Computing complexity
Giorgio Parisi

The mathematical definition of Complexity.

An example taken from high energy physics.
Two examples taken from statistical mechanics.
Mean field approximation (no loops).

A supersymmetric formulation of the problem
The physical meaning of the supersymmetry.
Spontaneous supersymmetry breaking.

The typical scenario (in mean field theory).

Open problems



Problem: given a function f({x}) of N variables z, find the properties of

the set of of critical or stationary points

of _

=0.
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We want to compute their number and there relative location in the limit
N — 0.

Total Number o exp(NXr)

Y7 1s the total complexity.

(Number withf = NF) o exp(NX(F))

Y(F') is the complexity as function of F' (an interesting quantity).



Gauge fixing
Given A, (z), find a gauge transform g such that

OuAl(x) =0,

Here

Lattice theory gauge fixing
Given U(i, u) defined on the links

U9 =g (1)U (i, )g(i + f2)

flo) == Te(U%(, )



Spin Glasses
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Approximated equations: Magnetization m(z) = (o (1)).

arth(m =0 Z Ji em(k

Approximated field free energy:

f({m}) = ZJ@ sm(Dm(k) — 5713 S(m(i))
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If J; , = =1 randomly = gauge fixing for a Z» theory at 8 = oo



Long range case;

Sherrington-Kirkpatrick model

Vi k  Jip = %1



(Glasses

x; are three dimensional vectors.

flel =) V(wi =)

V(zx) is an appropriate two body potential.



Explicit computation in soluble cases.
e Spin glasses (gauge fixing) in the infinite dimensions limit.

e Spin glasses on special lattices (random lattices) or equivalently

partial resummation of the high temperature expansion.

e Mean field approximation (no loops).



General considerations

In the generic case the determinant D(z) of the Hessian matrix H is non

zero at the critical points, i.e.

_ o°f
D(:IZ) = det ’H‘ # O, Hi,k = 8$8£Ck; .

The index I(x) of a critical point is the number of negative eigenvalues of

the Hessian; a minimum has index 0 while a maximum has an index N.

(-1)""*) =sign(D(x)) = D(x)/|D(=)]

Morse theorem states that

Z(_DI(%) = topological constant ,
acC

where C' denotes the set of critical points.



A more detailed problem

We are interested in the distribution of f at the critical points:

Zw) =) (=1 exp(-wf(za)) and Z(w)= )  exp(~wf(za))
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2w) = [ D) T] s(fito) expl-wf(e).
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The complexity as function of F

N(F)=Y 6(fa— N F)(-1)"

aceC

For large N

®(w) and X(F) are related by an Legendre transform.



After the introduction of auxiliary variables

~

Z(w) = / du(X) exp(~S(X))
S(X) =Y Nfilw) + > Pt fur(z) + wf(z),

X; denote a point of the superspace with coordinates

X = {@i, i, i, i}

The integral over the variables A goes from —ico to +ioc.



The irrelevance of the determinant

In order to have a similar representation for A'(w) we should introduce 2n
Fermionic variables, evaluate the result for integer n and making the

analytic continuation to n = 1/2 as suggested firstly by Nicola d’Oresme.

We use d’Oresme identity:
Al = (A%)12 .

We expect that for w > 0 the sum is dominated by minima (or

quasi-minima).

There are no strong cancellations and



Fermionic symmetries

The action S ad the measure dy are invariant under the following

supersymmetry (Cavagna, Garrahan and Giardina 1998):
(SCIJZ' = eﬂbi (5)\@ = —€¢, wwi (5’@51 = 67;)\@' 5% = 0.

The Fermionic symmetry is the BRST type. The Morse theorem, that
states that

Z(w)|w—o = topological constant
can be proved in a neat way using the supersymmetric formalism.

As usual supersymmetry implies identities among correlations of different

quantities:

(i) = (xide),  w{in) = (Aidg) .



A physical argument

Let us assume that for infinitesimal h and there is an one to one

correspondence among the solutions of the equations
fi(z) = hq
at zero h and at non zero h.

A detailed computation shows that

6‘:@ 1 B

Supersymmetry takes care of purely geometrical relations among the

(T3 Ak) = |

correlations of the Bosonic variables, that play the role of Lagrangian
multipliers and the Fermionic variables, that have been used to evaluate

the inverse of the Hessian matrix and its determinant.



Spontaneously breaking of the supersymmetry

The proof of the Ward identities is based on the hypothesis that the

Hessian matrix at the critical point has no zero-mode.

If we average the function f inside a given class, we may integrate over

regions where zero-modes are always present and our assumptions fail.

If a zero mode is present H ' is infinite and all kind of problems arise in

defining the expectation value of (H™'); .

We could add a small term in the weight to suppress the critical points

with zero modes. e.g. an extra factor

exp(—Ar(z)).

This breaks explicitly supersymmetry and in the limit A — 0 the breaking

may survive.



(Aspelmeier, Bray, and Moore) If supersymmetry is broken there is exactly
one near zero mode for N — oo and critical points come in pairs for NV
(they becomes saddles when N — o0).

(Cavagna, Giardina, Parisi) Careful numerical verification.
(Parisi Rizzo) The zero mode is the Goldstone Fermion of supersymmetry.

Plots of f along the direction of the zero mode.
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Three possibilities

Now for each value of I' we can stay in one of the following cases
o I: The generic stationary point is a minimum (index 0).

e II;: The generic stationary point is may be not a minimum but the

number of negative modes remains bounded whin N — oco.

e II: The generic stationary point has a number of negative modes

diverging when N — oo.

For w > 0 only cases I or I1; are realized.



What has been done
Most studied problem:
f= free energy as function of the magnetization.

Techniques used for supersymmetry broken case:
e Original fermionic representation.
e Cavity approach: N <= N + 1 (Cavagna Giardina Parisi).
e Explicit supersymmetry breaking and Cavity (Rizzo).
Model considered
e SK model for spin glasses: F™* = F),.
e Spherical model for spin glasses F™* = F)y.

e Spin glasses on Bethe Lattice F’* = F,,, but more difficult to study.



An example in a soluble model.

An example of the complexity as function of w (u), and an example of the

complexity as function of the free energy.
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Open problems

The general principles in the mean field approximation (no loops) are well

understood.

There are some technical problems unsolved:
e More complex models.

e The critical point form clusters and there are many clusters (with

broken supersymmetry).
The effects of loops has never been studied:
e Perturbation theory (easy).

e Non-perturbative effects in finite dimensions (difficult).
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