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Motivation

I SUSY extensions of the SM are severely tested by
non-observation of SUSY at the LHC

I Several scenarios for keeping idea of naturallness
I R-parity violating SUSY
I Light stops with heavy first generations
I Dirac gauginos

I The goal of this talk: construct a fully dynamical model of
SUSY breaking leading to Dirac gaugino masses and more
natural superpartner spectra.



Supersoft SUSY Breaking (Nelson, Fox, Weiner)
I SUSY breaking dominated by a D-term of an extra U(1)

Wα ⊃ Dθα, D 6= 0

I No-go theorem for pure D-term breaking in a field theory
I A combined D/F-term SUSY breaking is realistic
I Mediation mechanism may be dominated by D-terms

I Additional chiral adjoint superfield charged under SM:

Mj =Mj + θψMj + θ2FMj , j = SU(3), SU(2), U(1)Y

I Operators in the effective Lagrangian

WWj

Λ
Mj =⇒ L ⊃ −mDλjψMj −m2

D

(
M+M†

)2

WαW
α

Λ2
M2 =⇒ L ⊃ −m2

h(M2 +M∗2)

mD ∼
D

Λ
, m2

h ∼
D2

Λ2
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Operator Analysis and Toy Models
I The problem of negative mass2 for the ImM could be

solved by
m2
MM†M

I M is essentially a light messenger multiplet with soft terms

mD, m2
h, m2

M

I The supertrace within the multiplet is proportional to m2
M

I It was argued in the literature that in supersoft models with
interacting U(1) a non-holomorphic mass m2

M is generated
and arises from

∫
d4θ

WαDαV

Λ2
M†M

I Unfortunately, such an operator is not invariant under
supergauge transformations
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Operator Analysis and Toy Models: Model 1

I U(1) with a D-term and heavy charged messengers

W = φ̄Mφ+ Λφ̄φ

I Explicit calculation demonstrates the cancellation of the
diagrams contributing to m2

M

φ†φ

M M †

φ†

φ

φ

M M †

Figure 2: The diagrams contributing to the MM † mass term at leading order in D. There
are two other diagrams with φ → φ̄, and on the cubic diagram the insertion can also be
done on the lower line.

where bH,L are the U(1) β-function coefficients above and below the mφ threshold where the
messengers are integrated out. By expanding mφ → mφ +yM we can obtain the coefficient
of the operator (2.3) to be given by

�
d2θ

y2Nm

8π2

1

m2
φ

WαW
αM2 + h.c. (3.2)

where Nm is the number of messengers. Depending on the phase of the messenger mass
mφ either the imaginary or the real part of M will get a negative mass square from this
term. Thus it is essential to find additional operators that will give additional positive
mass squares, for example a term proportional to M †M would be ideal. It was suggested
in in [8] that such terms are indeed generated at order D2, corresponding to the operator

�
d4θ

WαD
αV

Λ2
M †M . (3.3)

This was argued to happen in a model where the sponteneous breaking of the U(1) gauge
symmetry leads to the generation of a non-vanishing D-term at the minimum of the po-
tential. However, the fact that this term is not U(1) gauge invariant1 indicated that it
might not actually be generated. To verify this we have calculated the scalar adjoint MM †

mass terms both linear and quadratic in D and have found that bothe of those vanish in
the simplest supersoft model with a single (or several unmixed) messengers. The diagrams
contributing to the MM † mass term at linear order in D are given in Fig. 2, and the
coefficient is given by

y2

�
dp2

�
1

(p2 − m2
φ)

2
−

2m2
φ

(p2 − m2
φ)

3

�
= 0 (3.4)

Similarly, the contributions to the D2 term in MM † are given in Fig. 3, and the coefficient
is now proportional to

y2

�
dp2

�
1

(p2 − m2
φ)

3
−

3m2
φ

(p2 − m2
φ)

4

�
= 0 (3.5)

1We thank Graham Kribs for bringing this to our attention.

4

y2

∫
dp2

[
1

(p2 −m2
φ)2
−

2m2
φ

(p2 −m2
φ)3

]
= 0

I Only second diagram exists forM2 term
I Cancellation between φ and φ̄ contributions
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Figure 3: The diagrams contributing to the MM † mass term at quadratic order in D.
There are two other diagrams with φ → φ̄, and on the cubic diagram the insertion can also
be done on the lower line, or one on the upper and one on the lower line, giving rise to the
factor of 3 in (3.5).

Thus we conclude that in the simplest models with messengers coupled to the scalar adjoint
there will be no MM †-type mass terms generated, which is in accordance with our expec-
tation since no fully gauge invariant operator accounting for mass terms of these types can
be written down. This implies that in order to solve the problem with the negative scalar
adjoint masses one needs to find a more complicated model.

To understand how the problem of negative scalar mass squares can be fixed, let us
consider an extended toy model with the following superpotential 2

W = yφ̄Mφ + ψ̄φN + ψφ̄N̄ + mφφ̄φ , (3.6)

where ψ and φ charge 1 under U(1) while ψ̄ and φ̄ have charge −1. We will assume that
due to some other dynamics ψ and ψ̄ develop VEVs and generate a small D-term

D = ψ2 − ψ̄2 . (3.7)

The main new ingredient here is that

• The fields giving rise to the breaking of the U(1) symmetry ψ, ψ̄ are explicitly included
as dynamical fields

• The messengers φ, φ̄ charged under the U(1) will mix with additional messengers
uncharged under U(1).

From this latter point one can understand how the scalar mass problem can be resolved:
the quartic terms in Fig. 2 will have a different number of mixing insertions than the
cubic diagrams, therefore the cancelation is not expected to remain in this model, and a
term linear in D leading to an MM † scalar mass can be obtained. Indeed, assuming that
m � �ψ� we can integrate out the heavy fields φ, φ̄ (while still keeping ψ, ψ̄ and obtain a
Kähler contribution to the one loop effective Lagrangian of the form

�
d4θ

1

Λ2

�
ψ†eV ψ + ψ̄†e−V ψ̄

�
(M + M †)2 . (3.8)

2The mass term m can be absorbed into the vev of M .
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∫
dp2
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1

(p2 −m2
φ)3
−

3m2
φ

(p2 −m2
φ)4

]
= 0

I Only second diagram exists forM2 term
I No cancellation between φ and φ̄ contributions



Operator Analysis and Toy Models

I No need for Feynman diagrams
I Integrating out heavy messengers renormalizes U(1)

coupling
(

1

g2(Λ)
+
bL
4π

log
µ

M +
bH
4π

log
M

ΛUV

)
WαW

α

I ExpandM→ Λ +M
∫
d2θ

y2

8π2

1

Λ2
WαW

αM2 + h.c.



Operator Analysis and Toy Models: Model 2
I Generate D-term through vevs of charged fields ψ and ψ̄

W = φ̄Mφ+ Λφ̄φ , D ∼ O
(
|ψ|2 − |ψ̄|2

)

I New allowed operator
∫
d4θ

∑

i

ψ†i e
qiV ψi
Λ2

M†M

I Not generated at one loop. Is it generated at higher order?
I TreatM as a spurion: renormalizes ψ kinetic terms.
I ψ anomalous dimension

I At one loop: proportional to g2 and independent ofM
I At higher orders: depends onM through running of g2

I Wave-function renormalization Z
I At one loop: depends onM but is a sum of holomorphic

and anti-holomorphic terms
I At higher orders: must depend onM†M

I At higher loop orders supersoft is never supersoft.
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Operator Analysis and Toy Models: Model 3
I Introduce superpotential couplings to neutral fields

W = φ̄Mφ+ Λφ̄φ+ ψφ̄N + ψ̄φN̄

I Soft mass operator generated at one loop
∫
d4θ

1

16π2

sψ†eV ψ + s̄ψ̄†e−V ψ̄
Λ2

M†M

I Mixing: no cancellation between cubic/quartic diagrams
I ψ 6= ψ̄: no cancellation between φ and φ̄ contributions
I Soft mass is technically linear in D

s|ψ|2 − s̄|ψ̄|2
Λ2

D

but naturally O(D2) and can be made smaller/larger
I Possible to flip signs of m2

h and m2
M



Dynamical supersoft model
I s-confining SQCD

SU(5) SU(6) SU(6) U(1)B U(1)R

Q 1 1 1
6

Q 1 −1 1
6

I Low energy dofs

SU(6) SU(6) U(1)B U(1)R

M̃ 0 1
3

B 1 5 5
6

B 1 −5 5
6

I SU(5)D subgroup of global symmetry identified with SM

M̃ =

(
M N

N X

)
, B =

(
φ
ψ

)
, B̄ =

(
φ

ψ

)

I U(1)B gauged, acquires D-term



Dynamical model of supersoft SUSY breaking

I Superpotential

W1 = λ(φMφ+ ψNφ+ ψNφ+ ψψX)− µ2X

I To generate a D-term

W2 = hS(ψ + T ) + h′S(ψ + T ) + αZTT

I S, S̄, T , T̄ are charged under U(1). Z is neutral.
I hST is a tree level mass

I hSψ ∼
(

1
ΛUV

)3
SQ5 arises after confinement

I Need SUSY mass for messengers

W3 = m′χ(TrM − vM )



Dynamical model of supersoft SUSY breaking

I O’Rafeartaigh model of SUSY breaking

FX = ψ̄ψ−µ2, FS = h(ψ+T ), FS̄ = h′(ψ̄+T̄ ), FZ = αT̄T

I Non-vanishing F-terms are: FX , FS , FS̄ , FZ . These fields
do not couple to SM charged messengers

I D-term is generated after U(1)B gauging. Leading SUSY
breaking effect for SM fields



Dynamical model of supersoft SUSY breaking
I For small g the minimum is at T ≈ ψ 6= 0, T̄ = ψ̄ = 0

I For sufficiently large g and h 6= h′ the minimum is at

ψ 6= 0, ψ̄ 6= 0

I Can choose parameters so that
I Both scalar mass2 eigenvalues are positive
I Holomorphic m2

h soft mass squared

s|ψ|2 − s̄|ψ̄|2
v2M

D > 0

and can have either sign
I Mass ratio m2

M/m2
D can take a wide range of values

I Examples of adjoint mass spectra

mD = 1.6TeV, mr = 2.1TeV, mi = 2.2TeV

mD = 1.6TeV, mr = 5TeV, mi = 1TeV



Conclusions



Conclusions

I Reanalized effective operators in UV completions of
supersoft

I Supersoft is never truly supersoft
I Positive adjoint masses can be generated in Yukawa

extended supersoft models
I Constructed a complete dynamical model of SUSY

breaking with supersoft mediation mechanism
I Sufficient freedom in adjusting parameters to obtain

realistic spectra
I While expect a need for some finu-tuning, there will be

multiple acceptable islands in the parameter space
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