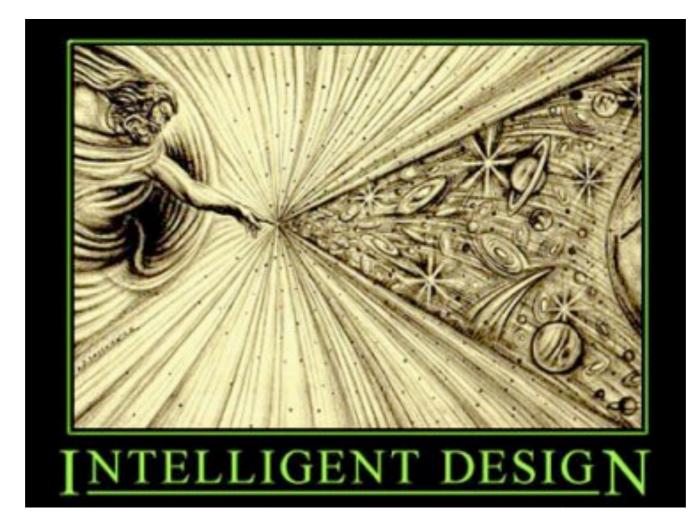
Axion-Higgs Unification

Michele Redi

1208.6013 with A. Strumia

GGI, July 2013

Wednesday, July 10, 2013



Natural theories must be extremely smart:

SUSY

 $\mu\sim 250\,{\rm GeV}$

 $m_{stop} \sim 700 \,\mathrm{GeV}$

 $m_{gluino} \sim 1500 \,\mathrm{GeV}$

NGB HIGGS

 $f\sim 800\,{\rm GeV}$ $m_{fermions}\sim 1000\,{\rm GeV}$

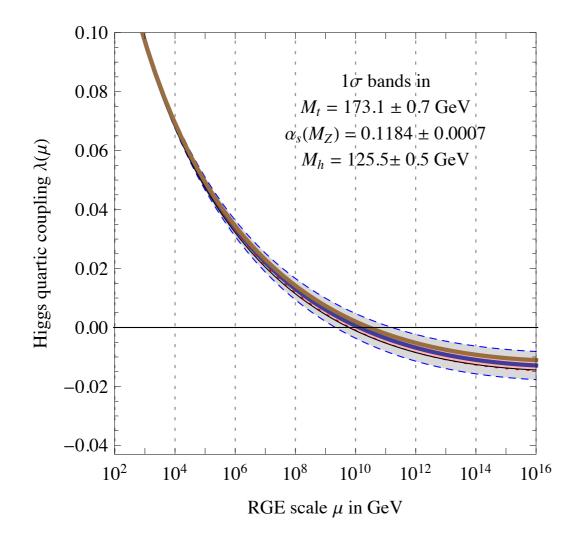
 $m_{vectors} \sim 3000 \,\mathrm{GeV}$

$\Lambda \gg \text{TeV}?$

- Explains why we have not seen anything
- Higgs could be tuned anthropically (as c.c.)

HINTS ?

• Running:



 $V(h) = m^2 h^2 / 2 + \lambda h^4 / 4$

De Grassi et al.'12

Quartic almost zero at high scale for 125 GeV Higgs

• Strong CP problem:

$$\frac{\theta}{32\pi^2} \int d^4x \,\epsilon^{\mu\nu\rho\sigma} \,Tr[G_{\mu\nu}G_{\rho\sigma}] \qquad \qquad \theta < 10^{-10}$$

• Strong CP problem:

$$\frac{\theta}{32\pi^2} \int d^4x \,\epsilon^{\mu\nu\rho\sigma} \,Tr[G_{\mu\nu}G_{\rho\sigma}] \qquad \qquad \theta < 10^{-10}$$

Elegant solution with axions

$$\theta \to \frac{a(x)}{f}$$

Axions are Goldstone bosons of a symmetry anomalous under QCD

$$m_a \sim \frac{m_\pi f_\pi}{f}$$

$$f > 10^9 \,\mathrm{GeV} \qquad \longrightarrow \qquad m_a < 10^{-3} \,\mathrm{eV}$$

Axions can be dark matter

$$\frac{\rho_a}{\rho_{\rm DM}} \approx \theta_i^2 \left(\frac{f}{2 - 3 \times 10^{11} \,{\rm GeV}} \right) \qquad \longrightarrow \qquad f \approx 10^{11} \,{\rm GeV}$$

$$f > 10^9 \,\mathrm{GeV} \qquad \longrightarrow \qquad m_a < 10^{-3} \,\mathrm{eV}$$

Axions can be dark matter

$$\frac{\rho_a}{\rho_{\rm DM}} \approx \theta_i^2 \left(\frac{f}{2 - 3 \times 10^{11} \,{\rm GeV}} \right) \qquad \longrightarrow \qquad f \approx 10^{11} \,{\rm GeV}$$

• Neutrino masses

$$\frac{1}{\Lambda} (LH)^2 \qquad \qquad m_{\nu} \propto \frac{v^2}{\Lambda}$$

• Unification

 $\Lambda < M_{GUT}$

$\Lambda \approx 10^{11} \,\mathrm{GeV}$

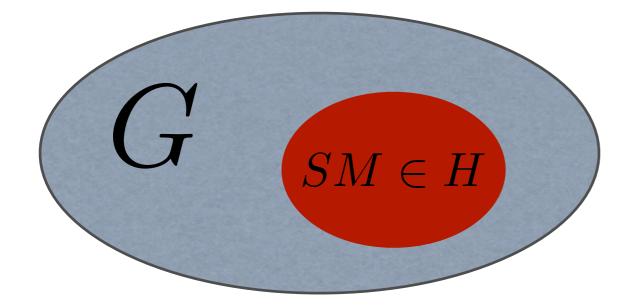
$\Lambda \approx 10^{11} \,\mathrm{GeV}$

- Axions + Higgs can be unified

- 125 GeV Higgs can be explained

The Higgs doublet could be a NGB.

Georgi, Kaplan '80s



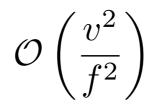
 $= \frac{G}{H}$ NGB $g_{
ho}$ $m_{
ho}$

$$\delta m_h^2 \sim \frac{3\,\lambda_t^2}{4\pi^2} m_\rho^2$$

$$\frac{SO(5)}{SU(2)_L \otimes SU(2)_R} \longrightarrow GB = (2, 2)$$

Agashe , Contino, Pomarol, '04

Deviation from SM:



Deviation from SM:

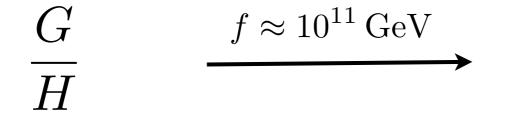
$\mathcal{O}\left(\frac{v^2}{f^2}\right)$ Higgs is an angle, TUNING $\propto \frac{f^2}{v^2}$ $0 < h < 2\pi f$ Small Tuning f < TeVTypical spectrum: $m_{\rho} \sim 3 \,\mathrm{TeV}$ $f = 0.5 - 1 \,\text{TeV}$ $m_h = 125 \,\mathrm{GeV}$ $m_W = 80 \,\mathrm{GeV}$

0

AXION-HIGGS

Composite Axion: Choi Kim '85

Basic idea: Axion and Higgs originate from common strong dynamics. f is fixed by dark matter and the electro-weak scale is tuned.



Higgs + singlet

AXION-HIGGS

Composite Axion: Choi Kim '85

Basic idea: Axion and Higgs originate from common strong dynamics. f is fixed by dark matter and the electro-weak scale is tuned.

$$\frac{G}{H} \xrightarrow{f \approx 10^{11} \,\text{GeV}} \text{Higgs + singlet}$$

• QCD anomaly from new fermions (KSVZ)

• QCD anomaly from SM fermions (DFSZ)

HIGGS + KSVZ AXION

Kim-Shifman-Vainstein-Zakharov: Add new colored fermions + complex scalar

$$\Psi_Q \to e^{i\alpha_Q\gamma_5}\Psi_Q, \qquad \sigma \to e^{-2i\alpha_Q}\sigma$$

$$L = L_{\rm SM} + \bar{\Psi}_Q \partial \Psi_Q + |\partial_\mu \sigma|^2 + (\lambda \,\sigma \,\bar{\Psi}_Q \Psi_Q + \text{h.c.}) - V(\sigma)$$

HIGGS + KSVZ AXION

Kim-Shifman-Vainstein-Zakharov: Add new colored fermions + complex scalar

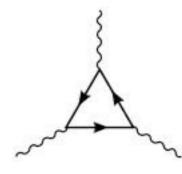
$$\Psi_Q \to e^{i\alpha_Q\gamma_5}\Psi_Q, \qquad \sigma \to e^{-2i\alpha_Q}\sigma$$

$$L = L_{\rm SM} + \bar{\Psi}_Q \partial \Psi_Q + |\partial_\mu \sigma|^2 + (\lambda \sigma \bar{\Psi}_Q \Psi_Q + \text{h.c.}) - V(\sigma)$$

Spontaneous PQ symmetry breaking

 $f \approx \langle \sigma \rangle \qquad \qquad a = \sqrt{2} \operatorname{Im}[\sigma]$

PQ symmetry anomalous under QCD



$$\frac{G}{H} = \frac{SU(6)_L \times SU(6)_R}{SU(6)_{L+R}}$$

Under $SU(5)_{SM}$

$\mathbf{35} = \mathbf{24} \oplus \mathbf{5} \oplus \mathbf{ar{5}} \oplus \mathbf{1}$

One Higgs doublet. Two massless singlets are axion candidates.

$$\frac{G}{H} = \frac{SU(6)_L \times SU(6)_R}{SU(6)_{L+R}}$$

Under $SU(5)_{SM}$

$\mathbf{35} = \mathbf{24} \oplus \mathbf{5} \oplus \mathbf{ar{5}} \oplus \mathbf{1}$

One Higgs doublet. Two massless singlets are axion candidates.

Under SM 33 charged scalars acquire mass.

$$m \approx \frac{g_{SM}}{4\pi} \Lambda$$

UV realization: SU(n) gauge theory with 6 flavors

Fermions	$U(1)_Y$	$SU(2)_L$	$SU(3)_{\rm c}$	$SU(n)_{\rm TC}$
\overline{D}	$\frac{1}{3}$	1	$\overline{3}$	n
L	$-\frac{1}{2}$	2	1	n
N	$\overline{0}$	1	1	n
$ar{D}$	$-\frac{1}{3}$	1	3	$ar{n}$
\overline{L}	$\frac{1}{2}$	$\overline{2}$	1	$ar{n}$
$ar{N}$	$\tilde{0}$	1	1	$ar{n}$

 $(\bar{5}+1,n)\oplus(5+1,\bar{n})$

UV realization: SU(n) gauge theory with 6 flavors

	Fermions	$\mathrm{U}(1)_Y$	$SU(2)_L$	$SU(3)_{c}$	$SU(n)_{\rm TC}$		
	D	$\frac{1}{3}$	1	$\overline{3}$	n		
	L	$-\frac{1}{2}$ 0	2	1	n		
	$N_{ar{ar{ar{ar{ar}}}}}$		1	1	n		
	$\bar{D}_{\bar{z}}$	$-rac{1}{3} \ rac{1}{2} \ 0$	$rac{1}{2}$	3	$ar{n}$		
	\bar{L}	$\frac{1}{2}$	2	1	$ar{n}$		
	$ar{N}$	0	1	1	$ar{n}$		
$(\bar{5}+1,n) \oplus (5+1,\bar{n})$ $\langle D\bar{D} \rangle = \langle L\bar{L} \rangle = \langle N\bar{N} \rangle \approx \Lambda^3 \qquad \qquad H \sim (L\bar{N}) - (\bar{L}N)^*$							
Single		$^{o}\bar{D}$	$L \bar{L}$		$Nar{N}$		
$D\bar{D}$ +	$-L\bar{L}+N\bar{N}$	U(1)	$\times SU(n)$	r_{C}^{2} and	omaly	$\frac{g_{TC}}{4\pi}\Lambda$	

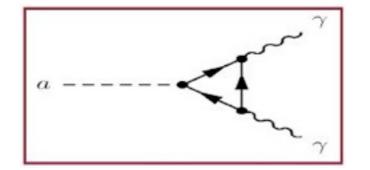
Axions couple to photon and gluons through anomalies

$$\frac{a\,E}{32\pi^2 f}\epsilon^{\mu\nu\rho\sigma}F_{\mu\nu}F_{\rho\sigma}$$

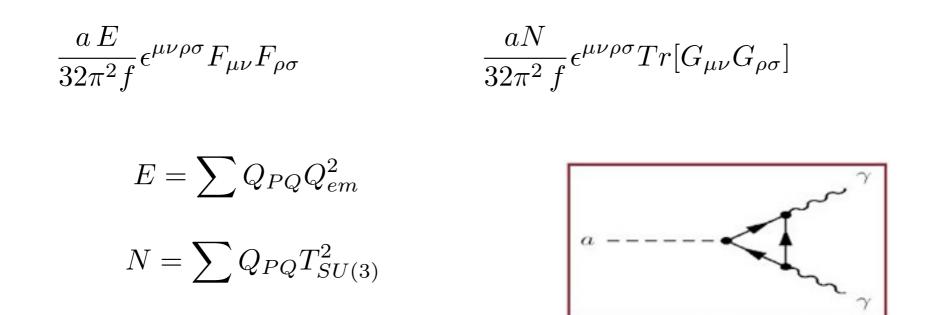
$$\frac{aN}{32\pi^2 f} \epsilon^{\mu\nu\rho\sigma} Tr[G_{\mu\nu}G_{\rho\sigma}]$$

$$E = \sum Q_{PQ} Q_{em}^2$$

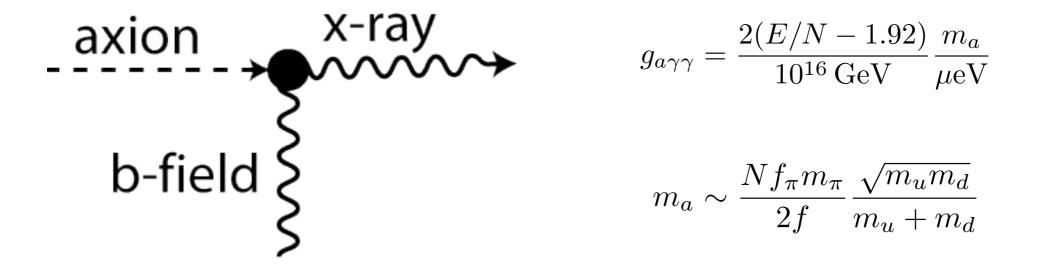
$$N = \sum Q_{PQ} T_{SU(3)}^2$$

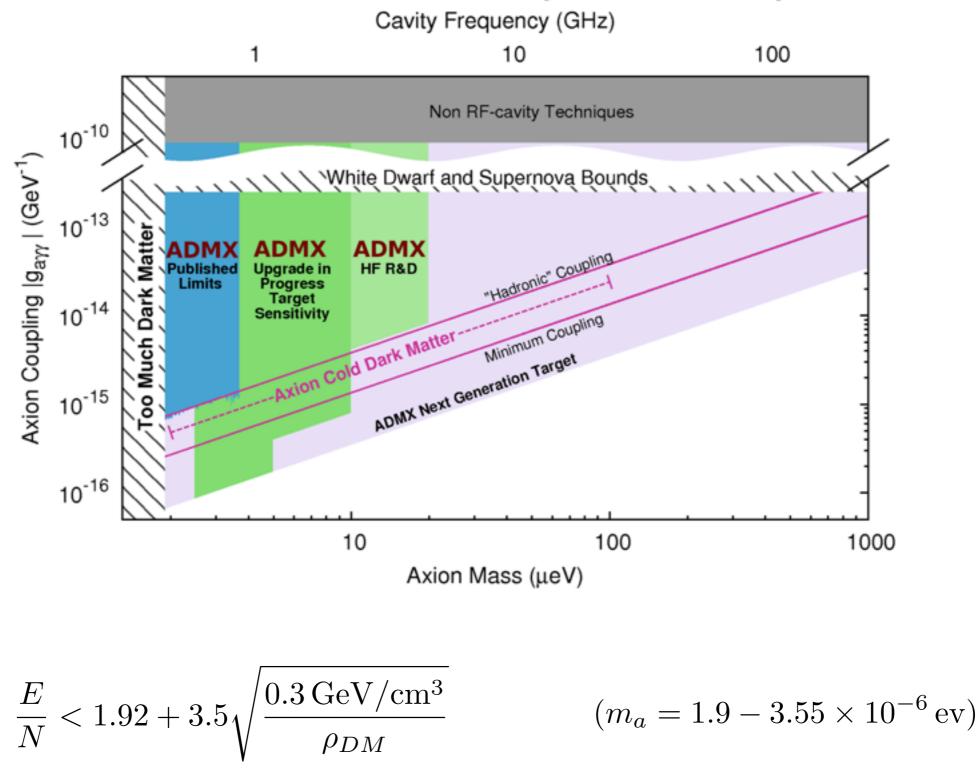


Axions couple to photon and gluons through anomalies



Experiments measure conversion of axion to photons





ADMX Achieved and Projected Sensitivity

Flavor:

 $\frac{1}{\Lambda_1^2}(qu)(L\bar{N})$

 $\frac{1}{\Lambda_2^2}(\bar{q}\bar{u})(\bar{L}N)$

Flavor:
$$\frac{1}{\Lambda_1^2}(qu)(L\bar{N})$$
 $\frac{1}{\Lambda_2^2}(\bar{q}\bar{u})(\bar{L}N)$

a) If UV interactions respect singlets symmetry

$$\frac{4D - 3L - 6N}{\sqrt{102}}, \qquad \frac{L - 2N}{\sqrt{3}} \qquad \qquad \frac{E}{N} = -\frac{5}{6}$$

b) If all Yukawas allowed

$$\frac{D-3L+3N}{\sqrt{30}} \qquad \qquad \frac{E}{N} = -\frac{16}{3}$$

c) SU(5) is gauged

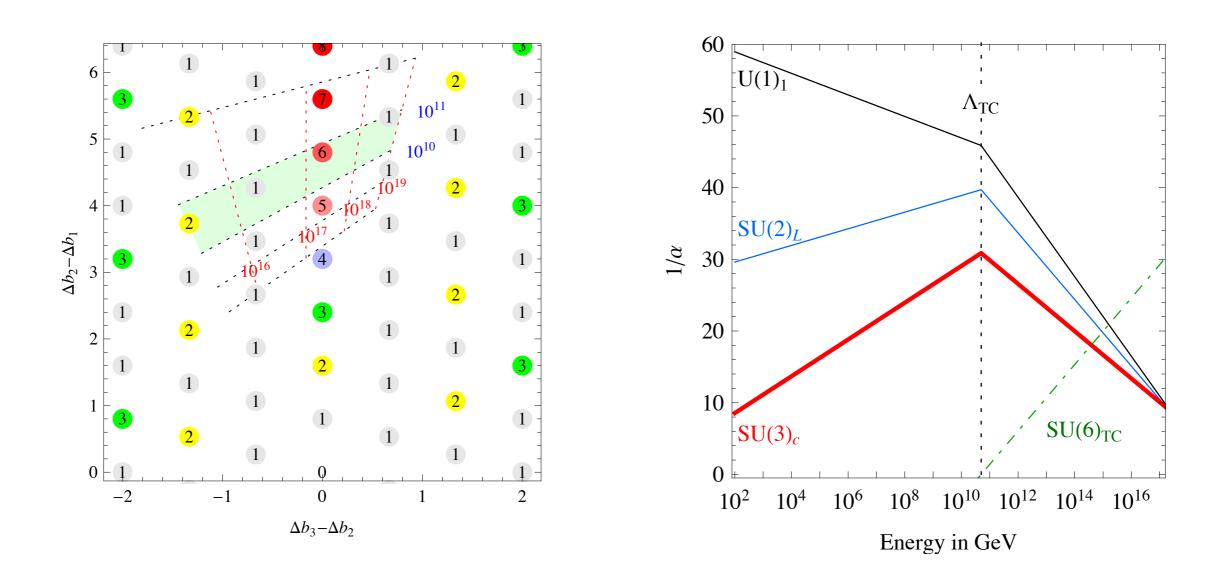
$$\frac{D+L-5N}{\sqrt{30}} \qquad \qquad \frac{E}{N} = \frac{8}{3}$$

Wednesday, July 10, 2013

Incomplete SU(5) multiplets can improve unification (''unificaxion'')

Giudice, Rattazzi, Strumia '12

Ex: D, L, Q, U, N



HIGGS + DFSZ AXION

$$\frac{G}{H} = \frac{SO(6)}{SO(5)} \simeq \frac{SU(4)}{\mathrm{Sp}(4)}$$

Gripaios, Pomarol, Riva, Serra '09 Redi, Tesi '12 Galloway et. al. '10

5 GBs:

5 = (2, 2) + 1

HIGGS + DFSZ AXION

$$\frac{G}{H} = \frac{SO(6)}{SO(5)} \simeq \frac{SU(4)}{\mathrm{Sp}(4)}$$

Gripaios, Pomarol, Riva, Serra '09 Redi, Tesi '12 Galloway et. al. '10

5 GBs:

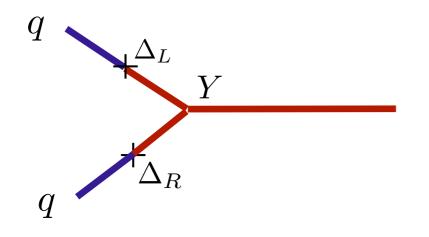
$$5 = (2, 2) + 1$$

Gauging of SM gauge symmetry preserves

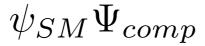
 $SU(2)_L \times U(1)_Y \times U(1)_{PQ}$

Under $U(1)_{PQ}$ singlet shifts.

Partial compositeness



$$y_{SM} = \epsilon_L \cdot Y \cdot \epsilon_R$$



 $\Psi_{comp} \in G$

We can choose

10 = (2,2) + (3,1) + (1,3)

Mixing induces a PQ charge on the SM fermions.

$$\delta q_L = 0 \qquad \delta u_R = -\frac{1}{\sqrt{2}}u_R \qquad \delta d_R = -\frac{1}{\sqrt{2}}d_R \qquad \delta e_R = -\frac{1}{\sqrt{2}}e_R$$

PQ symmetry is anomalous due to uR, dR, eR rotations

 $N = 2N_F$

$$E = 2\left[\left(\frac{4}{9} + \frac{1}{9}\right)3 + 1\right]N_F + E_{\rm TC}$$

$$\frac{E}{N} = \frac{8}{3} + \frac{E_{TC}}{6} \qquad \qquad E_{TC} \sim n$$

HIGGS MASS

Higgs potential is generated by the couplings that break the global symmetry. Minimally gauge and Yukawa couplings.

$$V(h) = \sum_{i} a_{i} \sin^{2i} \left(\frac{h}{f}\right)$$

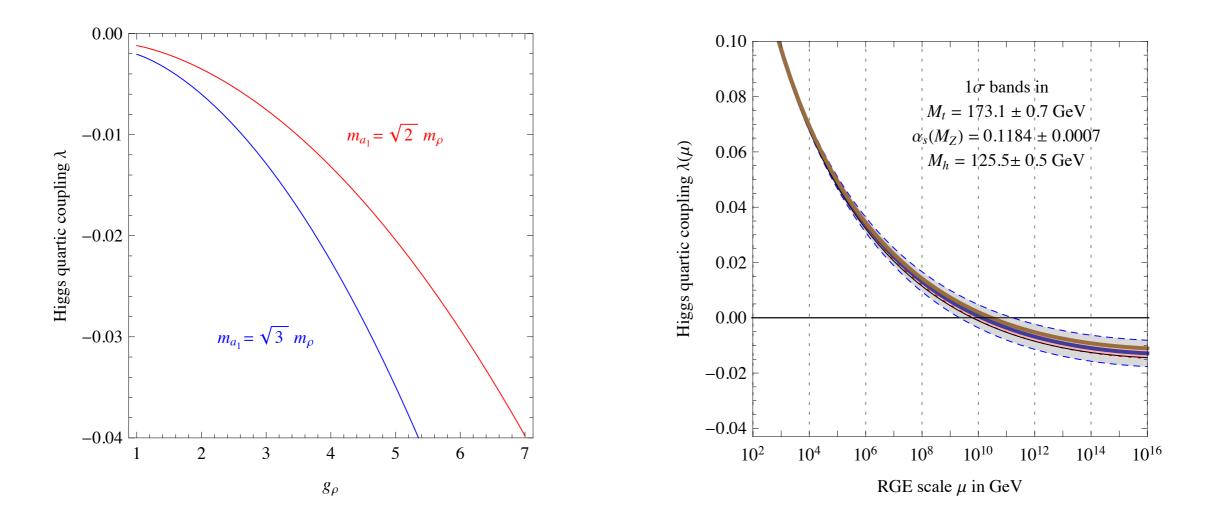
Electro-weak scale:

Higgs mass is then "predicted".

Gauge contribution:

$$V(h)_{gauge} = \frac{9}{2} \int \frac{d^4p}{(2\pi)^4} \ln\left[1 + \frac{1}{4} \frac{\Pi_1(p^2)}{\Pi_0(p^2)} \sin^2\frac{h}{f}\right]$$

$$V(h)_{\text{gauge}} \approx \frac{9}{4} \frac{g^2}{16\pi^2} \frac{m_{\rho}^4}{g_{\rho}^2} \ln\left[\frac{m_{\rho}^2 + m_{a_1}^2}{2m_{\rho}^2}\right] \sin^2 \frac{h}{f} \qquad \qquad \lambda(m_{\rho})_{\text{gauge}}^{\text{leading}} \approx -3g^2 \log\frac{3}{2} \frac{g_{\rho}^2}{(4\pi)^2}$$



• Leading order tuning

$$\lambda(\Lambda) \sim g_{\rm SM}^2 \frac{g_{\rho}^2}{(4\pi)^2} \sim \text{few} \, 10^{-2}$$

125 GeV Higgs implies weak coupling (large n)

• Leading order tuning

$$\lambda(\Lambda) \sim g_{\rm SM}^2 \frac{g_\rho^2}{(4\pi)^2} \sim \text{few} \, 10^{-2}$$

125 GeV Higgs implies weak coupling (large n)

Subleading order tuning

$$\lambda(\Lambda) \sim \frac{g_{\rm SM}^4}{(4\pi)^2} \sim 10^{-3}$$

Model I:

$$V_{\text{fermions}} \sim \frac{N_c \,\lambda_t^2}{16\pi^2} \Lambda^2 f^2 \sum_{\alpha=1}^2 \left| \text{Tr}[\Pi_t^{\alpha} \cdot U] \right|^2 \qquad \propto \sin^2 \frac{h}{f}$$

CONCLUSIONS

CONCLUSIONS

• So far everything is consistent with the SM being valid up to a very large a scale. Maybe scale of new physics is large.

CONCLUSIONS

- So far everything is consistent with the SM being valid up to a very large a scale. Maybe scale of new physics is large.
- The idea of the Goldstone boson Higgs can be naturally merged with axions for large compositeness.

CONCLUSIONS

- So far everything is consistent with the SM being valid up to a very large a scale. Maybe scale of new physics is large.
- The idea of the Goldstone boson Higgs can be naturally merged with axions for large compositeness.

• Giving up naturalness, strong CP, dark matter, Higgs mass can be explained. Unification and neutrino masses could also fit into the picture.

HIGGS + DFSZ AXION

Dine-Fischler-Srednicki-Zhitnitsky: Two Higgs doublets and complex singlet

$$\begin{split} \sigma \to e^{4i\alpha}\sigma, \qquad q_{L,R} \to e^{i\alpha}q_{L,R} & H_u \to e^{-2i\alpha}H_u, \qquad H_d \to e^{-2i\alpha}H_d \\ f = \sqrt{v_u^2 + v_d^2 + |\sigma|^2} \end{split}$$

HIGGS + DFSZ AXION

Dine-Fischler-Srednicki-Zhitnitsky: Two Higgs doublets and complex singlet

$$\begin{split} \sigma \to e^{4i\alpha}\sigma, \qquad q_{L,R} \to e^{i\alpha}q_{L,R} & H_u \to e^{-2i\alpha}H_u, \qquad H_d \to e^{-2i\alpha}H_d \\ f = \sqrt{v_u^2 + v_d^2 + |\sigma|^2} \end{split}$$

Ex:

$$\frac{G}{H} = \frac{SU(6)}{SO(6)} \qquad \qquad SO(6) \supset SO(4) \otimes \mathrm{U}(1)_{\mathrm{PQ}}$$

$${\bf 20'}=({\bf 2,2})_{\pm {\bf 2}}\oplus ({\bf 1,1})_{\pm {\bf 4}}\oplus ({\bf 1,1})_{{\bf 0}}\oplus ({\bf 3,3})_{{\bf 0}}$$

UV realization: SO(n) gauge theory with 6 flavors

Fermions	$\mathrm{U}(1)_Y$	$SU(2)_L$	$SU(3)_{\rm c}$	$SO(n)_{\rm TC}$	$U(1)_{PQ}$
L	$-\frac{1}{2}$	2	1	n	0
$ar{L}$	$\frac{\overline{1}}{2}$	$\overline{2}$	1	n	0
N	$\tilde{0}$	1	1	n	2
$ar{N}$	0	1	1	n	-2

 $H_1 \sim LN$

$$\langle L\bar{L}\rangle = \langle N\bar{N}\rangle = \Lambda^3$$

$$H_2 \sim \bar{L}\bar{N}$$

UV realization: SO(n) gauge theory with 6 flavors

Fermions	$\mathrm{U}(1)_Y$	$SU(2)_L$	$SU(3)_{\rm c}$	$SO(n)_{\rm TC}$	$U(1)_{PQ}$
L	$-\frac{1}{2}$	2	1	n	0
$ar{L}$	$\frac{1}{2}$	$\overline{2}$	1	n	0
N	$\ddot{0}$	1	1	n	2
$ar{N}$	0	1	1	n	-2

 $H_1 \sim LN$

Yukawas must respect PQ

$$\frac{1}{\Lambda_t^2} (q_L t_R^c)^{\dagger} (L N) + \frac{1}{\Lambda_b^2} (q_L b_R^c)^{\dagger} (\bar{L} \bar{N}) + \text{h.c.}$$

Anomalies:

$$E_{TC} = 0 \qquad \qquad \frac{E}{N} = \frac{8}{3}$$

Neutrino masses can be generated by see-saw mechanism

$$\frac{1}{\Lambda_{\nu}^2} (l\nu_R^c)^{\dagger} (LN) + m(\nu_R^c)^2 + h.c \longrightarrow \lambda \, lH_1 \nu_R^c + m(\nu_R^c)^2 + h.c.$$

$$m_{\nu} \sim \frac{\lambda^2 v^2}{m}$$

If no right-handed neutrinos

$$\frac{1}{\Lambda_{\nu}^{5}}(l\bar{L})^{2}N^{2} \longrightarrow \frac{1}{\Lambda_{\nu}^{3}}(lH_{u})^{2}\sigma^{2} + \dots$$

Leptogenesis?

Sp(n) theories with 4 flavors

Fermions	$\mathrm{U}(1)_Y$	$SU(2)_L$	$SU(3)_{c}$	$\operatorname{Sp}(n)_{\mathrm{TC}}$	$\mathrm{U}(1)_{\mathrm{PQ}}$
D	0	2	1	n	+1
S	$+\frac{1}{2}$	1	1	n	-1
$ar{S}$	$-\frac{1}{2}$	1	1	n	-1

Sp(n) theories with 4 flavors

Fer	mions U(1)	$_{Y}$ $SU(2)_{I}$	$SU(3)_{c}$	$\operatorname{Sp}(n)_{\mathrm{TC}}$	$U(1)_{PQ}$
	<i>D</i> 0	2	1	n	+1
	$S + \frac{1}{2}$	1	1	n	-1
	$\bar{S} - \frac{1}{2}$	1	1	n	-1

Difficult to generate QCD anomaly

(qu)(DS) $(qu)(DS)(S\bar{S})$

We can be build models with partial compositeness

 $m\psi\Psi + M\Psi\Psi + g_{\rm TC}\Psi\Psi H$

Minimum ingredients for semi-natural composite Higgs:

- partial compositeness
- custodial symmetry
- L-R symmetry
- split spectrum
- luck with precision tests
- miracle with flavor

- flavor

 $m_{\rho} > 20 \,\mathrm{TeV}$

- flavor

 $m_{\rho} > 20 \,\mathrm{TeV}$

- precision tests

 $m_{\rho} > 3 \,\mathrm{TeV}$

- flavor

 $m_{\rho} > 20 \,\mathrm{TeV}$

- precision tests

 $m_{\rho} > 3 \,\mathrm{TeV}$

- direct exclusion

 $m_f > 0.7 \,\mathrm{TeV}$ $m_\rho > 2 \,\mathrm{TeV}$

- flavor

$$m_{\rho} > 20 \,\mathrm{TeV}$$

- precision tests

 $m_{\rho} > 3 \,\mathrm{TeV}$

- direct exclusion

 $m_f > 0.7 \,\mathrm{TeV}$ $m_\rho > 2 \,\mathrm{TeV}$

- Higgs mass

