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WIMP miracle

h�vi = ↵2

m̃2

G. Jungman et al. JPhysics Reports 267 (1996) 195-373 221 

Using the above relations (H = 1.66g$‘2 T 2/mpl and the freezeout condition r = Y~~(G~z~) = H), we 
find 

(n&)0 = (n&f = 1001(m,m~~g~‘2 +JA+) 

N 10-S/[(m,/GeV)((~A~)/10-27 cm3 s-‘)I, (3.3) 

where the subscript f denotes the value at freezeout and the subscript 0 denotes the value today. 
The current entropy density is so N 4000 cmm3, and the critical density today is 
pC II 10-5h2 GeVcmp3, where h is the Hubble constant in units of 100 km s-l Mpc-‘, so the 
present mass density in units of the critical density is given by 

0,h2 = mxn,/p, N (3 x 1O-27 cm3 C1/(oAv)) . (3.4) 

The result is independent of the mass of the WIMP (except for logarithmic corrections), and is 
inversely proportional to its annihilation cross section. 

Fig. 4 shows numerical solutions to the Boltzmann equation. The equilibrium (solid line) and 
actual (dashed lines) abundances per comoving volume are plotted as a function of x = m,/T 
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Fig. 4. Comoving number density of a WIMP in the early Universe. The dashed curves are the actual abundance, and 
the solid curve is the equilibrium abundance. From [31]. 
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WIMP miracle

• mass scale of LSP is tied to the weak scale

applied to SUSY:

•  in Split SUSY, invoked to keep fermions near 
weak scale

• but relies on several assumptions!

h

B̃, W̃ , g̃

q̃, l̃

•Goldberg, 1983

• Arkani-Hamed, Dimopoulos 2004
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key assumptions:

1.    stable LSP (R-parity)

2.  

3. no dilution 

4. LSP reaches equilibrium

TR > m̃

what about 
gravitino LSP? G̃

Ñ1

WIMP miracle
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⌦3/2 =
m3/2

mNLSP
⌦NLSP



gravitino production

TR

T



gravitino production

TR
scattering

T



gravitino production

TR
scattering

m̃

freeze-in

Hall, Jedamzik, March-Russell, 
West, 0911.1120

T



gravitino production

TR
scattering

m̃

TFO

freeze-in

freeze-out and 
decay

T



gravitino production

when is: ?⌦3/2  ⌦
obs



a simple parameterization:
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constrains reheat temperature

TR . 109 GeV
Moroi, Murayama, Yamaguchi 1993
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thermalized gravitinos

• very light gravitinos thermalize: YUV ⇠ O(1)

• overclosure bound

m3/2 . 100 eV

• free streaming length:

m3/2 . 16 eV

• Viel et al., 2005
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thermalized gravitinos

• implies low SUSY breaking scale

m3/2 . 16 eV
p
F . 260 TeV

•  parametrically,

m3/2 < Teq

m̃ =
⇣gsusy

4⇡

⌘2 p
F

m̃ 
⇣gsusy

4⇡

⌘2 p
Teq MpF  Teq Mp
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gravitino production in split

scattering

m3/2Y3/2

freeze-in freeze-out
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enhanced by large scalar mass
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FIG. 3: Left: Bounds in the (m3/2, m̃nc) plane for colored (non-colored) superpartners with mass m̃c (m̃nc). The importance
of freeze-in as mc/mnc is raised from 1 to 10 is seen by comparing the orange and blue lines. The solid and dashed lines show
the e↵ect of increasing TR by 100. Center: Similar to the left panel, the changes to the bound of Fig. 1 is shown for the case of
split-SUSY, where the scalar superpartner masses, m̃s, are raised above the fermionic superpartner masses, m̃f . Right: The
overclosure bound in the (m̃s, m̃f ) plane is shown for the split-SUSY case, where the gravitino mass has been chosen at each
point to maximize the allowed region. For split-SUSY TR = m̃s. In all panels the green shading is as in Fig. 1.

and is suppressed compared to the degenerate case by
n

+
FI/nFI , where n

+
FI is the number of these heavy super-

partners. The scattering process, dominated by gluino
scattering, is proportional to the square of the gluino
mass, M2

3 . Finally, the freeze-out abundance is propor-
tional to the LOSP mass, m̃�, with h�vi = 4⇡↵2

e↵/m̃
2
�,

so that Eq. (2) becomes

CUV
TRM

2
3

m3/2
+

CFIn
+
FI

nFI

m̃

3
+

m3/2
+CFO

m̃�m3/2

↵

2
e↵

 aMPlTeq.

(5)
While pure FO of Eq. (1) bounds mLSP , with a gravitino
LSP the bound depends on themLOSP ,M3, and the mass
dominating FI.

As a simple example, on the left of Fig. 3 we show the
bound that results by taking all colored states at m̃c =
m̃+ and all non-colored states at m̃nc = m̃�, assuming all
superpartners are reheated. As can be seen, the bound
on m̃nc becomes much more stringent as m̃c is raised,
being reduced to 7 TeV for m̃c/m̃nc = 10. Much of the
allowed regions in Figs. 1, 2-Left and 3-Left are within
the LHC reach.
SPLIT SUSY. In the split-SUSY scenario [7], where the
scalar superpartner mass, m̃s, becomes much larger than
the fermionic superpartner mass, m̃f , a bound on m̃f ,
with a gravitino LSP, was discussed in [23]. The freeze-
in process dominates over the scattering process as long
as TR > m̃s [23, 24]. Using Eq. (5), with m̃s = m̃+

and m̃f = m̃�, yields the bound on m̃f shown in the
center panel of Fig. 3 for various values of m̃s/m̃f . To
compute the bound, the split-SUSY 1-loop RGEs were
used [25, 26]. The bound on m̃s is in the region of 100
TeV, as shown in the right panel of Fig. 3, and hence
arbitrary flavor and CP violation in the squark mass ma-

trix requires TR < m̃s. Finally, we note that if TR is
indeed below m̃s a bound on m̃f may still be obtained,
and is similar to that shown in Fig. 1 up to O(1) cor-
rections stemming from the absence of some diagrams in
the finite-temperature thermal production of the graviti-
nos [9].
The non-degeneracies explored in the left and center

panels of Fig. 3 lead to similar bounds, and forbid large
splittings between the light and heavy states (assuming
that both are reheated). Indeed, as the splittings in-
crease, the BBN bounds rapidly become very constrain-
ing.
RELAXING ASSUMPTION (iv-B). We now con-
sider how the bound on superparticle masses is relaxed
in theories that violate assumption (iv-B).
LOSP freeze-out and decay may not produce a sig-

nificant yield of LSP gravitinos, depleting Y

FO
3/2 . This

occurs, for example, if the LOSP dominantly decays
through R-parity violating (RPV) operators, which can
still be consistent with gravitino DM for su�ciently small
RPV [27, 28]. Alternatively, the LOSP may dominantly
decay to a light hidden sector, which, if thermalized, may
not produce significant gravitinos due to its lighter mass
scale. A third possibility is that the LOSP is colored, in
which case a late annihilation stage, after the QCD phase
transition, can dilute the abundance of R-hadrons [29, 30]
before the LOSP decays to gravitinos. In these cases, a
bound on m̃ results from dropping the FO term and is
shown on the right of Fig. 2. The maximal m̃ occurs at
m3/2 = m̃, when Eq. (2) gives

m̃

2  a

CD
TeqMpl . (103 TeV)2. (6)

The numerical value above was obtained for TR = m̃.

m̃s

m̃f
. 100

constraint on splitting



future of energy frontier?

p
TeqMp ⇡ 60 TeV

0 5 10 15 200.001

0.01

0.1

1

10

100

1000

mé @TeVD

s
@fbD

SUSY cross-sections

gé
gé+qé

qé
té

s = 100 TeV

L = 3 ab-1

Nev = 1000

Nev = 10

a 100 TeV collider would probe most of the 
cosmologically interesting region



conclusions

↵
p

Teq Mp TR
m̃

m3/2 > m̃



↵
p

Teq Mp TR
m̃

m3/2 > m̃

TR
m̃

↵1/2
p
Teq Mp

m3/2 < m̃

conclusions



backup



gravitino primer

m3/2 ⇡ F

Mp

m̃ =
F

M

M < Mp

G̃

Ñ1
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Fig. 1. Cosmological constraints on the gravitino mass and the 
reheating temperature in the framework of MSSM when the 
gravitino is the LSP. We take all the squark and slepton masses 
to be 1 TeV, mo~ = mNse= 50 GeV and the GUT relations on the 
gauge fermion masses are assumed. The solid line denotes the 
upper bound on the reheating temperature from the closure limit. 
The dotted region is excluded from the arguments of the light 
element photodestruetion if the NSP whose relic density is as large 
as eq. ( 15 ) decays radiatively with a lifetime shorter than 5.3 × 106 
S. 

overclose the universe. Therefore, it is the scattering 
process that is important to estimate the number 
density of  the gravitino. In this case, 

Ns (TNOW) x / / ~ ( ( 3 ) M  
Y3/2(TNow)= Ns (TR) ~ 3x//~ * 

X TR (Stot Vrel } , (14) 

from eq. (10a). Combining eq. (14)wi th  eq. (13), 
we get the upper bound on the reheating tempera- 
ture, which is approximately proportional to the 
gravitino mass. On the other hand, if 2 × 10 - 6 ,~ m3/ 
2< 10 -4 GeV, the decay processes become signifi- 
cant. In this case, P3/2 is larger than Pc unless the re- 
heating temperature is smaller than the squark and 
slepton masses. Therefore, it is necessary to lower the 
reheating temperature below the squark and slepton 
mass scale in order not to overclose the universe. And 
when m3/2~<2X 10 - 6  GeV, the gravitino mass is so 
small that P3/2 cannot exceed Pc even if the gravitino 
is thermalized. 

Next, let us consider the constraint from the light 
element photodestruction. If  a decay of a heavy par- 
ticle produces high energy photons after the primor- 

dial nucleosynthesis, we must require that these pho- 
tons do not change the abundance of the light 
elements. Here we consider the decay of the NSP. 
Since we are assuming that the gravitino is the LSP, 
the NSP can decay only to gravitino + something by 
the supergravity interaction. Therefore, the NSPs 
have much longer lifetime than other superparticles 
and may affect the predictions of the big-bang 
nucleosynthesis. 

If  the NSPs were stable, it would survive until to- 
day. Its relic density in this case has been calculated 
[3-5 ]. For the neutralinos, in a wide range of parti- 
cle parameters, the relic density is larger than 10- 3 to 
the critical one. This relic density can be translated 
into mNsPYNsP>~ 5.0 X 10-11 GeV ~ 1  where mNsP and 
YysP are the mass and yield of the NSP. In the follow- 
ing analysis, we conservatively take 

mNsP YNS P = 5 . 0 X  10 - l l  GeV,  (15) 

and assume that the NSP decay produces high energy 
photons. According to ref. [16], the energy density 
of  eq. ( 15 ) will overproduce 3He + D unless the life- 
time of the NSP is shorter than about 5.3X 106 S. 
Therefore, we impose 

,, sP i1 m2/2 M2 k m y s p /  U ) 

45 .3X106s .  (16) 

Here we have assumed that the NSP is a U( 1 ) r gauge 
fermion (bino) and used eq. (5a) for the decay rate 
of the NSP ~2. The right hand side ofeq. (16) strongly 
depends on the NSP mass and especially when the 
NSP mass is small, a severe upper bound on the grav- 
itino mass is obtained. The bound we obtained is 
m3/2~<3.4 GeV (9.3 GeV, 288.5 GeV, 771.5 GeV) 
for mNsP= 50 GeV ( 100 GeV, 500 GeV, 1 TeV) and 
the dotted region in fig. 1 is excluded. Note that if the 
reheating temperature is sufficiently small compared 
to the NSP mass, the NSP is not produced signifi- 

*~ It is plausible that this bound is also valid when a slepton or a 
chargino is the lightest. 

,2 If the bino is the NSP, it decays to gravitino+photon or to 
gravi t ino+Z °. But when the bino is lighter than the Z °, the 
latter decay channel is forbidden kinematically and the decay 
rate of the bino is sin20w~ 0.234 times smaller than the value 
of eq. (5a). For the case mNsp = 50 GeV, we have considered 
this effect. 
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variations on gravitino bound
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no freeze-out and decay3
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FIG. 2: Left: The bound on m̃ in the single-scale SUSY case, for ↵e↵ = 0.03, 10�2 and 10�3 in blue, green and purple
respectively, assuming TR = m̃. As ↵e↵ decreases freeze-out yields a larger abundance, so the FO boundary and the BBN
constraints (shown shaded in the corresponding colors) both become more stringent. As TR is raised, the bounds become more
stringent as indicated by the blue dashed lines of Fig. 1. Right: The bound on m̃ when the contribution to the gravitino
abundance from freeze-out and decay is negligible. This may be the case in several scenarios, as discussed in the last section.
The dashed blue lines demonstrate the strengthening of the bound as TR is increased. We do not analyze the region with
m̃ < m3/2 as the results are model-dependent.
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�
. Here

�3 ' 0.36 is related to the thermal corrections of the
scattering process [11], g⇤ = 228.75, and nFI counts the
number of fermions and complex scalars participating in
the freeze-in with mass m̃; with degenerate MSSM spar-
ticles, nFI = 36+9+12+4 = 61. The equality in Eq. (2)
corresponds to the case that these processes yield the ob-
served DM abundance. If gravitinos do thermalize, the
overabundance constraint becomes [17]

CTh m3/2  a Teq , (3)

with CTh = Y� = 45⇠(3)/⇡4
g⇤s ⇡ 2.4⇥10�3. Here g⇤s '

g⇤ = 228.75. The resulting bound on m̃ as a function
of m3/2 is shown in Fig. 1 for ↵e↵ = 0.03, relevant for a
(perturbative) wino LOSP. We do not include the non-
perturbative Sommerfeld e↵ect [21], which results in an
O(1) shift in ↵e↵ .

When gravitinos are not thermalized, the key point is
the di↵ering dependences of the three terms in Eq. (2) on
m̃ and m3/2. While all three terms have a positive power
of m̃, the UV and FI terms are proportional to 1/m3/2

while the FO term is proportional to m3/2, leading to
contours in Fig. 1 with slopes of opposite signs. Hence
there is an upper bound,

m̃

2  a/2p
CFOCD

↵e↵ MPl Teq , (4)

where CD = CUV (TR/m̃) + CFI . At the bound m3/2 =p
CD/CFO ↵e↵ m̃. For TR � m̃ the bound becomes m̃ 

27TeV [(TR/m̃)/10]�1/4 for ↵e↵ = 0.03 which weakens
to m̃ . 38 TeV for TR = m̃. Decreasing ↵e↵ makes
the FO term larger, as shown in the left panel of Fig. 2
for TR = m̃. The parametrics of Eq. (4) is similar, but
not identical, to that in the so-called “WIMP Miracle”,
Eq. (1).

A second allowed region occurs at very low m3/2 in
Fig. 1, where the gravitinos are thermalized for any
TR � m̃. Here the bound on m̃ arises from theory rather
than cosmology: m̃  (gsusy/4⇡)2

p
F , where gsusy is the

strength of the coupling between obervable and super-
symmetry breaking sectors, and F =

p
3m3/2MPl is the

supersymmetry breaking scale. The bound results when
the messenger scale takes its minimal value of

p
F , and

is shown in Fig. 1 for g

2
susy = 1, 3 and 10. We note

that it may be possible to construct realistic models of
composite quarks and leptons having non-perturbative
couplings, gsusy ⇠ 4⇡ [22].

NON-DEGENERATE SPECTRUM. The com-
pletely degenerate spectrum discussed above is special
because non-degeneracies typically arise from renormal-
ization group e↵ects or the dynamics of the mediation
of supersymmetry breaking. How do non-degeneracies
a↵ect the above bounds?

Non-degeneracies induce independent changes in the
three gravitino production mechanisms. The freeze-in
process is dominated by the heaviest superpartners, m̃+,

m̃ . 1000 TeV


