
L 1 1 −1 0 0
ē 1 1 1 0 0
N̄ 1 1 1 0 1
Ye 1 0 1 0
YN 1 0 −1 −1
MN 1 1 −2 0 −2

Table 4: The spurious leptonic flavor symmetries of the MSSM with right-handed neutrinos.
We omit discrete and anomalous symmetries.

Instead, we will expand in the dimensionless spurion:

µN ≡ 1

ΛR

MN , (5.2)

where ΛR is an unknown heavy scale. Perturbativity of the spurion expansion requires
MR

<∼ ΛR. In addition ΛR � msoft is required for a valid low-energy description. Otherwise,
ΛR is an unknown scale, which may or may not be related to other cutoff scales in the theory.

As shown in Appendix A, the complete list of holomorphic flavor singlets involving YN ,
MN or N̄ is that given in Table 5, where we denote the matrix of cofactors of a matrix Y

as Ỹ ≡ (detY )Y −1. From these flavor singlets, only one of the three renormalizable lepton
number violating superpotential terms of (2.2), λ�

LLē, can be constructed:

WLNV =
1

2ΛR

w
� (LL)

�
ỸNMN ỸN

�
(Yeē) , (5.3)

where w
� is an unknown O(1) coefficient.

The Kähler and soft breaking terms become somewhat more complicated with the addi-
tion of neutrino masses. This is due to the fact that the gauge quantum numbers of L and
Hd are the same. Thus quadratic mixing terms are allowed, either as kinetic mixing in the
Kähler potential or as mass mixing in the soft terms. As we saw before in the absence of
neutrino masses, a ZL

3 symmetry ensures that lepton number is preserved mod 3, forbidding
such mixings. However, while the ZL

3 symmetry is not broken by YN , it is broken by MN ,
which is charged under ZL

3 . Therefore, bilinear lepton-number violating terms are allowed,
though they necessarily involve at least one factor of µN ∼ MR/ΛR.

The Kähler (kinetic) mixing is given by

KLNV = [V†]aLaH
†
d
+ h.c. , (5.4)

where there are two potentially leading contributions to the dimensionless spurion V :

V
(1)
a

=
1

ΛR

εabc
�
Ỹ

†
N

�b
i

[M †
N
]ij [YN ]

c

j
, V

(2)
a

=
1

ΛR

εabc
�
YeY

†
e

�b
d

�
YNM

†
N
YN

�cd
. (5.5)
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�
ỸNMN ỸN

�
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(LL) ỸNMNN̄ 1 −1 1 −
L

�
YNM̃NYN

�
(Yeē)

�
YNN̄

�
1/2 −1 −

LYNN̄ −1/2 0 +

ēYeỸNMNN̄ 1 1 −2 +

(Yeē)

�
ỸNMN ỸN

�
(Yeē) 1 2 −2 +

L

�
YNM̃NYN

�
L −1 2 +

MNN̄N̄ 1 0 −2 +

Table 5: A complete list of holomorphic flavor singlets involving YN and MN . We indicate

the lepton number of the fields only, not counting that “carried” by the spurion MN .

V (2)
contains more spurions, but if YN � 1 then the presence of the additional Ye spurions

can be easily compensated by the omission of one YN insertion, especially at large tanβ.
The structure of the soft breaking mass terms matches those of the Kähler terms, and

the leading contribution is

Lmix = m
2
soft[V

†
]
a
L̃aH

†
d + h.c. , (5.6)

This will lead to a left-handed sneutrino VEV

�La� ∼ −vd Va , (5.7)

up to an unknown O(1) coefficient. Inserting this VEV into the canonical Kähler potential

L
†
L, we obtain the gaugino/lepton mixing

L ⊃ −vd λ (V
†
L) + c.c. . (5.8)

Inserting the Higgs VEV into the off-diagonal Kähler term (5.4), we obtain another contri-

bution of the same order to this mixing. Note that there are also higgsino/lepton mixing

terms which arise from inserting the sneutrino VEV (5.7) into the superpotential. However,

these are Yukawa suppressed relative to (5.8).

In the presence of R-parity violation it is not always simple to define which linear combi-

nation of the four fields Li, Hd is the Higgs, and which are leptons [23]. The physical effects
of R-parity violation arise from a basis independent misalignment of the different mixings

between the lepton and Higss superfields. In our case there are two such effects and thus

cancelation can occur. Such a cancelation is expected for gauge-mediated supersymmetry

breaking, since then the soft-terms should be universal in the same basis that the kinetic

terms are canonical, due to the flavor-blind nature of gauge interactions (such a basis can

14

SU(2)L U(1)Y U(1)L ZR
2

(LL)
�
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(LL) ỸNMNN̄ 1 −1 1 −
L

�
YNM̃NYN

�
(Yeē)
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MR <∼ ΛR. In addition ΛR � msoft is required for a valid low-energy description. Otherwise,
ΛR is an unknown scale, which may or may not be related to other cutoff scales in the theory.

As shown in Appendix A, the complete list of holomorphic flavor singlets involving YN ,
MN or N̄ is that given in Table 5, where we denote the matrix of cofactors of a matrix Y

as Ỹ ≡ (detY )Y −1. From these flavor singlets, only one of the three renormalizable lepton
number violating superpotential terms of (2.2), λ�

LLē, can be constructed:

W
(hol)
LNV =

1

2ΛR
w

� (LL)
�
ỸNMN ỸN

�
(Yeē) , (5.3)

where w
� is an unknown O(1) coefficient.

In addition, as shown in Appendix B, bilinear superpotential terms, and in particular
the lepton-number violating term LHu, can be generated nonholomorpically after SUSY
breaking. As we saw before in the absence of neutrino masses, a ZL

3 symmetry ensures that
lepton number is preserved mod 3, forbidding this term. However, while the ZL

3 symmetry
is not broken by YN , it is broken by MN , which is charged under ZL

3 . Therefore, bilinear
lepton-number violating terms are allowed, though they necessarily involve at least one factor
of µN ∼ MR/ΛR.

The non-holomorphic corrections to the superpotential take the form:

W
(non−hol)
LNV = msoft[V

†]aLaHu , (5.4)

where there are two potentially leading contributions to the dimensionless spurion V :

V
(1)
a =

1

ΛR
εabc

�
Ỹ

†
N

�b
i
[M †

N ]
ij [YN ]

c
j , V

(2)
a =

1

ΛR
εabc

�
YeY

†
e

�b
d

�
YNM

†
NYN

�cd
. (5.5)

V (2) contains more spurions, but if YN � 1 then the presence of the additional Ye spurions
can be easily compensated by the omission of one YN insertion, especially at large tanβ.
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The corresponding B-term can also be generated, and takes the form:

Lsoft ⊃ m
2
soft[V

†
]
a
L̃aHu + h.c. , (5.6)

This will lead to a left-handed sneutrino VEV

�La� ∼ −vu Va , (5.7)

up to an unknown O(1) coefficient. Inserting this VEV into the canonical Kähler potential

L
†
L, we obtain the gaugino/lepton mixing

L ⊃ −vu λ (V
†
L) + c.c. . (5.8)

This mixing is of approximately the same order as the lepton/higgsino mixing arising from (5.4).

Lepton number violation can also appear in the Kähler potential,

KLNV ∼ [V
†
]
a
LaH

†
d + h.c. , (5.9)

and in the correspond soft mass term. This will lead to further gaugino/lepton mixing, but

proportional to vd instead of vu.

In the presence of R-parity violation it is not always simple to define which linear combi-

nation of the four fields Li, Hd is the Higgs, and which are leptons [27]. The physical effects
of R-parity violation arise from a basis independent misalignment of the different mixings

between the lepton and Higgs superfields. In our case there are several mixing terms, and

cancellations can occur. As supersymmetric sources of bilinear lepton-number violation can

be eliminated by the field redefinition L → L− VHd, these cancellations will depend on the

mechanism of supersymmetry breaking.

Indeed, some cancellation may naturally occur in gauge-mediated supersymmetry break-

ing models, since, due to the flavor-blind nature of gauge interactions, SUSY breaking effects
are flavor universal, up to RGE running and subleading corrections induced by the supersym-

metric sources of flavor-breaking. We do not, however, assume a particular mechanism for

SUSY breaking, and thus will take the mixings (5.4) and (5.8) to be representative without

substantial cancellation. Any such cancelation will only make the lepton-number violating

effects smaller, and so ignoring such a possibility is a conservative assumption.

The mixing (5.8) can lead to additional contributions to the left-handed neutrino masses

via a weak-scale see-saw mechanism. We find

δmν ∼ V2
v
2
u

mλ
. (5.10)

Imposing |δmν | <∼ 1 eV, we obtain an upper bound

V <∼ 2× 10
−6

�
mλ

100 GeV

�1/2
(5.11)

Proton decay, however, will impose a much stronger bound on V , and consequently the weak

see-saw contribution to the left-handed neutrino masses will be negligible.
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Proton decay constraints

•Assume structure of neutrino masses (Casas & 
Ibarra)

•R is RH neutrino mixing matrix (unknown), U LH 
mixing matrix - O(1) angles, MR: RH neutrino 
masses, mν LH light neutrino masses. 

•Assume all the Y’s roughly same order, also mν’s 
roughly equal (worst case scenario, could even 
have one mν=0 ...

be reached by shifting L → L− VHd). We do not, however, assume a particular mechanism

for supersymmetry breaking, and thus will take the mixing (5.8) to be of the estimated size

without substantial cancellation. Any such cancelation will only make the lepton-number

violating effects smaller, and so ignoring such a possibility is a conservative assumption.

The mixing (5.8) can lead to additional contributions to the left-handed neutrino masses

via a weak-scale see-saw mechanism. We find

δmν ∼ V2
v
2
d

mλ
. (5.9)

Imposing |δmν | <∼ 1 eV, we obtain a tan β and mλ-dependent upper bound on V

V <∼

�
3× 10

−4
for tan β = 45 and mλ = 1 TeV ,

5× 10
−6

for tan β = 3 and mλ = 100 GeV .
(5.10)

Proton decay, however, will impose a much stronger bound on V , and consequently the weak

see-saw contribution to the left-handed neutrino masses will be negligible.

In the above discussion, we have neglected the effects of RGE running below the scale MR

where the right-handed neutrinos are integrated out. While such effects can be significant in

detailed numerical calculations [24], they will not substantially alter our order of magnitude

estimates.

6 Constraints from proton decay

In combination with the baryon-number violating interactions studied in §2 and §4, the

lepton-number violating interactions (5.3), (5.4), and (5.6) will lead to a finite proton lifetime.

The strongest constraint on the proton lifetime comes from the bound [25]

τp→π0e+ ≥ 8.2× 10
33

yrs . (6.1)

However, this bound only constrains the partial lifetime for the particular final state π0
e
+
.

For other final states, the partial lifetime bounds are weaker, often substantially [16].

As we show below, MFV SUSY has a strong preference for final states with positive

strangeness. Such decay modes are also strongly constrained [16,26]:

τp→e+ K0 ≥ 1.0× 10
33

yrs , τn→e− K+ ≥ 3.2× 10
31

yrs ,

τp→µ+ K0 ≥ 1.3× 10
33

yrs , τn→µ− K+ ≥ 5.7× 10
31

yrs ,

τp→νK+ ≥ 2.3× 10
33

yrs , τn→νK0 ≥ 1.3× 10
32

yrs , (6.2)

where we also show the (weaker) limits on bound-neutron partial lifetimes. There are similar

bounds on some three-body decays of the form N → �+ π +K.

Before discussing the constraints arising from these bounds, we first estimate the size of

the coefficients of the lepton-number violating operators. We use the generic parametrization

of the neutrino Yukawa couplings of Casas and Ibarra [27]:

Y
T
N =

1

vu
diag

��
MR1,

�
MR2,

�
MR3

�
R diag (

√
mν1,

√
mν2,

√
mν3) U

†
, (6.3)

15

where R is a complex orthogonal matrix describing mixing among the right-handed neutrinos,

U is the left handed neutrino mixing matrix giving rise to atmospheric and solar neutrino

oscillations, and MRi and mνi (i = 1, 2, 3) are the heavy right-handed neutrino masses and

the light left-handed neutrino masses, respectively. The mixing angles in U are large and

the elements of U non-hierarchical.

Since R and the right-handed neutrino masses cannot be measured at low energies, we

will assume a generic flavor-structure for YN . For simplicity we will assume that the right-

handed neutrinos have masses of the same magnitude, and that the left-handed neutrinos

also have roughly equal masses of order 0.1 eV, with order-one neutrino mixing angles.

Substantially lighter neutrino masses would imply a more hierarchical spectrum, with small

Yukawa couplings YN and consequently more suppressed lepton-number violation, whereas

substantially heavier neutrino masses begin to conflict with cosmological bounds.

The neutrino Yukawa coupling is then approximately

YN ∼
√
MR mν

vu
, (6.4)

where we assume that the entire YN matrix has elements of this order. The LLē coupling is

therefore

λijk ∼
M3

R m2
ν

ΛR v4u
y(e)k , (6.5)

whereas the V spurions are

V (1)
i ∼ M

5
2
Rm

3
2
ν

ΛR v3u
, V (2)

e, µ ∼ M2
R mν

ΛR v2u
y2τ , V (2)

τ ∼ M2
R mν

ΛR v2u
y2µ . (6.6)

Note that

λijk ∼ y(e)k YN V (1) , (6.7)

up to flavor structure. Therefore, due to the smallness of the Yukawa couplings, the LLē
superpotential term will be a subdominant source of lepton-number violation.

We now search for the largest possible nucleon decay diagram. The simplest diagrams

for nucleon decay to a meson and a lepton are those shown in Fig. 4, where the squark

emits a chargino or neutralino, which mixes into an outgoing charged lepton or neutrino,

respectively, via (5.8). Requiring the external quarks to be light, with at most one strange

quark, it is straightforward to check that the leading diagram for charged lepton emission

involves a tds vertex with t̃ → d flavor changing at the chargino vertex, whereas the leading

diagram for neutrino emission also involves a tds vertex, but with t̃ → ũ mass mixing on the

squark line.

The neutrino diagram has an additional flavor suppression of order y2b/2 relative to the

charged-lepton diagram. However, the latter diagram, which leads to n → K+µ−
decay,

suffers from a chiral suppression, as we illustrate in Fig. 4. The suppression occurs because

the right to right chargino propagator is roughly /p/m2
C̃
, leading to an additional suppression

of at least ∼ mp/mC̃ relative to the right to left propagator. This chiral suppression is not
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Proton decay constraints

•The L violating spurions are then

•Superpotential term:

•Kähler/soft terms:

•The latter actually dominate:

•Will neglect superpotential terms
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Proton decay constraints

•The leading diagrams:

•Strongest bound from matrix element
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Figure 4: The leading charged (left) and neutral (right) flavor-changing diagrams for n →
�−K+ and p → K+ν̄ nucleon decay, respectively. Arrows indicate chirality. The charged

flavor-changing diagram has less flavor suppression, but suffers from a chiral suppression due

to the right → right chargino propagator.

present in the p → K+ν̄ diagram. Combined with the stronger partial lifetime bound for

this decay mode, the latter diagram will give the strongest constraints.

The amplitude is

Mp→K+ν̄ ∼ λ3 md ms m2
b

2m3
t mÑ

�
Λ̃

mq̃

�2

V tan
3 β . (6.8)

up to order-one mixing angles and gauge couplings, where Λ̃2 is a hadronic matrix element.

We will take Λ̃ ∼ 250 MeV, in rough agreement with lattice computations [28, 29]. The

width is

Γ ∼ mp

8π
|M|2 . (6.9)

Comparing with the experimental bound (6.2), we obtain

V tan
3 β <∼ (3× 10

−14
)

� mq̃

100 GeV

�2 � mÑ

100 GeV

�
. (6.10)

For sufficiently large tanβ, we have V (2) � V (1) and V (2) gives the dominant contribution to

V . Using mν = 0.1 eV, we then obtain the upper bound on MR

MR <∼ (10
8
GeV)

�
10

tan β

�5/2 � mq̃,Ñ

100 GeV

�3/2
�

ΛR

1016 GeV

�1/2

. (6.11)

One can check that V (1) gives a weaker bound than this as long as

tan β >∼ 4

� mq̃,χ

100 GeV

�3/13
�

ΛR

1016 GeV

�1/13

. (6.12)
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n→l- K+ p→ν K+

also have roughly equal masses of order 0.1 eV, with order-one neutrino mixing angles.

Substantially lighter neutrino masses would imply a more hierarchical spectrum, with small

Yukawa couplings YN and consequently more suppressed lepton-number violation, whereas

substantially heavier neutrino masses begin to conflict with cosmological bounds.

The neutrino Yukawa coupling is then approximately

YN ∼
√
MR mν

vu
, (6.4)

where we assume that the entire YN matrix has elements of this order. The LLē coupling is

therefore

λijk ∼
M3

R m2
ν

ΛR v4u
y(e)k , (6.5)

whereas the V spurions are

V (1)
i ∼ M

5
2
Rm

3
2
ν

ΛR v3u
, V (2)

e, µ ∼ M2
R mν

ΛR v2u
y2τ , V (2)

τ ∼ M2
R mν

ΛR v2u
y2µ . (6.6)

Note that

λijk ∼ y(e)k YN V (1) , (6.7)

up to flavor structure. Therefore, due to the smallness of the Yukawa couplings, the LLē
superpotential term will be a subdominant source of lepton-number violation.

We now search for the largest possible nucleon decay diagram. The simplest diagrams

for nucleon decay to a meson and a lepton are those shown in Fig. 4, where the squark

emits a chargino or neutralino, which mixes into an outgoing charged lepton or neutrino,

respectively, via (5.8).
6
Requiring the external quarks to be light, with at most one strange

quark, it is straightforward to check that the leading diagram for charged lepton emission

involves a tds vertex with t̃ → d flavor changing at the chargino vertex, whereas the leading

diagram for neutrino emission also involves a tds vertex, but with t̃ → ũ mass mixing on the

squark line.

The neutrino diagram has an additional flavor suppression of order y2b/2 relative to the

charged-lepton diagram. However, the latter diagram, which leads to n → K+µ−
decay,

suffers from a chiral suppression, as we illustrate in Fig. 4. The suppression occurs because

the right to right chargino propagator is roughly /p/m2
C̃
, leading to an additional suppression

of at least ∼ mp/mC̃ relative to the right to left propagator. This chiral suppression is not

present in the p → K+ν̄ diagram. Combined with the stronger partial lifetime bound for

this decay mode, the latter diagram will give the strongest constraints.

The amplitude is

Mp→K+ν̄ ∼ λ3 md ms m2
b

2m3
t mÑ

�
Λ̃

mq̃

�2

V tan
4 β . (6.8)

6The lepton/higgsino mixing (5.4) gives another contribution to this mixing of a similar form.
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Proton decay constraints

•The experimental bounds:

•Bound on quadratic spurion:

•Translated into bound on MR:

be reached by shifting L → L− VHd). We do not, however, assume a particular mechanism

for supersymmetry breaking, and thus will take the mixing (5.8) to be of the estimated size

without substantial cancellation. Any such cancelation will only make the lepton-number

violating effects smaller, and so ignoring such a possibility is a conservative assumption.

The mixing (5.8) can lead to additional contributions to the left-handed neutrino masses

via a weak-scale see-saw mechanism. We find

δmν ∼ V2
v
2
d

mλ
. (5.9)

Imposing |δmν | <∼ 1 eV, we obtain a tan β and mλ-dependent upper bound on V

V <∼

�
3× 10

−4
for tan β = 45 and mλ = 1 TeV ,

5× 10
−6

for tan β = 3 and mλ = 100 GeV .
(5.10)

Proton decay, however, will impose a much stronger bound on V , and consequently the weak

see-saw contribution to the left-handed neutrino masses will be negligible.

In the above discussion, we have neglected the effects of RGE running below the scale MR

where the right-handed neutrinos are integrated out. While such effects can be significant in

detailed numerical calculations [24], they will not substantially alter our order of magnitude

estimates.

6 Constraints from proton decay

In combination with the baryon-number violating interactions studied in §2 and §4, the

lepton-number violating interactions (5.3), (5.4), and (5.6) will lead to a finite proton lifetime.

The strongest constraint on the proton lifetime comes from the bound [25]

τp→π0e+ ≥ 8.2× 10
33

yrs . (6.1)

However, this bound only constrains the partial lifetime for the particular final state π0
e
+
.

For other final states, the partial lifetime bounds are weaker, often substantially [16].

As we show below, MFV SUSY has a strong preference for final states with positive

strangeness. Such decay modes are also strongly constrained [16,26]:

τp→e+ K0 ≥ 1.0× 10
33

yrs , τn→e− K+ ≥ 3.2× 10
31

yrs ,

τp→µ+ K0 ≥ 1.3× 10
33

yrs , τn→µ− K+ ≥ 5.7× 10
31

yrs ,

τp→νK+ ≥ 2.3× 10
33

yrs , τn→νK0 ≥ 1.3× 10
32

yrs , (6.2)

where we also show the (weaker) limits on bound-neutron partial lifetimes. There are similar

bounds on some three-body decays of the form N → �+ π +K.

Before discussing the constraints arising from these bounds, we first estimate the size of

the coefficients of the lepton-number violating operators. We use the generic parametrization

of the neutrino Yukawa couplings of Casas and Ibarra [27]:

Y
T
N =

1

vu
diag

��
MR1,

�
MR2,

�
MR3

�
R diag (

√
mν1,

√
mν2,

√
mν3) U

†
, (6.3)
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Figure 4: The leading charged (left) and neutral (right) flavor-changing diagrams for n →
�−K+ and p → K+ν̄ nucleon decay, respectively. Arrows indicate chirality. The charged

flavor-changing diagram has less flavor suppression, but suffers from a chiral suppression due

to the right → right chargino propagator.

up to order-one mixing angles and gauge couplings, where Λ̃2 is a hadronic matrix element.

We will take Λ̃ ∼ 250 MeV, in rough agreement with lattice computations [32, 33]. The

width is

Γ ∼ mp

8π
|M|2 . (6.9)

Comparing with the experimental bound (6.2), we obtain

V tan
4 β <∼ (3× 10

−14
)

� mq̃

100 GeV

�2 � mÑ

100 GeV

�
. (6.10)

For sufficiently large tanβ, we have V (2) � V (1) and V (2) gives the dominant contribution to

V . Using mν = 0.1 eV, we then obtain the upper bound on MR

MR <∼ (3× 10
7
GeV)

�
10

tan β

�3 � mq̃,Ñ

100 GeV

�3/2
�

ΛR

1016 GeV

�1/2

. (6.11)

One can check that V (1) gives a weaker bound than this as long as

tan β >∼ 6

� mq̃,χ

1 TeV

�3/14
�

ΛR

1016 GeV

�1/14

. (6.12)

Thus, for ΛR = 1016 GeV and mq̃,Ñ
<∼ 1 TeV, V (2) is dominant for tanβ >∼ 6, whereas for

tan β <∼ 6, V (1) is dominant for sufficiently large superpartner masses. The bound on MR,

including both contributions, is illustrated in Fig. 5.

The bound onMR depends strongly on ΛR. For instance, if ΛR ∼ 10 TeV, the bound (6.11)

is reduced by six orders of magnitude. If the right-handed neutrinos are sufficiently light,
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Figure 4: The leading charged (left) and neutral (right) flavor-changing diagrams for n →
�−K+ and p → K+ν̄ nucleon decay, respectively. Arrows indicate chirality. The charged

flavor-changing diagram has less flavor suppression, but suffers from a chiral suppression due

to the right → right chargino propagator.

up to order-one mixing angles and gauge couplings, where Λ̃2 is a hadronic matrix element.

We will take Λ̃ ∼ 250 MeV, in rough agreement with lattice computations [32, 33]. The

width is

Γ ∼ mp

8π
|M|2 . (6.9)

Comparing with the experimental bound (6.2), we obtain

V tan
4 β <∼ (3× 10

−14
)

� mq̃

100 GeV

�2 � mÑ

100 GeV

�
. (6.10)

For sufficiently large tanβ, we have V (2) � V (1) and V (2) gives the dominant contribution to

V . Using mν = 0.1 eV, we then obtain the upper bound on MR

MR <∼ (3× 10
7
GeV)

�
10

tan β

�3 � mq̃,Ñ

100 GeV

�3/2
�

ΛR

1016 GeV

�1/2

. (6.11)

One can check that V (1) gives a weaker bound than this as long as

tan β >∼ 6

� mq̃,χ

1 TeV

�3/14
�

ΛR

1016 GeV

�1/14

. (6.12)

Thus, for ΛR = 1016 GeV and mq̃,Ñ
<∼ 1 TeV, V (2) is dominant for tanβ >∼ 6, whereas for

tan β <∼ 6, V (1) is dominant for sufficiently large superpartner masses. The bound on MR,

including both contributions, is illustrated in Fig. 5.

The bound onMR depends strongly on ΛR. For instance, if ΛR ∼ 10 TeV, the bound (6.11)

is reduced by six orders of magnitude. If the right-handed neutrinos are sufficiently light,
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Proton decay constraints

•The bound on MR in units of 106 GeV:

•ΛR=1016 GeV and mν=0.1 eV fixed
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Figure 5: Left: the upper bound on MR due to the nonobservation of nucleon decay, in units
of 106 GeV. For this plot, we have fixed ΛR = 1016 GeV andmν = 0.1 eV. Near the left edge,
the dominant constraint comes from the V (1) spurion; elsewhere V (2) is dominant. Right:
the approximate lower bound on m3/2, in KeV, due to the nonobservation of p → K+G̃.

they could be produced at colliders, though the Yukawa couplings are necessarily very small,
so that such a scenario is unlikely to be excluded in the near future.

If the gravitino is sufficiently light, proton decay can proceed via the baryon-number
violating vertex (2.4) alone, without lepton number violation [34]. In particular, the gravitino
is derivatively coupled to chiral superfields [35]:

Lint = − 1√
3m3/2 Mpl

ψ̄Lγ
µγν(∂µG̃)(Dνφ) + c.c. , (6.13)

where G̃ is the gravitino, (φ,ψ) is any chiral superfield, and Mpl is the reduced Planck mass.
If kinematically allowed, the decay p → K+G̃ will proceed via the diagram in Fig. 6, with
the width

Γ ∼ mp

8π

�
Λ̃

mq̃

�4 �
Λ2

√
3m3/2Mpl

�2
λ6m2

dm
2
sm

4
b

4m8
t

tan8 β , (6.14)

where we use the same matrix element as above, replacing the momentum insertions with a
characteristic energy scale, Λ.

While we are unaware of a direct search for p → K+G̃, for a very light gravitino p → K+ν
gives the same experimental signature. If we conservatively assume that the p → K+ν
bound (6.2) applies to p → K+G̃ decays for any gravitino mass, we obtain an approximate
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Proton decay constraints

•If gravitino very light proton can decay w/o L 
violation:

•Width:
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ũ

u

d

u

G̃

s̄

u


K+

p






Figure 6: The leading contribution to p → K+G̃ decay.

While we are unaware of a direct search for p → K+G̃, for a very light gravitino p → K+ν
gives the same experimental signature. If we conservatively assume that the p → K+ν
bound (6.2) applies to p → K+G̃ decays for any gravitino mass, we obtain an approximate

lower bound on m3/2:

m3/2 >∼ (300 KeV)

�
300 MeV

mq̃

�2 �
tan β

10

�4

, (6.15)

where we take Λ ∼ Λ̃ ∼ 250 GeV. This bound is illustrated in Fig. 5.

7 LSP decay and LHC phenomenology

The phenomenology of MFV SUSY models will be very different from the R-parity conserving

MSSM, and is distinctive among R-parity violating theories. We will not assume that the

LSP is electrically and color neutral; since it decays there is no particular motivation for that

requirement. Thus the LSP could be either a squark, a slepton, a neutralino, a chargino,

or the gluino. However, MFV places restrictions on the squark and slepton masses. In

particular, the mass matrix for up-type squarks must be of the form

M2
Ũ
= m2

soft

�
1 + αYuY †

u + βYdY
†
d δ Yu

δ� Y †
u 1 + γY †

uYu

�
+ . . . , (7.1)

where the omitted terms are higher-order in the Yukawa couplings, δ is some combination

of holomorphic parameters specifying the left-right mixing (coming from the Yukawa and

A-terms), α and β are non-holomorphic parameters coming from the left-handed squark

masses, and γ is another non-holomorphic parameter coming from the right-handed squark

masses.

Naturalness, in this context, indicates that α, β, γ, and δ should be order-one numbers.

Thus, the leading deviations from universality will involve only the O(1) top Yukawa cou-

pling, and, in particular, it is very easy to make one of the stops very light. Since other
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Figure 5: Left: the upper bound on MR due to the nonobservation of nucleon decay, in units
of 106 GeV. For this plot, we have fixed ΛR = 1016 GeV andmν = 0.1 eV. Near the left edge,
the dominant constraint comes from the V (1) spurion; elsewhere V (2) is dominant. Right:
the approximate lower bound on m3/2, in KeV, due to the nonobservation of p → K+G̃.

Thus, for ΛR = 1016 GeV and mq̃,Ñ
<∼ 1 TeV, V (2) is dominant for tanβ >∼ 7, whereas for

tan β <∼ 7, V (1) is dominant for sufficiently large superpartner masses. The bound on MR,
including both contributions, is illustrated in Fig. 5.

The bound onMR depends strongly on ΛR. For instance, if ΛR ∼ 10 TeV, the bound (6.11)
is reduced by six orders of magnitude. If the right-handed neutrinos are sufficiently light,
they could be produced at colliders, though the Yukawa couplings are necessarily very small,
so that such a scenario is unlikely to be excluded in the near future.

If the gravitino is sufficiently light, proton decay can proceed via the baryon-number
violating vertex (2.4) alone, without lepton number violation [30]. In particular, the gravitino
is derivatively coupled to chiral superfields [31]:

Lint = − 1√
3m3/2 Mpl

ψ̄Lγ
µγν(∂µG̃)(Dνφ) + c.c. , (6.13)

where G̃ is the gravitino, (φ,ψ) is any chiral superfield, and Mpl is the reduced Planck mass.
If kinematically allowed, the decay p → K+G̃ will proceed via the diagram in Fig. 6, with
the width

Γ ∼ mp

8π

�
Λ̃

mq̃

�4 �
Λ2

√
3m3/2Mpl

�2
λ6m2

dm
2
sm

4
b

4m8
t

tan8 β , (6.14)

where we use the same matrix element as above, replacing the momentum insertions with a
characteristic energy scale, Λ.
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•Will constrain gravitino mass:

•Gravitino mass bound in units of keV \infty
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Figure 6: The leading contribution to p → K+G̃ decay.

While we are unaware of a direct search for p → K+G̃, for a very light gravitino p → K+ν
gives the same experimental signature. If we conservatively assume that the p → K+ν
bound (6.2) applies to p → K+G̃ decays for any gravitino mass, we obtain an approximate

lower bound on m3/2:

m3/2 >∼ (300 KeV)

�
300 MeV
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10

�4

, (6.15)

where we take Λ ∼ Λ̃ ∼ 250 GeV. This bound is illustrated in Fig. 5.

7 LSP decay and LHC phenomenology

The phenomenology of MFV SUSY models will be very different from the R-parity conserving

MSSM, and is distinctive among R-parity violating theories. We will not assume that the

LSP is electrically and color neutral; since it decays there is no particular motivation for that

requirement. Thus the LSP could be either a squark, a slepton, a neutralino, a chargino,

or the gluino. However, MFV places restrictions on the squark and slepton masses. In

particular, the mass matrix for up-type squarks must be of the form

M2
Ũ
= m2

soft

�
1 + αYuY †

u + βYdY
†
d δ Yu

δ� Y †
u 1 + γY †

uYu

�
+ . . . , (7.1)

where the omitted terms are higher-order in the Yukawa couplings, δ is some combination

of holomorphic parameters specifying the left-right mixing (coming from the Yukawa and

A-terms), α and β are non-holomorphic parameters coming from the left-handed squark

masses, and γ is another non-holomorphic parameter coming from the right-handed squark

masses.

Naturalness, in this context, indicates that α, β, γ, and δ should be order-one numbers.

Thus, the leading deviations from universality will involve only the O(1) top Yukawa cou-

pling, and, in particular, it is very easy to make one of the stops very light. Since other
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Figure 5: Left: the upper bound on MR due to the nonobservation of nucleon decay, in units
of 106 GeV. For this plot, we have fixed ΛR = 1016 GeV andmν = 0.1 eV. Near the left edge,
the dominant constraint comes from the V (1) spurion; elsewhere V (2) is dominant. Right:
the approximate lower bound on m3/2, in KeV, due to the nonobservation of p → K+G̃.

Thus, for ΛR = 1016 GeV and mq̃,Ñ
<∼ 1 TeV, V (2) is dominant for tanβ >∼ 7, whereas for

tan β <∼ 7, V (1) is dominant for sufficiently large superpartner masses. The bound on MR,
including both contributions, is illustrated in Fig. 5.

The bound onMR depends strongly on ΛR. For instance, if ΛR ∼ 10 TeV, the bound (6.11)
is reduced by six orders of magnitude. If the right-handed neutrinos are sufficiently light,
they could be produced at colliders, though the Yukawa couplings are necessarily very small,
so that such a scenario is unlikely to be excluded in the near future.

If the gravitino is sufficiently light, proton decay can proceed via the baryon-number
violating vertex (2.4) alone, without lepton number violation [30]. In particular, the gravitino
is derivatively coupled to chiral superfields [31]:

Lint = − 1√
3m3/2 Mpl

ψ̄Lγ
µγν(∂µG̃)(Dνφ) + c.c. , (6.13)

where G̃ is the gravitino, (φ,ψ) is any chiral superfield, and Mpl is the reduced Planck mass.
If kinematically allowed, the decay p → K+G̃ will proceed via the diagram in Fig. 6, with
the width

Γ ∼ mp

8π

�
Λ̃

mq̃

�4 �
Λ2

√
3m3/2Mpl

�2
λ6m2

dm
2
sm

4
b

4m8
t

tan8 β , (6.14)

where we use the same matrix element as above, replacing the momentum insertions with a
characteristic energy scale, Λ.
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Sources for non-holomorphic terms

•With SUSY breaking spurion X: additional 
superpotential from Kähler term:

•Will be suppressed by

•Only dangerous terms quadratic superpotential terms

• gives a non-holomorphic supersymmetric mass term 
~              , in the absence of neutrino masses no 
relevant term (except    ) 

and the Kähler potential interactions:

K �SUSY ⊃ X†

M
µ̃ijΦ

iΦj
+

X

M
J̃ j
i Φ

iΦ†
j +

X†X

M2
B̃ijΦ

iΦj
+ c.c.+

X†X

M2
M̃ j

i Φ
iΦ†

j (B.2)

where nonholomorphic couplings are denoted with a tilde. The couplings Aijk and Mλ

generate A-terms and gaugino masses, whereas B̃ij and M̃ j
i generate B-terms and soft-

masses, µ̃ij generates bilinear superpotential terms, and J̃ j
i gives rise to a scalar/F-term

mixing, the effects of which we discuss in detail below. In singlet extensions of the MSSM,

including the NMSSM and see-saw models, supersymmetry breaking tadpoles can also arise:

K(tad)
�SUSY =

X†X

M
ẼiΦ

i
(B.3)

where the dimensionful coefficient is large, F 2/M ∼ Mm2
soft � m3

soft. While these tadpoles

are potentially problematic, whether they are generated and at what level will depend on

the particular model of supersymmetry breaking. We will assume that they are suppressed

by some mechanism, and will not consider them further.
10

Thus, we conclude that A-terms are generated holomorphically, whereas the other soft

terms are generated non-holomorphically. Furthermore, nonholomorphic bilinear couplings

can appear in the superpotential at the scale msoft. Nonholomorphic contributions to the

A-terms and trilinear superpotential terms are suppressed. The leading contributions arise

from the interactions

K �SUSY ⊃ X†

M2
λ̃ijkΦ

iΦjΦk
+

XX†

M3
ÃijkΦ

iΦjΦk

which are suppressed by O (msoft/M) relative to the leading holomorphic contributions.

So far we have ignored the nonholomorphic scalar/F-term mixing J̃ j
i . We will show that

these couplings give rise to nongeneric nonholomorphic contributions to the A-terms after a

field redefinition, similar in form to (nonholomorphic) wavefunction renormalization effects.
We first write the renormalizable superpotential and Kähler potential in the form:

W = msoftµijΦ
iΦj

+ λijkΦ
iΦjΦk

K = K̃j
iΦ

iΦ†
j

where K̃j
i is the Hermitean positive-definite Kähler metric. (Note that we cannot in general

set K̃j
i = δji by a field redefinition without introducing nonholomorphic couplings into the

superpotential.) The scalar/F-term mixing can be eliminated by redefining

Φi → Φi
+

X

M
P̃ i
jΦ

j

10For instance, a right-handed snuetrino tadpole is forbidden by Z(L)
3 in the case of Dirac neutrino masses

(MN = 0).
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msoftµ̃
µ

K =
1

M2
X†(Yuu)(Y

†
d d̄d̄)

F/M2 ∼ msoft

M
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Higher dimensional operators

•For baryon number violation:

•Subleading as long as Λ>1012 GeV

•For lepton number violation: subleading to

•B and L violating Kähler terms: first show up at 
dimension 6, the dangerous R-parity even 

are absent

least suppressed flavor structures for each set of external quarks, and then take the products

of all pairs of these suppressions, bearing in mind that for final-state strangeness |S| ≥ 3,

two-body decays are not possible (leading to phase-space suppression), and appending a

factor of ∼ gΛQCD/MW for each unit of net charge of the external quarks.

Besides the two diagrams already considered in §4.2, such a search turns up no flavor

structures with a lesser suppression for any 3 <∼ tan β <∼ 45. Thus we conclude that, to

the extent to which the scheme of Appendix B is valid, the two dominant diagrams are the

charged and neutral flavor-changing diagrams already considered.

C.3 Proton decay

Finally, we consider additional contributions to proton decay. In the quark sector, we re-

quire a single baryon number violating vertex (2.4), with a corresponding squark propagator

suppression. Requiring that the external quarks be light with strangeness |∆S| ≤ 1 and

applying the method of Appendix B, we find that a tds vertex with t → d flavor-changing is

the least suppressed, with t → u neutral flavor-changing competitive at large tanβ. These

are the same flavor structure that were considered in §6.
However, as argued in §6, the charged-lepton diagram suffers from a chiral suppression.

This will occur whenever the squark is up-type and undergoes charged flavor changing,

emitting an �− (via mixing with the chargino), i.e. when the net-charge of the external

quarks connected to the baryon-number violating vertex is −1, since charge conservation

otherwise requires the exchange of a W boson with one of the spectator quarks, resulting

in a comparable suppression, as disucussed in §C.2. Accounting for the chiral suppression

and reapplying the methods of Appendix B, we conclude that the neutral flavor-changing

diagram considered in §6 is always dominant.

As the bounds on |∆S| = 0 decays are somewhat stronger, one might be tempted to

consider diagrams of this type. However, according to our estimation scheme, the largest

|∆S| = 0 processes — tbd with b → u, d and t → d flavor changing or tds with t → d and

s → u flavor changing — receive an additional flavor suppression of about ysλ, or at least
10

−2
for the assumed range 3 <∼ tan β <∼ 45. Consequently, |∆S| = 1 decays are strongly

preferred, and their non-observation will lead to the strongest constraints.

D Higher dimensional operators

We now consider whether higher-dimensional operators can affect our conclusions. We first

consider |∆B| = 2 processes. Lepton-number violating interactions are irrelevant, since they

are strongly suppressed by YN and µN = MN/ΛR. At dimension five, there is only one

allowed baryon-number violating correction, which appears in the Kähler potential:

K
(5)
BNV =

1

Λ
(YuY

†
u + YdY

†
d )QQY

†
d d̄

†
. (D.1)

After integrating out the auxiliary fields, this term (combined with the QYdd̄Hd Yukawa

coupling), has a similar effect to a Q
3
Hd superpotential term, but with at least two Yd

34

V(2)

spurions, leading to a minimum Yukawa suppression of y2b . Together with the dimension-five

∼ v/Λ suppression and CKM suppression (of the same form as for (2.4)), it is straightforward

to check that the vertex factor must be substantially smaller than any of those contributing

to the dominant diagrams considered in §4 — in the latter case we also include any additional

suppression from flavor changing — so long as Λ >∼ 10
12

GeV.
8
Thus, for a GUT scale cutoff,

such contributions are strongly subdominant, whereas dimension six and higher operators

are sufficiently suppressed without any flavor suppression.

In the case of nucleon decay, higher-dimensional |∆L| = 1 operators are potentially

dangerous. However, they necessarily come with a suppression of at least µNY 2
N (ignoring

flavor structure) in addition to their∼ v/Λ cutoff suppression, and are therefore subdominant

to the lepton-gaugino mixing induced by the V (2)
spurion. Thus, for a high cutoff, higher

dimensional lepton-number violating operators can only be significant if they lead to an

enhancement in the quark sector. Specifically, operators which violate lepton and baryon

number can be dangerous, but these occur first at dimension six, both in the Kähler potential

and the superpotential. Notably, the dangerous (R-parity even) dimension-five operators

Q3L, ūūd̄ē, and ūd̄d̄N̄ are absent from the superpotential due to holomorphy constraints.

Dimension six operators are not dangerous in this context, since the smallness of V spurion

(cf. (6.10)) combined with cutoff suppression is sufficient to easily evade bounds on the

proton lifetime.
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