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Figure 2: Weighted by “observers per baryon”, the probability distribution for ρΛ de-

pends strongly on specific assumptions about conditions necessary for life. Three curves

are shown, corresponding to different choices for the minimum required mass of a galaxy:

M∗ = (107, 109, 1012)M". In neither case is the observed value (vertical bar) in the preferred

range. The choice M∗ = 107M" (also shown in Fig. 1) corresponds to the smallest observed

galaxies. The choice M∗ = 1012M" minimizes the discrepancy with observation but amounts

to assuming that only the largest galaxies can host observers. By contrast, the Causal En-

tropic Principle does not assume that observers require structure formation, let alone galaxies

of a certain mass; yet its prediction is in excellent agreement with the observed value (see

Fig. 8).

different approach, which is always well-defined. It will allow us to assume nothing
more about observers than that they respect the laws of thermodynamics.

2.3 Weighting by entropy production in the causal diamond

Causal Entropic Principle In this paper we will compute the probability distribu-
tion for ρΛ based on the Causal Entropic Principle, which is defined by the following

two conjectures [21]:

(1) The universe consists of one causally connected region, or “causal diamond”.

Larger regions cannot be probed and should not be considered part of the semi-
classical geometry.

– 10 –

Fraction of virialized baryons
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Larger regions cannot be probed and should not be considered part of the semi-
classical geometry.

– 10 –

Fraction of virialized baryons

−126 −125 −124 −123 −122 −121 −120 −119

log( ρ
Λ
 )

 0.0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y

Figure 1: The probability distribution of the vacuum energy measured by typical observers,

computed from the Causal Entropic Principle, is shown as a solid curve. The values consistent

with present cosmological data, in the shaded vertical bar, are well inside the 1σ region (shown

in white), and hence, not atypical. For comparison, the dashed line shows the distribution

derived by estimating the number of observers per baryon. Unlike our curve, it assumes

that galaxies are necessary for observers; yet, the observed value is very unlikely under this

distribution. For more details about both curves, see Figures 2 and 8.

In this paper we address the third condition. We will use a novel approach, the
Causal Entropic Principle, to argue that the observed value of ρΛ is not unlikely. Our
main result is shown in Fig. 1.

The Causal Entropic Principle is based on two ideas: any act of observation in-
creases the entropy, and spacetime regions that are causally inaccessible should be

disregarded. It assumes that on average, the number of observations will be propor-
tional to the amount of matter entropy produced in a causally connected region, ∆S.

Vacua should be weighted by this factor to account for the rate at which they will be

the cosmological constant gradually [12, 13]. In the string landscape, the vacuum preceding ours was
likely to have had an enormous cosmological constant. Its decay acted like a big bang for the observed
universe and allowed for efficient reheating [6].

– 3 –
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Higgs Mass Prediction
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Figure 2: The Higgs mass prediction in the SM for theories where the boundary condition for the
quartic coupling at m̃ is given by Eq. (2), for fixed values of m̃ = 1014 GeV and αs(MZ) = 0.1176.
The solid red curve gives the Higgs mass prediction for mt = 173.1 GeV, while the shaded red
band shows the uncertainty that arises from the experimental uncertainty in the top quark mass
of ±1.3 GeV. The horizontal blue lines show the corresponding asymptotes of the prediction for
large tanβ. For tan β < 1, an identical figure results provided the horizontal axis is labeled by
cotβ.

section 3.3 we discuss the relation to other work.

All figures and analytical results are obtained using two-loop renormalization group (RG)

scaling of all couplings from m̃ to the weak scale, together with one-loop threshold corrections

at the weak scale, including the one-loop effective potential for the Higgs field. In addition,

we include the two- and three-loop QCD threshold corrections in converting the top-quark pole

mass to the MS top Yukawa coupling, since they are anomalously large. Experimental values of

mt = 173.1 ± 1.3 GeV [11] and αs(MZ) = 0.1176 ± 0.002 [12] are used.

3.1 SM below m̃

In a general supersymmetric model, the SM Higgs doublet may be a combination of super-

symmetric Higgs doublets having opposite hypercharge so that, before including threshold cor-

rections, the boundary condition on the quartic coupling is given by Eq. (2). The resulting

prediction is actually a correlation between the Higgs boson mass and the parameter tanβ, as

shown by the solid red curve in Figure 2. Remarkably, even as β varies over all possible values,

the Higgs mass lies in a narrow, high-scale supersymmetry, window of ! (128 – 141) GeV. Fur-

thermore, for large values of tanβ the Higgs mass rapidly asymptotes to ! 141 GeV, shown by

8

mt = (173.1± 1.3) GeV

�s = 0.1176
m̃ = 1014 GeV

Axion 
Dark Matter

˜t loop
m̃ = 1014±2 GeV

mh = (128± 3± 0.6± 1.0) GeV

mt,↵s
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Figure 6: Contours of the gluino decay length cτg̃ and the wino relic abundance ΩW̃h2, as well as
the constraint from the Fermi photon observation and future prospect for the AMS-02 antiproton
search, are shown in theM∗-

√
FX (or r∗-m3/2) plane for various values of the reheating temperature

TR. Contours of the gluino and wino masses Mg̃,W̃ and the degenerate squark mass m̃ are also
shown in the top left panel. The value of L has been chosen such that MW̃ is maximized, keeping
the wino LSP; numerically, L # 3m3/2.
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TeV scale superpartners in unnatural theories 
rest on LSP freeze-out DM (multiverse or not)

What if LSP does not reach Thermal Equilibrium?

Josh’s talk:  No!

m3/2 ⇠ F

MPl
Gravitino is often the LSP

Large Loop-hole?

Josh’s talk:  No!

Must include all production mechanisms
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Summary:
SUSY in the Multiverse
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A Remarkable Situation

Naturalness/Symmetry
may be in trouble

A New Framework
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A  Multiverse
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